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Abstract

Centella asiatica is rich in medical and cosmetic properties. While physiological responses

of C. asiatica to light have been widely reported, the knowledge of the effects of light on its

gene expression is sparse. In this study, we used RNA sequencing (RNA-seq) to investigate

the expression of the C. asiatica genes in response to monochromatic red and blue light.

Most of the differentially expressed genes (DEGs) under blue light were up-regulated but

those under red light were down-regulated. The DEGs encoded for CRY-DASH and UVR3

were among up-regulated genes that play significant roles in responses under blue light.

The DEGs involved in the response to photosystem II photodamages and in the biosynthe-

sis of photoprotective xanthophylls were also up-regulated. The expression of flavonoid bio-

synthetic DEGs under blue light was up-regulated but that under red light was down-

regulated. Correspondingly, total flavonoid content under blue light was higher than that

under red light. The ABI5, MYB4, and HYH transcription factors appeared as hub nodes in

the protein-protein interaction network of the DEGs under blue light while ERF38 was a hub

node among the DEGs under red light. In summary, stress-responsive genes were predomi-

nantly up-regulated under blue light to respond to stresses that could be induced under high

energy light. The information obtained from this study can be useful to better understand the

responses of C. asiatica to different light qualities.

Introduction

Centella asiatica (L.) Urban is a plant in the family Apiaceae [1]. It shows several biological

activities that are pharmaceutically and cosmetically useful [2, 3]. The extracts from this plant

have been reported to have wound healing [4], antioxidant [5], anti-inflammatory [6], antibac-

terial [7], anticancer [8], and neuroprotective [9] activities. C. asiatica is also a rich source of

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0260468 November 29, 2021 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Nawae W, Yoocha T, Narong N,

Paemanee A, Ketngamkum Y, Romyanon K, et al.

(2021) Transcriptome sequencing revealed the

influence of blue light on the expression levels of

light-stress response genes in Centella asiatica.

PLoS ONE 16(11): e0260468. https://doi.org/

10.1371/journal.pone.0260468

Editor: Vivek Dogra, CSIR-Institute of Himalayan

Bioresource Technology: Institute of Himalayan

Bioresource Technology CSIR, INDIA

Received: May 19, 2021

Accepted: November 11, 2021

Published: November 29, 2021

Copyright: © 2021 Nawae et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files. The sequencing data were

deposited in the NCBI database under the bio-

project accession number PRJNA642665. The raw

RNA-seq data sets of C. asiatica under white light

biological replicate 1-3 were deposited in the

sequence read archive (SRA) database with the

accession number SRX9122734-SRX9122736.

The raw RNA-seq data sets of C. asiatica under

https://orcid.org/0000-0001-9228-6963
https://orcid.org/0000-0001-6721-6453
https://doi.org/10.1371/journal.pone.0260468
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260468&domain=pdf&date_stamp=2021-11-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260468&domain=pdf&date_stamp=2021-11-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260468&domain=pdf&date_stamp=2021-11-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260468&domain=pdf&date_stamp=2021-11-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260468&domain=pdf&date_stamp=2021-11-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260468&domain=pdf&date_stamp=2021-11-29
https://doi.org/10.1371/journal.pone.0260468
https://doi.org/10.1371/journal.pone.0260468
http://creativecommons.org/licenses/by/4.0/


saponins, triterpenes, phytosterols, caffeoylquinic acids, and flavonoids, which are beneficial

to human health [10].

Light can significantly affect plant morphology and metabolism [11]. Many studies have

been conducted to understand the effect of light quality on plant growth and the production of

several secondary metabolites [12, 13]. In C. asiatica, UV-B radiation was shown to increase

leaf yield [14]. High light intensity was reported to increase the concentrations of flavonoids,

anthocyanins, and saponins in C. asiatica [14]. In contrast, low light intensity was shown to

reduce asiaticoside and madecassoside contents of three C. asiatica accessions from Thailand

[15]. The C. asiatica offspring ramets that were treated with low light showed increased bio-

mass and stolon length [16].

While the effect of light on biomass and secondary metabolite productions are well studied,

little is known about the effect of light quality on the expression of C. asiatica genes. RNA

sequencing (RNA-Seq) method has been used to examine gene expression of tea plants in

response to blue, purple, and yellow light treatments [17]. In lettuce, the analysis of RNA-Seq

data showed the downregulation of genes involved in flavonoid biosynthesis under green light

[18]. A recent report on the C. asiatica genome [19] provides a reference sequence and gene

annotation that enables the genome-wide gene expression patterns to be precisely analyzed

using RNA-Seq data.

In this study, we used the RNA-Seq method to investigate the expression of C. asiatica
genes in response to monochromatic red or blue light. As a result, we found several differen-

tially expressed genes (DEGs) that were implicated in several biological pathways. Many of

these genes were regulated in the opposite direction under red and blue light.

Materials and methods

Plant materials

Whole plants of C. asiatica derived from node segments of stolons were hydroponically grown

under a controlled environment in Enshi medium solution [20], with EC 1.8 mS cm-1, pH 5.0–

6.0 at 26 ± 2˚C, the relative humidity ranged from 55% to 60%. Composition of Enshi medium

solution was shown in S1 Table. They were cultured under a white light from light emitting

diode (LED) at an intensity of 150 mmol m–2 s–1 during the 12-hour photoperiod for 120 days

and were used for all treatments. LED light sources were used to provide different light condi-

tions. In the control treatment (white light ~150 μmol m−2 s −1, 580–680 nm), whole plant

materials were grown under 12-hour light/dark cycles. Red light samples (~60 μmol m−2 s −1,

580–680 nm) and blue light samples (~60 μmol m−2 s −1, 400–480 nm) were continuously

exposed to their respective light conditions, and the materials used for RNA preparation were

collected after 5 days (S1 Fig). For each of the white, red, and blue light conditions, C. asiatica
leaf samples were collected from three plants for replication.

RNA extraction, cDNA library construction and sequencing

The C. asiatica leaf samples were pulverized in liquid nitrogen. For each sample, total RNA

was extracted with the CTAB method. DNA-free™ DNA Removal Kit (Invitrogen™) was used

to remove contaminated DNA. The quality and quantity of RNA was evaluated with the

fragment analyzer machine (Agilent). Dynabeads1 mRNA Purification Kit (Invitrogen™)

was used to purify mRNA. We constructed cDNA libraries according to the MGIEasy

RNA Library Prep set protocol. The libraries were sequenced with the MGISEQ-2000RS

machine.
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RNA read mapping and differential gene expression analysis

We mapped the RNA reads to the C. asiatica reference genome with HISAT2 [21]. The refer-

ence genome sequence was downloaded from the national center for biotechnology informa-

tion (NCBI) database with the BioProject number PRJNA642665 [19]. StringTie2 was used to

quantify RNA reads mapped to gene regions of the genome [22]. The gene expression levels

were compared with DESeq2 to identify DEGs [23]. The gene expression levels under mono-

chromatic red and blue light were compared with those under white light. The gene expression

level was also compared between C. asiatica under red and blue light. As a result, three sets of

DEGs were obtained. The DEGs with log2 fold-change greater than 1.5 at the adjusted p-value

cutoff of 0.05 were retained for subsequent analyses. We used three biological replicates in all

DESeq2 analyses.

Analysis of the differentially expressed gene function

We used BLAST software to find the homologous functions of the DEG encoded proteins

based on the NCBI and the universal protein resource (UniProt) databases. The gene ontology

(GO) terms of the DEGs were extracted from the blast results. We used Mercator4 (or Map-

Man4) to classify the DEGs into functional classes [24]. The GO enrichment was analyzed

with AgriGO 2.0 [25]. The pathways in which the DEG encoding proteins were involved were

identified and visualized based on data from the Kyoto encyclopedia of genes and genomes

(KEGG) database [26].

Gene regulatory network analysis

The regulatory interaction among the DEGs was obtained from the plant transcriptional regu-

latory map (PlantRegMap) database [27] based on the sequence similarity search with the pro-

tein sequences of Arabidopsis thaliana and Daucus carota. We also searched for the homologs

of the DEGs from the search tool for the retrieval of interacting genes/proteins (STRING)

database [28]. The protein-protein interaction networks were obtained mainly based on the

co-expression information from the database. The data from the PlantRegMap and STRING

databases were combined. The networks were visualized and analyzed with Cytoscape software

[29].

Total flavonoids measurement

For each of nine C. asiatica samples, the extract was diluted with 96% ethyl alcohol in a 1: 3

ratio and then mix with 10 μl of 10% aluminum chloride solution. The solution of each sample

was then added with 150 μl of 96% ethyl alcohol and 10 μl of one molar sodium acetate and

was incubated in the dark at room temperature for 40 minutes. The absorbance of standard

solutions with quercetin at the concentration of 10, 20, 40, 60, 80, 100, 120 μg/ml was mea-

sured at 415 nm. The absorbance of each sample was then compared with the absorbance

curve of such standard quercetin solutions. Thereby, total flavonoid content in each sample

was expressed as milligram quercetin equivalent per gram of sample dry weight (mg QE/g)

[30]. The difference in flavonoid content between C. asiatica groups was analyzed with the

one-tailed t-test and was visualized with the ggpubr package of R language.

Gene expression analysis by RT-qPCR

We selected ten DEGs, including Cryptochrome DASH (CaCRYD), UV repair defective 3

(CaUVR3), Blue-light inhibitor of cryptochromes 1 (CaBIC1), Early light-induced protein 1

(CaELIP1), Violaxanthin de-epoxidase (CaVDE), ABA DEFICIENT 4 (CaABA4),
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Phenylalanine ammonia-lyase 1 (CaPAL1), Chalcone—flavanone isomerase 3 (CaCHIL), Fla-

vanone 3-hydroxylase (CaF3H), and ABSCISIC ACID-INSENSITIVE 5 (CaABI5), for reverse

transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. Glyceraldehyde

3-phosphate dehydrogenase (GAPDH) was used as a reference housekeeping gene. Primers

were designed with the PrimerQuest Tool (S2 Table). For RT-qPCR analysis, 50 ng of RNA

was used as a template in a 20 μL total reaction. The cycling condition was set according to the

EvoScript RNA SYBR1 Green I Master (Roche, Germany) instructions. The reactions were

done in QuantStudio™ 6 Flex Real-Time PCR System. All samples were run with three biologi-

cal replicates, and three technical replicates for each PCR reaction. The 2-ΔΔCt method was

used to calculate gene expression changes [31]. The unpaired Student’s t-test at p-value cutoff

of 0.05 was conducted with the ggpubr package. Scatter plot of the expression values from

RNA-seq and RT-qPCR data was done with Microsoft Excel.

Results and discussion

Different effects of red and blue light on C. asiatica gene expressions

We sequenced RNA from the C. asiatica treated with red (R-treated), blue (B-treated), or

white (W-treated) light. The sequenced reads were mapped to the C. asiatica reference

sequence [19]. We were able to map 95–96% of the total RNA reads to the reference genome

(S3 Table). The mapped RNA reads covered up to 80% (22,228 genes) of the total annotated

genes of the reference genome. The number of mapped reads per gene represented the expres-

sion level of each gene. The gene expression levels under red and blue light were compared

with those under white light (control condition). A gene whose expression level under red or

blue light was higher than that under white light was referred to as an up-regulated DEG, and

vice versa for a down-regulated DEG (Fig 1A and 1B). Under red light, the number of down-

regulated DEGs (red-downDEGs) was higher than the number of the up-regulated DEGs

(red-upDEGs) (S2A Fig). In contrast, the number of down-regulated DEGs under blue light

(blue-downDEGs) was lower than the number of the up-regulated DEGs (blue-upDEGs). The

expression levels were also compared between the R-treated and the B-treated C. asiatica (Fig

1C). The R-treated C. asiatica showed 205 genes with a higher expression level than that of the

B-treated ones (red-hiDEGs) (S2B Fig). Other 618 genes were expressed at higher levels under

blue light than that under red light (blue-hiDEGs) (S2C Fig). These results revealed that a

majority of C. asiatica genes were down-regulated under red light but were up-regulated

under blue light. Similar gene expression profile has been reported in Norway spruce [32].

We analyzed overrepresented gene ontology (GO) terms and classified the DEGs into four

functional groups (Table 1). A majority of the DEGs within these four classified groups were

down-regulated in the R-treated C. asiatica and were up-regulated in the B-treated plants,

according to the number of up- and down-regulated DEGs under each light condition (Fig 2

and S4 Table).

For the DEGs in Group 1 (Table 1), the enriched GO terms suggested the impact of high-

energy light on gene expression under blue light. In this group, we found the up-regulation of

Early light-induced protein 1 (CaELIP1) gene in the B-treated C. asiatic (Fig 2 and S4 Table).

This gene was down-regulated in the R-treated C. asiatic. The ELIP expression has been shown

in other plants to be induced by blue light (but not by red or far-red light) and high light

energy [33, 34]. ELIP1 could protect plants from photooxidative stress [35]. Transcription fac-

tors (TF), such as ELONGATED HYPOCOTYL 5 homolog (HY5 homolog or CaHYH) and B-

box domain protein 31 (CaBBX31), had a similar expression profile to CaELIP1 (Fig 2B and S4

Table). These TFs have been reported to regulated ELIP1 expression [36–38]. The expression

of BBX31 was also shown to depend on light energy [38]. For Group 2 (Table 1), several
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Fig 1. Volcano plot of RNA-Seq data. Scatter plots show the log2 of fold change and significant levels of genes from

the expression comparison between (A) the R-treated and the W-treated C. asiatica, (B) the B-treated and the W-

treated C. asiatica, and (C) the B-treated and the R-treated C. asiatica. The grey dots show insignificant DEGs (|log2 of

fold change|< 1.5 and/or FDR> 0.05). Blue dots show genes of the R-treated or the B-treated C. asiatica with a higher

expression level than that of the references (the W-treated in panel A and B, and the B-treated in panel C). Orange dots

show genes of the R-treated or the B-treated C. asiatica with a lower expression level than that of the references.

https://doi.org/10.1371/journal.pone.0260468.g001
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flavonoid biosynthetic DEGs were up-regulated in the B-treated C. asiatic but were down-reg-

ulated in the R-treated plants. Similar expression profile has been reported in other plant [32].

A high-light protection function of flavonoids might contribute to the high expression of these

genes under blue light, which had a higher energy level than red light [39]. The production of

flavonoids under stress, however, could compete with primary metabolisms for carbon and

energy sources [40, 41]. The enriched GO terms of the DEGs in Group 3 indicated that the

expression of the genes that were involved in the photosynthesis and electron transport under

blue light was higher than that under red light (Table 1). It has been shown that CO2 assimila-

tion, photosystem II (PSII) electron transportation, and photosynthesis in plants treated with

red light were impaired to a greater extent than the plants treated with blue light [42, 43].

Ribose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) activity under red light was also

lower than that under blue light [43]. In this study, the expression of gene encoding Rubisco

small subunit under blue light was higher than that red light (Fig 2B and S4 Table). The down-

regulation of flavonoid biosynthetic genes under red light might be correlated with the

decreased expression of photosynthetic genes, which could negatively affect the photosynthetic

efficiency of the R-treated C. asiatic. For Group 4, the DEGs were involved in hormone metab-

olism (Table 1). Gibberellin 2-beta-dioxygenase 1 (CaGA2OX1) gene was down-regulated

under red light but were up-regulated under blue light (Fig 2F and S4 Table). The expression

of CaGA2OX2 and CaGA2OX8 under blue light was also higher than that under red light (S4

Table). The transcription of GA2OX2 could be reduced with red light treatment [44]. The

expression of GA2OX8 was up-regulated with high light [45]. This gene could inactivate gib-

berellins (GA) and affect plant growth and development under high light [46].

Overall, the stresses and signal that could be induced under high-energy light might con-

tribute to the up-regulation of several TF, signaling, stress responsive genes in the B-treated C.

Table 1. The overrepresented GO terms of each DEG set.

GO Description red-downDEGs blue-upDEGs red-hiDEGs blue-hiDEGs

Group 1 GO:0009637 response to blue light - - - 0.022

GO:0009642 response to light intensity - 0.0015 - 0.00023

GO:0071482 cellular response to light stimulus - 8.30E-06 - -

GO:0009785 blue light signaling pathway - - - 0.00035

GO:0009411 response to UV - - - 0.04

Group 2 GO:0009699 phenylpropanoid biosynthetic process - 0.000098 - 0.0014

GO:0009813 flavonoid biosynthetic process 0.00005 - - 0.0019

GO:0006558 L-phenylalanine metabolic process - - - 0.008

GO:0016209 antioxidant activity 0.042 - - 0.04

GO:0098869 cellular oxidant detoxification 0.044 - - 0.043

Group 3 GO:0009772 photosynthetic electron transport in photosystem II - - - 1.10E-17

GO:0015979 photosynthesis 0.0097 - - 7.3E-20

GO:0022900 electron transport chain - - - 7.40E-10

GO:0042548 regulation of photosynthesis, light reaction - - - 0.0002

GO:0009055 electron carrier activity - - - 1.30E-09

Group 4 GO:0009755 hormone-mediated signaling pathway - - 0.03 -

GO:0003700 transcription factor activity, sequence-specific DNA binding - - 0.0097 -

GO:0009690 cytokinin metabolic process - - - 0.00023

The p-values of the GO enrichment analysis in each of red-downDEG, blue-upDEG, red-hiDEG, and blue-hiDEG sets are shown. The lower p-value represent a higher

significance of the enrichment of that GO term. Dash symbol shows the insignificance of a GO term.

https://doi.org/10.1371/journal.pone.0260468.t001
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asiatic. In contrast, the down-regulation of stress responsive genes in the R-treated C. asiatic
suggested a lower level of such stresses under low-energy light and the reduced expression of

genes involved in secondary metabolite production might reduce the consumption of carbon

and energy under photosynthetic inefficient status.

Fig 2. The expression levels of the functionally correlated DEGs. The DEGs are involved in (A) the responses to the DNA damages, (B) the responses

to the PSII damages, (C) mevalonic acid pathway, (D) flavonoid biosynthesis, (E) carotenoid biosynthesis, (F) hormone actions, and (G) transcription

regulation. The expression level of each DEG is shown as the Z-score of its transcripts per kilobase million (TPM) value. The Z-scores are calculated in

each row to scale the expression level of each DEG based light conditions from high (blue color) to low (brown color).

https://doi.org/10.1371/journal.pone.0260468.g002
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Gene expression of the photoreceptor genes under blue and red light

The expression of photoreceptor phytochrome A (PHYA), phototropin1, 2 (PHOT1,2), and

cryptochrome 2 (CRY2) encoding genes was not significantly different among the C. asiatica
treated with white, red, or blue light for five days. Similar results have been found in other

studies and it has been suggested that the expression of photoreceptor genes might not be spe-

cific to particular light spectrums [32, 47]. For example, the expression of PHOT1 (blue light-

sensitive photoreceptor) under blue light was lower than that under white or red light, while

PHOT2 was expressed at a similar level under red and blue light [48]. The expression of PHYA
(red light-sensitive photoreceptor) could decrease under red light treatments [49, 50]. Phyto-

chrome B was shown to be able to receive blue light in some circumstance [51]. In this study,

the expression of phytochrome B (CaPHYB) encoding genes in the B-treated C. asiatica was

higher than that in the R-treated plants (S4 Table).

Although the expression of those photoreceptor genes was insignificantly changed, the

expression of genes encoded for proteins whose functions related to photoreceptor activity

was significant altered. We found an up- and down-regulation of Blue-light inhibitor of cryp-

tochromes 1 (CaBIC1) encoding gene in the B- and the R-treated C. asiatica, respectively (Fig

2A). In Arabidopsis, the expression of BIC1 under blue light was also higher than that under

red light [52]. Photoactivation of Cryptochrome 2 (CRY2) activated the transcription of BIC
genes, which in turn suppressed photoactivated CRY2 [52–54]. Plants have a negative feedback

mechanism to regulate the activity of proteins in light signaling pathway [52, 55]. The insignifi-

cant change of CaCRY2 expression in the B-treated C. asiaticamight be related to the up-regu-

lation of CaBIC1, which could negatively regulated role on this blue receptor [52–54]. The

negative feedback mechanism might also play a role on the expression of other photoreceptors

of the B- and the R-treated C. asiatica.

The upregulation of genes involved in the protection of DNA and PSII

photodamages under blue light

We found several DEGs with the functions involved in the repair of light-induced DNA dam-

ages (Fig 2A and S4 Table). The long exposure to blue light was related to the occurrence of

cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone 6–4 photoproducts (6–4

PPs) DNA damages in both nuclear and organellar genomes of Arabidopsis leaves [56]. In this

study, Cryptochrome DASH (CaCRYD or CaCRY3) encoding gene was up-regulated under

blue light but was down-regulated under red light (Fig 2A and S4 Table). The protein domain

analysis showed that CaCRY3 protein contained FAD-binding domain in its N-terminal

photolyase-homologous region (PHR), which was essential for blue light absorption, but

lacked C-terminal extension region (CCE), which was required for light signal transduction

[57]. Another up-regulated gene under blue light encoded for protein UV repair defective 3

(CaUVR3), which has similar domain architecture as CaCRY3. CRY3 and UVR3 as (6–4)DNA

photolyase proteins exhibited light-driven DNA repair [58]. CRY3 was reported to correct

CPDs [58], while (6–4)DNA photolyase protein repaired 6–4 PPs damages [59]. We also

found the upregulation of the UV-damaged DNA-binding protein 2 (CaDDB2) gene under

blue light. DDB2, in complex with DDB1, was reported to recognize CPD lesions in human

cell [60].

Several other DEGs were involved in the response to PSII photodamages (Fig 2B and S4

Table). These DEGs were up-regulated under blue light but were down-regulated under red

light. The gene encoded for State transition 8 protein (CaSTN8) was one of these DEGs (Fig

2B and S4 Table). STN8 specifically phosphorylated photosystem II protein psbD/D2, psbC/

CP43 and other core proteins of PSII [61]. Correspondingly, we found a higher expression of
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psbD and psbC under blue light than that under red light. The phosphorylation mediated by

STN8 was essential for PSII repair [62, 63]. Early light-induced protein 1 encoding gene (CaE-
LIP1) was also a member of this group [33]. The accumulation of ELIP1 products was shown

to be correlated with the level of light energy absorbed by plants and with the degree of photoi-

nactivation and photodamage of PSII [33, 34]. The expression of ELIP1 was shown to be regu-

lated by the signaling pathway, in which the photoreceptor UV-B resistance 8 (UVR8) was

involved [36]. UVR8 could absorb blue light photons and induced gene expression under blue

light [64]. Correspondingly, we found the upregulation of genes encoded for CaUVR8 in the

B-treated C. asiatica (Fig 2A and S4 Table).

The DEGs of the carotenoid biosynthesis pathway were also expressed at higher levels in

the B-treated C. asiatica than those in the R-treated ones (Figs 2E and 3). Carotenoids could

function as photoprotectors and facilitators for the assembly of photosystems and light har-

vesting antenna complexes [65]. The expression of Beta-carotene hydroxylase encoding gene

(CaCrtZ) under blue light was higher than that under red light condition (Fig 3). Under blue

light, we found the up-regulated DEGs encoded for violaxanthin de-epoxidase (CaVDE or

CaNPQ1), which was involved in the conversion of violaxanthin to zeaxanthin under high-

light condition (Fig 3) [66]. This gene could alleviate photoinhibition and lipid peroxidation

under excess light because zeaxanthin could quench singlet excited chlorophyll, reduce triplet

excited chlorophyll formation, and scavenge reactive oxygen species [67, 68]. We also found

the upregulation of the Abscisic acid-deficient 4 encoding gene (CaABA4) under blue light

(Fig 3). ABA4 played a role in the biosynthesis of neoxanthin [69]. Similarly, 9-cis-epoxycaro-

tenoid dioxygenase encoding gene (CaNCED), which was highly expressed under blue light

(Fig 3). This enzyme was responsible for the biosynthesis of xanthoxin [70], which played a

role in the photoprotection of PSII [71]. Together, these results suggest that continuous expo-

sure to blue light might cause DNA and PSII photodamages in the B-treated C. asiatica and

induced the expression of related stress-responsive genes. The down-regulation of those

stress-responsive genes in the R-treated C. asiatica suggested that the level of DNA and PSII

photodamages under red light might be lower than that under blue or white light, which con-

tained blue spectrum.

The expression of flavonoid biosynthetic genes and their key transcription

factors

The expression of genes involved in the flavonoid biosynthesis pathway was notably different

between the R-treated and the B-treated C. asiatica (Table 1 and Fig 4A). Under red light, the

expression of all DEGs of the flavonoid biosynthesis pathway was down-regulated and was

lower than that under blue light (Figs 2D and 4A). The expression of several of these genes, for

example, Flavanone 3-hydroxylase (F3H) and Flavonoid 3’-hydroxylase (F3’H) was shown to

be strongly correlated with the level of flavonoid content [72]. In wheat sprout, the levels of

F3’H and Phenylalanine ammonia-lyase 1 (PAL1) expressions and flavonoid content under

blue was higher than those under red light [73]. Accordingly, we found in this study that the

level of total flavonoid content under red light (38.4±0.3 mg QE/g) was significantly lower

than that under blue light (41.9±1.5 mg QE/g) (Fig 4B). In pea, flavonoid contents were also

shown to be highly responsive to blue light [74]. Plant flavonols, such as quercetin had an abil-

ity to absorb short wavelength light and could protect DNA molecules from high energy light

[75]. Flavonoids in terrestrial plants were proposed to function as antioxidants, signaling

transmitters, phytohormone action regulators, and high light protectors [39]. Reactive oxygen

species (ROS) was directly synthesized in plants exposed to blue light [76]. The long exposure

to blue light might generated excess ROS in the B-treated C. asiatica. As a result, the expression
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Fig 3. The DEGs involved in the biosynthesis of xanthophylls under blue light. The sub-pathway involved in the

biosynthesis of zeaxanthin, neoxanthin, and xanthoxin is obtained from the carotenoid biosynthesis pathway of the

KEGG database. The DEG implicated in each step is shown. Star symbol indicates that the expression level under blue

light of the corresponding DEG is higher than that under red light. Up-arrow symbol shows that the corresponding

DEG is up-regulated under blue light. CaCrtZ: beta-carotene hydroxylase, CaVDE: violaxanthin de-epoxidase,

CaABA4: abscisic acid-deficient 4, CaNCED: 9-cis-epoxycarotenoid dioxygenase.

https://doi.org/10.1371/journal.pone.0260468.g003
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of flavonoid biosynthetic genes and the production of flavonoid were increased to respond to

excessive ROS.

To identify transcription factors (TFs) that were involved in the regulation of flavonoid bio-

synthetic gene expression, we built the networks of all DEG-encoded proteins (Fig 5). We

found three TF hubs among the blue-upDEGs, including ABSCISIC ACID-INSENSITIVE 5

(CaABI5), Myeloblastosis (MYB) family transcription factor 4 (CaMYB4), and CaHYH (Fig

5A). CaABI5 showed connections with CaCRY3, CaUVR3, and CaDDB2 (Fig 5A), which had

an ABI5 binding site in their promoter sequences. CaMYB4 was a R2R3-type MYB protein,

which could play a role in the expression of ABI5 and several genes of the flavonoid biosynthe-

sis pathway [77, 78]. In this study, CaMYB4 encoding gene was co-upregulated with the cinna-

mate 4-hydroxylase (CaC4H), chalcone synthase (CaCHS), Probable chalcone-flavanone

isomerase 3 (CaCHIL) and other flavonoid biosynthetic genes. CaHYH was found as a coun-

terpart of CaELIP1, CaMYB4, and CaCHS in the network. Hormone Abscisic acid (ABA) has

been reported to promote the synergy of ABI5,MYB,HY5/HYH in response to salinity stress

[79]. In this study, the expression of the β-glucosidase encoding gene (CaBG), which was

involved in ABA metabolism, was higher under blue light than that under red light. β-

Fig 4. The DEGs involved in flavonoid biosynthesis. (A) The sub-pathway involved in the flavonoid biosynthesis is obtained from the

phenylpropanoid biosynthesis pathway and the flavonoid biosynthesis pathway of the KEGG database. Dashed box covers flavonoid biosynthesis

pathway. The enzyme encoded by each DEG implicated in each step is shown. The first of the colored boxes shows the expression change of the DEG

from the expression comparison between the R-treated and the W- treated C. asiatica. The second box shows the expression change of the DEG from

the expression comparison between the B-treated and the W- treated C. asiatica. Up- and down-regulated DEGs are shown in blue and brown,

respectively. Light grey shows that the corresponding DEG is insignificantly changed under a particular condition. Star symbol indicates that the

expression level under blue light of the corresponding DEG is higher than that under red light. (B) Total flavonoid contents of C. asiatica leaves under

white, blue, and red light are shown. Significant difference of flavonoid contents between light conditions is shown with p-value. CaPAL: Phenylalanine

ammonia-lyase 1, Ca4CL: 4-coumarate—CoA ligase 1, CaC4H: cinnamate 4-hydroxylase, CaCHS: cinnamate 4-hydroxylase, CaCHIL: chalcone-

flavanone isomerase 3, CaF3H: Flavanone 3-hydroxylase, CaF3’H: Flavonoid 3’-hydroxylase, CaFLS: flavonol synthase.

https://doi.org/10.1371/journal.pone.0260468.g004
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Fig 5. The networks of the DEG-encoded proteins. The network of the proteins encoded by the DEGs (A) under blue and (B) red light are shown. The

regulation relationships are shown by directed edges connecting TF nodes (diamond shape) to target gene nodes (circle shape). The co-expression

relationships are represented by undirected edges between non-transcription factor nodes. The size of a node is proportional to the number of edges

that connect to that node. The full lists of genes are in S4 Table.

https://doi.org/10.1371/journal.pone.0260468.g005
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glucosidase was suggested to steeply increase local ABA concentrations to initiate early light

stress responses, including the biosynthesis of flavonols [39]. In addition, we found a higher

expression of the CaMYB12 encoding gene under blue light than that under red light (Fig 2G).

TheMYB12 transcription factor could activate the expression of CHS, CHI, F3’H, and FLS
[80].

In the network of proteins from red-down DEGs, Ethylene-responsive transcription factor

38 (CaERF38) was only one TF hub (Fig 5B). This TF was co-downregulated with State transi-

tion 8 (STN8), which was essential for PSII repair [61]. CaERF38 is also connected to Arogen-

ate dehydratase 1 (CaADT1), which was involved in phenylalanine production [81].

Phenylalanine is a substrate of PAL1 in the phenylpropanoid biosynthesis pathway (Fig 4A).

CaPAL1 was oppositely expressed in the R-treated and the B-treated C. asiatica (Fig 2D and S4

Table). Under red light, CaPAL1 was co-downregulated with 4-coumarate—CoA ligase 1

(Ca4CL1), and a cluster of genes involved in the biosynthesis of flavonoids (Fig 5B). The

expression of transcription factor ABI5,MYB4, and ERF38, and hormone ABA and ethylene

was induced under stress conditions that could cause oxidative stress in plants [79, 82, 83].

The expression of these TFs might contribute to the different expressions of flavonoid biosyn-

thetic genes between the R-treated and the B-treated C. asiatica to respond to ROS produc-

tions that could be higher under blue light [76].

Expression analysis of selected DEGs by RT-qPCR

We selected ten DEGs, including CaCRYD, CaUVR3, CaBIC1, CaELIP1, CaVDE, CaABA4,

CaPAL1, CaCHIL, CaF3H, and CaABI5, for RT-qPCR validation analysis. The plot of gene

expression fold changes calculated from RT-qPCR data and RNA-seq data showed high corre-

lation coefficient value (R2 = 0.98) (S3 Fig). This result indicated that differential expression

analysis results from RT-qPCR data and RNA-seq data were highly consistent.

Conclusion

In this study, we investigated the changes in C. asiatica gene expression levels in response to

monochromatic red (low energy) or blue (high energy) light. A notable difference between C.

asiatica plants under different light conditions was the different expression profiles of stress

responsive genes, which were up-regulated under blue light but were down-regulated under

red light. Some of these genes were involved in DNA damage repairs (CaCRYD and CaUVR3),

PSII photodamage responses (CaELP1), and xanthophyll biosynthesis. The expression levels of

several genes in flavonoid biosynthesis pathway were higher under blue light compared to red

light. The total flavonoid contents measured were in agreement with the difference in gene

expression levels. Increased expression levels of CaABI5, CaMYB4, CaMYB12, and CaHYH
TFs appeared to correlate with the expression levels of flavonoid biosynthetic genes under blue

light, while the down-regulation of CaERF38might correlate with reduced expression levels of

such genes under red light. The expression levels of several photosynthetic genes were also dif-

ferent between blue light and red light and might be associated with the difference in the flavo-

noid levels. Overall, our results showed different expression profiles of several high-light

induced TF, signaling, and stress-responsive genes under different light conditions. To further

elucidate the responses of C. asiatica to different light treatments, the levels of high-light

induced stresses and photosynthetic efficiency should be measured. HPLC runs should be car-

ried out to precisely measure the levels of several intermediates in the flavonoid biosynthesis

pathway.
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Supporting information

S1 Fig. C. asiatica plant samples. Representative C. asiatica plants that were treated with (A)

monochromatic red light (compared to that treated with white light) and (B) monochromatic

blue light (compared to that treated with white light) for five days are shown.

(TIF)

S2 Fig. Overview of the total number of DEGs. (A) The Venn diagram of the up-and the

down-regulated DEGs under red and blue lighted is shown. The Venn diagrams of the up-reg-

ulated DEGs and the higher expressed DEGs under red (B) and blue light (C) are shown.

(TIF)

S3 Fig. RT-qPCR validation. Scatter plot shows gene expression fold changes calculated from

RT-qPCR data and RNA-seq data. The correlation coefficient (R2) value is = 0.98. The fold

changes are from the comparison between the R-treated and the W-treated C. asiatica (red cir-

cle), the B-treated and the W-treated C. asiatica (blue triangle), and the B-treated and the R-

treated C. asiatica (orange square).

(TIF)

S1 Table. Composition of Enshi medium solution.

(XLS)

S2 Table. RT-qPCR primers.

(XLS)

S3 Table. RNA sequencing and read mapping statistics.

(XLSX)

S4 Table. Lists of all differently expressed genes. Differently expressed genes from the com-

parisons between (A) the R-treated and the W-treated C. asiatica, (b) the B-treated and the W-

treated C. asiatica, and (C) the B-treated and the R-treated C. asiatica are shown.

(XLSX)

S5 Table. Lists of abbreviations.

(XLSX)
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