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Wenlong Tang,1,6 Jacob D. Davidson,2,3,4,6 Guoqiang Zhang,1,6 Katherine E. Conen,2,3,4 Jian Fang,1

Fabrizio Serluca,1 Jingyao Li,1 Xiaorui Xiong,1 Matthew Coble,1 Tingwei Tsai,1 Gregory Molind,1

Caroline H. Fawcett,1 Ellen Sanchez,1 Peixin Zhu,1 Iain D. Couzin,2,3,4,* and Mark C. Fishman5,7,*

SUMMARY

Many animals, including humans, have evolved to live andmove in groups. In humans, disrupted social

interactions are a fundamental feature of many psychiatric disorders. However, we know little about

howgenes regulate social behavior. Zebrafishmay serve as a powerful model to explore this question.

By comparing the behavior of wild-type fish with 90 mutant lines, we show that mutations of genes

associated with human psychiatric disorders can alter the collective behavior of adult zebrafish. We

identify three categories of behavioral variation across mutants: ‘‘scattered,’’ in which fish show

reduced cohesion; ‘‘coordinated,’’ in which fish swimmore in aligned schools; and ‘‘huddled,’’ in which

fish form dense but disordered groups. Changes in individual interaction rules can explain these dif-

ferences. This work demonstrates how emergent patterns in animal groups can be altered by genetic

changes in individuals and establishes a framework for understanding the fundamentals of social infor-

mation processing.

INTRODUCTION

Across many species, survival depends on coordination of individuals in a group, such as in a school of fish,

flock of birds, or colony of ants. Group dynamics serve, for example, to enhance foraging abilities and

confuse predators (Krause et al., 2010). Social interactions are also essential to humans, as shown by the

profound dysfunction caused by social processing deficits in psychiatric disorders such as autism and

schizophrenia (Henry et al., 2016; Torosyan and Bota, 2017; Gur and Gur, 2016). Work across several species

has shown that motion patterns formed by individuals in animal groups can emerge as a consequence of

relatively local interactions (Couzin et al., 2002; Tunstrøm et al., 2013; Calovi et al., 2018). Although previous

work has provided evidence that schooling behavior in stickleback fish is under genetic control (Peichel

Catherine and Marques David, 2017), it remains unclear what attributes of collective behavior might be

genetically regulated, and by which specific genes. The genetic, neural, and behavioral techniques devel-

oped for zebrafish make them a valuable model for beginning to address these questions (Norton and

Bally-Cuif, 2010; Stewart et al., 2014). Zebrafish are highly social animals and exhibit a range of complex

behavior (Geng and Peterson, 2019). Several recent studies have investigated a single mutant line in com-

parison with wild-type (WT) fish, providing evidence that individual genes can alter the interactions and col-

lective behavior of zebrafish (Huang et al., 2019; Liu et al., 2018; Gutiérrez et al., 2019; Kim et al., 2017).

RESULTS

Mutant Zebrafish Groups Exhibit Differences in Swimming Behavior

We used CRISPR-Cas9 to generate mutations in 90 genes associated with psychiatric disorders (Data S1)

and performed experiments to ask how these mutations affect the collective behavior of freely swimming

zebrafish. We evaluated mutant fish as adults, after the development of the full range of social interactions

has matured (Buske and Gerlai, 2011), comparing their collective behavior as they swam in an open circular

arena (Figure 1A, Video S1). All mutants were tested as homozygous adults, except for scn1lab and slc18a2,

which could not be raised to adulthood as homozygous and thus were tested as heterozygous fish. We per-

formed multiple trials, with each trial featuring different fish, for each line (Table S1).

Zebrafish tend to swim in groups, sometimes aligning and moving together with others (Figure 1B) and at

other times swimming closely and in a disordered configuration (Figure 1C). We found that mutant fish vary

in their swimming speed, group spacing, and polarization. Although there was considerable variation

between trials performed with a given line, many lines showed consistent trends (Figures 1D–1F).
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Previous work in several fish species has shown that individual speed directly affects motion dynamics, with

higher speed being associatedwith both wider spacing and increased alignment between the individuals (Cou-

zin et al., 2002; Tunstrøm et al., 2013; Jolles et al., 2017). Consistent with this work, mostmutant lines with higher

swimming speed have larger inter-individual spacing and group polarization (Figures 1D–1F, 2A, and S2). Linear

and exponential regression reveals that speed can explain approximately 30% of the total variance in inter-indi-

vidual spacing, polarization, speed inter-quartile range (IQR), time moving, nearest neighbor distance, and

group centroid speed (Figure S2; see Transparent Methods). However, after subtracting the effects of speed

and accounting for trial variability, multiple lines continue to show differences fromWT (Figure 2B).

A B C

D

E

F

Figure 1. Patterns of Group Behavior Vary Across Mutant Lines

(A) In each trial, six adult fish were filmed from above as they swam in a circular arena.

(B and C) Example trajectories from WT fish, showing groups in aligned (B) and disordered (C) configurations. Each trace shows 1 s of swimming.

(D–F) Box plots of median speed (D), group spacing (E), and polarization (F) for all genetic lines. Each point shows data from one trial. Lines are ordered from

lowest to highest speed. Colored points highlight examples of lines that differ fromWT in certain aspects of behavior. Figure S1 contains analogous plots for

other behavioral metrics.

See also Figure S1, Table S1, Video S1, and Data S1.
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Three Patterns Describe Distinct Behavioral Differences

We find that three general patterns, scattered, coordinated, and huddled, describe the most distinct dif-

ferences in movement of the mutant fish. The scattered phenotype has high spacing and low polarization

among individuals in the group, exemplified by the mutant lines scn1lab+/� (encoding the Nav1.1 protein

[Schoonheim et al., 2010]) and ctnnd2b�/� (encoding d-catenin [Turner et al., 2015]). These mutants have

high inter-individual spacing, and although they occasionally form groups, they tend to dissociate from

each other more frequently and show less collective coordination. The coordinated phenotype describes

individuals that exhibit an increased tendency to align their direction of travel and to move coherently as a

group, exemplified by chrna2a�/� (encoding the a2-nicotinic acetylcholine receptor [Demontis et al.,

2019]). The huddled phenotype is characterized by groups of individuals exhibiting low polarization and

tight spacing. These groups are generally dense but disordered, and fish spend more time swimming in

a relatively local area, as exemplified by disc1�/� (encoding disrupted-in-schizophrenia [Blackwood

et al., 2001]) and immp2l�/� (encoding the inner mitochondrial membrane peptidase2-like protein [Casey

et al., 2012]).

We use principal component analysis (PCA) on the median values of the behavioral metrics for each line

after controlling for speed (Figure 2B) to describe and quantify the different patterns of group behavior

(Figure 3). We find that the first two components reveal much of the relative behavioral differences between

lines, showing differences between the scattered, coordinated, or huddled phenotypes. Note that,

although Figure 3 highlights five mutant lines that exhibit clear differences along the PCA dimensions,

other lines also exhibit differences fromWT (Figures 3C and S3). Accounting for trial variability and limited

sampling using a bootstrap procedure shows that some lines are separated from WT in one or both of the

first two PCA components, whereas other lines overlap with WT (Figure S3). Although the first two compo-

nents reveal the largest fraction of variation, some lines show distinct differences in the third PCA compo-

nent. For example, although both display the huddled phenotype, unlike disc1�/� fish, immp2l�/� fish

spend time without moving, or are ‘‘frozen.’’ Because of this these two lines have opposite signs for PC3

(Figure 3B) and are separated in the ‘‘freezing component’’ by using a modified PCA procedure (Figure S4;

see Transparent Methods).

Model Fit Connects Group Behavior to Individual Interaction Rules

Evidence suggests that collective motion dynamics can be explained by relatively simple rules of interac-

tion between individuals, such as how an individual fish alters its trajectory depending on the locations of its
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Figure 2. Speed Only Partially Explains Altered Group Behavior across Lines.

Differences betweenmutant lines andWT in the median values of seven behavioral metrics before (A) and after (B) correcting for speed differences. Lines are

listed in order of increasing speed. Colors of five highlighted lines have the same conventions as in Figure 1. Bold outlines indicate statistically significant

differences from WT, determined by considering the variability of each quantity across trials for a given line (Dunnett’s test, p < 0.05). Units refer to the

standard deviation of median values across lines.

See also Figure S2.
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neighbors (Couzin et al., 2002; Calovi et al., 2018; Heras et al., 2018; Harpaz et al., 2017; Katz et al., 2011;

Zienkiewicz et al., 2018). We use a model to ask if salient observed differences in collective motion (i.e.,

the scattered, huddled, and coherent collective motion patterns) can be explained by differences in how

individuals turn in response to neighboring fish. Themodel uses neighbor positions and velocities to deter-

mine the effective attraction and alignment forces that best predict whether a fish will turn left or right after

a specified time delay (see Transparent Methods for details). We examined differences in the distance-

dependence of attraction (GattðrjÞ), the distance-dependence of alignment (GaliðrjÞ), and the relative overall

strength of attraction to alignment (a) for WT fish and for mutant lines that exemplified the three distinctive

group patterns: scattered (scn1lab+/-), coordinated (chrna2a�/�), and huddled (disc1�/�).

Figure 3. PCA Reveals Categories of Behavioral Variability in Genetic Mutants

(A) Left: After accounting for speed, 90.8% of the remaining variation across lines is described by three orthogonal components. The first component reflects

a change in group spacing. The second and third components reflect combinations of polarization and fraction of time moving: positive values of PC2

correspond to high polarization and increased timemoving, whereas high values of PC3 correspond to high polarization and frequent freezing. Right: Values

of the input metrics for five highlighted lines, relative to WT.

(B) Center: projection of the data for all genetic lines onto the first two components; projection onto the third component shown separately on the right-hand

side. Edges: example trajectories for WT and five highlighted lines (1,000 frames, e17 s). The ‘‘scattered’’ phenotype is described by positive values of the first

PCA component (PC1) and negative values of the second component (PC2). The ‘‘coordinated’’ phenotype is described by positive values of PC2. The

‘‘huddled’’ phenotype is described by negative values of PC1 and PC2. Table S2 lists each line in order of position along each PC.

See also Figures S3 and S4 and Table S2.
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For WT fish, the effective ‘‘force’’ of attraction to neighbors increases with distance, whereas alignment de-

creases with distance (Figure 4C). These trends agree with previous work on fish (Calovi et al., 2018).

Compared withWT, scn1lab+/� fish exhibit a weaker distance-dependence for attraction and amore rapid

decrease in alignment as a function of distance (Figure 4C). This suggests that scn1lab+/� fish interact pre-

dominantly with close neighbors and tend to ignore those at a distance, leading to the group instability and

scattered behavior we observe in these lines. Model fits to ctnnd2b�/�mutants show a similar trend (Fig-

ure S5B). Notably, the model predicts turning decisions of scn1lab+/� fish with lower accuracy than WT

fish, indicating that the motor decisions of scn1lab+/� fish are less consistently affected by neighboring

fish (Figure 4B). In contrast, chrna2a�/� mutants move more predictably than do WT and exhibit a rela-

tively strong attraction to distant neighbors (Figure 4C), which accounts for the cohesive nature of groups

formed by these lines. The interaction functions for disc1�/� are similar to WT overall but yield a higher

ratio of attraction to alignment (Figure 4C), and fits to immp2l�/�mutants show a similar trend (Figure S5B).

This change in social responsiveness results in individuals that stay close to one another but do not move

together as a coherent group. Overall, our results suggest that differences in how individual fish respond to

their neighbors can lead to the different observed group-level patterns.

DISCUSSION

This work uses quantitative behavioral metrics to show how genetics may direct patterns of collective

behavior. The patterns that arise in groups—their structure, cohesion, leadership, and dynamics—

contribute to species fitness and adaptation to environmental changes and hence to their evolution.

This study establishes a fundamental framework for understanding the relationship between genes, social

interaction, and sensorimotor transformations. Prior work has demonstrated that swimming speed alone

can drive changes in the shoal structure and dynamics (Couzin et al., 2002; Tunstrøm et al., 2013; Jolles

et al., 2017), and we find here that mutations that alter speed do, in general, change the behavior of the

group in predictable ways. However, we also discovered mutations with effects on the group pattern

and dynamics dissociated from the effects of speed. These fall into three patterns, coordinated, scattered,

and huddled, which each describe the behavior of several mutant zebrafish lines and can arise from differ-

ences in interaction rules among individuals.

In our results we highlighted five lines with distinctive behavioral differences from WT: scn1lab+/�,

ctnnd2b�/�, chrna2a�/�, immp2l�/�, and disc1�/�. However, we note that, in addition to these, other

mutant lines also exhibited distinct differences from WT (Figures 2, 3, and S3). We also note the possibility
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(A) Schematic of one focal fish (black) at a given point in time, with five neighbors (red) at different locations and around it. Arrows indicate heading. For each

fish in the group, the model takes relative neighbor positions and headings as input to predict whether the individual will turn left or right after a specified

time delay of 1 s for WT (delay time adjusted for different speeds of the mutant lines—see Transparent Methods). The fit yields the interaction functions for

effective attraction and alignment forces that best predict movement decisions across all fish in a trial.

(B) Predictive ability of the model, showing boxplots for the distribution of fraction of turns predicted correctly for different trials with each line.

(C) Fits to WT and mutant lines scn1lab+/-, disc1�/�, and chrna2a�/�. The attraction/alignment ratio a is shown along with the distance dependence of

attractionGattðrjÞ and the distance dependence of alignmentGaliðrjÞ. The bold line shows the fit to all trials together, and the thin lines show fits to individual

trials. For fits to the mutant lines, the overall fit to WT is shown in solid black for comparison. Compared with WT, scn1lab+/� fish exhibit a weaker distance-

dependence for attraction and a more rapid decrease in alignment as a function of distance. In contrast, chrna2a�/� mutants exhibit a relatively strong

attraction to distant neighbors. The interaction functions for disc1�/� are similar to WT overall but yield a higher ratio of attraction to alignment.

See also Figure S5.
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that some genes did not manifest a behavioral phenotype because of the activity of paralogs (Hoffman

et al., 2016) or the transcriptional upregulation of paralogs or other genes triggered by the CRISPR-Cas9

(El-Brolosy et al., 2019).

The effect of the mutations upon the individual fish may be upon sensory, motor, or integrative pro-

cesses, and we cannot suggest that the affected genes are specifically ‘‘social’’ in their roles, but rather

that such effects upon individuals are manifest as changes in group behavior. For example, it is known

that larvae of homozygous deficient scn1lab mutant fish (as opposed to the heterozygous fish studied

here) partially lose the ability to maintain eye positions following saccades associated with the optokinetic

reflex (Schoonheim et al., 2010) and have increased levels of swim activity as individual larvae (Baraban

et al., 2013). In future work it will be important to define the nature of the sensorimotor transformations

and corresponding neural activity that underlie collective and social behavior. With transparent larval ze-

brafish, whole-brain imaging can examine neural activity from stimulus onset to the subsequent motor

output (Chen et al., 2018). New tools, including the use of fixed fish combined with virtual reality, may

permit similar evaluations related to collective behavior in adult fish (Huang et al., 2019; Stowers et al.,

2017).

Several mutations that generate distinctive patterns of collective behavior are in genes that have been

linked to human psychiatric illnesses. For example, variants of CTNND2 have been associated with autism

(Turner et al., 2015); DISC1 with schizophrenia, bipolar disease, and major depressive disorder (Blackwood

et al., 2001); CHRNA2 with nicotine and cannabis abuse (Demontis et al., 2019); SCN1A with autism and

epilepsy (‘‘Dravet syndrome’’) (Catterall et al., 2010); and, in some studies, IMMP2L with autism (Casey

et al., 2012). Although we are cautious in relating collective behavior in fish to any particular social pheno-

type in humans, we note that elements of the ‘‘social brain’’ are known to be conserved from fish to human

(O’Connell and Hofmann, 2012; Geng and Peterson, 2019). In addition, social interaction assays may pro-

vide sensitive means to evaluate effects of pharmacological agents upon behavioral deficits in genetically

defined animals. Drug screening for reversal of other behavioral phenotypes in fish has revealed agents

used successfully to treat human psychiatric disorders (Baraban et al., 2013; Wang et al., 2019; Hoffman

et al., 2016).

Limitations of the Study

In this study, we identify mutations in several zebrafish genes that lead to altered collective swimming

behavior. Although we show that changes in swimming speed do not account for all behavioral variation,

our study does not test whether other changes in sensory processing or affective response interact with so-

cial motivation to give rise to these changes. In addition, although we note three general patterns that

describe how behavior varies across lines, this study does not test whether similar behavioral variations

reflect changes in the same neuroanatomical and cellular pathways. Future experiments examining the

anatomical changes and neural activity in distinctive mutant lines will be needed to resolve this question.

Although we examined variability across trials for each line, we did not examine variability among individual

fish due to challenges in maintaining individual identities in the tracking. Finally, although we generate an

individual-level model that accounts for group-level differences in behavior, this study does not directly

test how well the effective forces in the model reflect the underlying decision processes in fish. Subsequent

work will be needed to test the specific forms of the interaction functions in the model and to ask if differ-

ences for mutant fish are due to social response or due to differences in sensory, motor, or integrative

processes.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

Data are available at doi.org/10.5061/dryad.hx3ffbg9n. Code is available at github.com/jacobdavidson/

zfish_mutants_analysis/.

SUPPLEMENTAL INFORMATION
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Supplemental figures and tables

Figure S1. Boxplots of other behavioral metrics. Related to Fig 1. Analogous box plots to Fig 1D-F
are shown for the behavioral metrics of speed while moving (A), speed inter-quartile range (B), group
centroid speed (C), fraction of time moving (D), and nearest neighbor median distance (E). See Methods
for definitions of these quantities. Each point shows data from one trial. Lines are ordered from lowest to
highest speed. As in the main text, colored points highlight examples of lines that differ from WT in certain
aspects of behavior.
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Figure S2. Relationship of speed with each behavioral metric. Related to Fig 2. Units refer to the
standard deviation of the median values of each quantity across lines. A linear regression was used for all
quantities except time moving, which uses an exponential function (see Methods). The value of Spearman’s
correlation, rs, is shown on each plot. Colored points correspond to highlighted lines, using the same color
conventions as Fig S1 and Figs 1-4 in the main text.
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using a bootstrap procedure (see Methods).

2



4 2 0
Fraction time moving*
(Std. dev. from mean)

2

0

2

S
td

. 
d
e
v
. 
fr

o
m

 m
e
a
n

Speed IQR*

rs=-0.15

4 2 0
Fraction time moving*
(Std. dev. from mean)

Centroid speed*

rs=0.47

4 2 0
Fraction time moving*
(Std. dev. from mean)

Polarization*

rs=0.42

4 2 0
Fraction time moving*
(Std. dev. from mean)

Group spacing*

rs=0.09

4 2 0
Fraction time moving*
(Std. dev. from mean)

NN distance*

rs=-0.06

e
sr

ra
im

m
p

2
l

km
t2

cb
sl

c6
a
4

a
h
o
m

e
r1

b
u
b

e
3

a
ct

n
n
d

2
b

n
p

y
2

r
d

rd
4

-r
s

sl
c4

a
1

0
b

p
cd

h
1

0
b

sl
c1

6
a
3

p
a
rd

3
b

a
d

rd
3

sh
a
n
k3

a
u
ts

2
a

cp
d

b
n
r3

c1
n
co

r2
sl

c1
a
1

ct
n
n
d

2
a

sl
c3

9
a
1

1
a
d

rb
3

a
lr

rn
3

n
p

a
s3

a
p

rk
g

1
a

sl
c3

0
a
5

sl
c6

a
7

e
rc

c6
a
v
p

n
fk

b
1

sl
c2

2
a
1

5
d

rd
4

a
a
d

ra
1

a
b

ch
rm

4
a

ss
t1

,1
n
ts

n
fk

b
2

g
rm

5
a

e
sr

2
a

sl
c1

8
a
2

sl
c9

a
6

b
sc

n
1

la
b

h
d

a
c5

m
o
x
d

1
ss

tr
2

b
sl

c9
a
6

a
fg

f1
2

a
g

n
rh

r4
cs

m
d

1
a

h
tr

1
a
b

h
rh

3
d

lg
4

a
cn

n
1

b
cd

n
f

ss
t3

sl
c6

a
8

d
rd

6
b

g
n
rh

3
p

d
f

tr
h
ra

sa
p

a
p

2
a
v
p

r1
a
b

st
a
t6

sl
c2

5
a
1

4
ca

9
e
sr

rg
a

g
a
b

rp
g

a
ln

fg
f1

2
b

se
td

8
a

tp
h
2

a
d

ra
1

a
a

p
o
m

cb
sl

c6
a
3

sl
c2

5
a
2

7
tr

h
kc

td
1

3
W

T
d

rd
1

b
n
co

a
1

d
rd

1
a

h
d

a
c9

b
d

is
c1

d
rd

2
b

g
p

c6
a

sh
a
n
k3

b
o
x
t

sr
r

ch
rn

a
2

a
n
rx

n
1

b

NN distance

Group spacing

Time moving

Polarization

Centroid speed

Speed IQR

-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0

S
td

. 
d

e
v
ia

ti
o
n
s 

fr
o
m

 W
T

A

B

C DSpacing
component 

(40.4%)

Polarization
component 

(22.6%)

Freezing
component 

(27.6%)

0.5 0.0 0.5

Speed IQR

Group centroid speed

Polarization

Fraction of time moving

Group spacing

NN median distance

0.5 0.0 0.5 0.5 0.0 0.5

Spacing component

Po
la

ri
za

ti
o
n
 c

o
m

p
o
n
e
n
t

S
p

e
e
d

-a
d

ju
st

e
d

 t
im

e
 m

o
v
in

g

adra1aa

shank3b
slc25a27

slc39a11

shank3a

sst3uts2a

oxt

slc6a3

drd4-rsgnrhr4

grm5a
adra1ab

drd2b

avpr1ab

gnrh3

hdac5

hrh3

moxd1

npas3a

nts

1 0 1 2 3 4

5

4

3

2

1

0

1

2

WT

chrna2a

scn1lab

immp2l

lrrn3

disc1

ctnnd2b

adra1aa

shank3bslc25a27

slc39a11

shank3a

sst3

uts2a

oxt
slc6a3

drd4-rs
gnrhr4

grm5a

adra1ab

drd2b

avpr1ab

gnrh3

hdac5

hrh3moxd1npas3ants

WT
chrna2a

scn1lab

immp2l

lrrn3

disc1
ctnnd2b

Figure S4. PCA with freezing-independent components. Related to Fig 3. Similar to speed, some of
the components showed a correlation with fraction of time moving (Fig S4). We used a modified procedure
to account for this (see Methods). (A) After subtracting the regression fit to speed from each metric (Fig
S2), some of adjusted metrics still have correlations with the adjusted time moving. A linear relationship
is used to capture changes of each adjusted metric with adjusted time moving. The value of Spearman’s
correlation, rs, is shown on each plot. Colored points correspond to highlighted lines, using the same color
conventions as Fig S1 and Figs 1-4 in the main text. (B) Remaining difference from WT, after subtracting
correlations with adjusted time moving. Units refer to the standard deviation of median values across lines.
(C) The freezing component is defined by the correlations shown in (A), and the spacing and polarization
components explain the remaining variance. (D) Embedding patterns of the freezing-independent spacing
and polarization components, along with the freezing component.
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Figure S5. Model fit to combined data set and other lines. Related to Fig 4. The model was first fit to a
dataset contain all data from the 5 highlighted lines plus WT (A). The functions F (si) and H∗(·) were
used from this fit and held constant for the fits that compare the distance-dependent interactions functions
across lines. See Methods for details on the fit procedure. (B) Fit results analogous to Fig 4 are shown for
two other highlighted lines, ctnnd2b-/- and immp2l-/-.

Line No. trials Line No. trials Line No. trials Line No. trials Line No. trials Line No. trials
WT 33 dlg4a 7 galn 9 ncoa1 12 sapap2 9 slc6a4a 9

adra1aa 8 drd1a 9 gnrh3 10 ncor2 8 scn1lab 22 slc6a7 11
adra1ab 10 drd1b 9 gnrhr4 9 nfkb1 13 setd8a 6 slc6a8 8
adrb3a 7 drd2b 10 gpc6a 12 nfkb2 10 shank3a 12 slc9a6a 7

avp 6 drd3 11 grm5a 20 npas3a 11 shank3b 14 slc9a6b 9
avpr1ab 7 drd4-rs 6 hdac5 8 npy2r 8 slc16a3 9 srr 12

ca9 8 drd4a 11 hdac9b 8 nr3c1 12 slc18a2 9 sst1,1 9
cdnf 5 drd6b 8 homer1b 11 nrxn1b 10 slc1a1 9 sst3 9

chrm4a 11 ercc6 11 hrh3 10 nts 9 slc22a15 12 sstr2b 9
chrna2a 10 esr2a 8 htr1ab 8 oxt 8 slc25a14 8 stat6 8

cnn1b 11 esrra 11 immp2l 16 pard3ba 8 slc25a27 8 tph2 7
cpdb 9 esrrga 9 kctd13 28 pcdh10b 9 slc30a5 10 trh 8

csmd1a 8 fgf12a 11 kmt2cb 8 pdf 11 slc39a11 7 trhra 7
ctnnd2a 17 fgf12b 11 lrrn3 10 pomcb 9 slc4a10b 8 ube3a 9
ctnnd2b 11 gabrp 7 moxd1 8 prkg1a 12 slc6a3 18 uts2a 8

disc1 9

Table S1. Number of trial performed for each mutant line. Related to Fig 1. Lines are sorted alphabeti-
cally.
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Component 1 Component 2 Component 3
hrh3 4.04 slc25a27 1.32 hdac5 2.09

nts 4.0 chrna2a 1.32 chrna2a 1.56
sst3 3.78 shank3b 1.27 shank3a 1.47

ctnnd2b 3.7 moxd1 1.14 shank3b 1.4
scn1lab 3.55 lrrn3 0.94 slc25a27 1.32
npas3a 3.11 slc39a11 0.47 immp2l 1.25

slc16a3 2.83 slc6a3 0.33 uts2a 1.22
sstr2b 2.75 drd4-rs 0.23 slc6a3 0.87
drd6b 2.54 cnn1b 0.14 homer1b 0.83
gnrh3 2.53 gnrhr4 0.09 esrra 0.78
slc6a3 2.33 WT 0.0 moxd1 0.7

stat6 2.29 nfkb2 -0.01 adra1ab 0.65
galn 2.27 kctd13 -0.02 ca9 0.46
tph2 2.25 avp -0.07 esrrga 0.44

drd1a 2.15 ncor2 -0.13 slc1a1 0.43
trh 2.03 ube3a -0.31 nfkb1 0.41

slc6a7 1.9 fgf12b -0.41 lrrn3 0.36
gabrp 1.84 drd3 -0.44 adrb3a 0.36

nrxn1b 1.81 pomcb -0.48 grm5a 0.17
ncor2 1.79 prkg1a -0.5 fgf12b 0.15

ctnnd2a 1.77 npy2r -0.51 drd1a 0.11
slc1a1 1.73 pcdh10b -0.53 ncor2 0.02

slc6a4a 1.73 cpdb -0.54 WT 0.0
slc30a5 1.69 slc16a3 -0.58 slc39a11 -0.01
fgf12b 1.66 csmd1a -0.63 pcdh10b -0.03
hdac9b 1.56 homer1b -0.64 avpr1ab -0.03
adrb3a 1.53 sstr2b -0.65 nfkb2 -0.04

ca9 1.51 kmt2cb -0.69 stat6 -0.04
cdnf 1.48 trhra -0.7 kctd13 -0.06

slc25a14 1.43 pard3ba -0.75 cnn1b -0.07
sst1,1 1.42 slc22a15 -0.78 tph2 -0.07

shank3a 1.4 htr1ab -0.83 sstr2b -0.1
esrrga 1.38 cdnf -0.85 nrxn1b -0.11

pdf 1.24 slc4a10b -0.87 srr -0.16
shank3b 1.17 slc9a6a -0.89 avp -0.23
avpr1ab 1.15 srr -0.96 ncoa1 -0.24

fgf12a 1.13 slc9a6b -0.99 slc6a7 -0.29
pcdh10b 1.11 tph2 -0.99 gpc6a -0.3
kmt2cb 1.07 esr2a -1.01 adra1aa -0.3

drd3 0.96 slc6a7 -1.03 chrm4a -0.31
ncoa1 0.94 slc18a2 -1.13 pomcb -0.32

avp 0.93 slc6a8 -1.16 slc6a4a -0.36
slc39a11 0.93 ctnnd2a -1.25 ercc6 -0.38

esr2a 0.91 slc6a4a -1.25 drd3 -0.42
gpc6a 0.89 drd6b -1.33 drd6b -0.43

chrna2a 0.81 ncoa1 -1.35 ube3a -0.5
slc4a10b 0.76 nfkb1 -1.37 sst3 -0.52

srr 0.75 esrrga -1.37 gnrhr4 -0.54
slc9a6a 0.61 gabrp -1.4 slc16a3 -0.54

lrrn3 0.6 setd8a -1.42 esr2a -0.55
slc25a27 0.57 trh -1.46 drd4a -0.56

trhra 0.46 nts -1.51 trh -0.57
ercc6 0.42 fgf12a -1.51 galn -0.58
npy2r 0.41 drd4a -1.52 slc30a5 -0.6
drd1b 0.34 sst1,1 -1.52 ctnnd2b -0.62

moxd1 0.34 sapap2 -1.52 trhra -0.64
ube3a 0.31 pdf -1.54 ctnnd2a -0.64
drd4a 0.28 chrm4a -1.59 htr1ab -0.66

htr1ab 0.2 slc25a14 -1.61 drd4-rs -0.67
hdac5 0.18 drd1a -1.71 hdac9b -0.68
nfkb2 0.16 galn -1.77 slc22a15 -0.69
nfkb1 0.06 hdac9b -1.82 nts -0.7

adra1ab 0.05 npas3a -1.84 pdf -0.78
kctd13 0.04 hrh3 -1.93 nr3c1 -0.8

WT 0.0 ctnnd2b -1.96 slc4a10b -0.8
cnn1b -0.02 ercc6 -1.97 cdnf -0.82
nr3c1 -0.04 nr3c1 -1.98 csmd1a -0.83

grm5a -0.08 sst3 -2.01 prkg1a -0.87
slc9a6b -0.1 oxt -2.04 slc6a8 -0.92
csmd1a -0.2 gpc6a -2.06 slc25a14 -0.93

dlg4a -0.22 nrxn1b -2.07 kmt2cb -0.96
chrm4a -0.24 drd1b -2.07 slc9a6a -0.96
prkg1a -0.25 scn1lab -2.17 hrh3 -0.96

esrra -0.25 dlg4a -2.18 slc18a2 -0.98
setd8a -0.28 disc1 -2.22 gnrh3 -0.98

slc18a2 -0.35 esrra -2.27 gabrp -1.0
pard3ba -0.35 drd2b -2.31 cpdb -1.01
adra1aa -0.44 adrb3a -2.37 slc9a6b -1.01

drd2b -0.45 stat6 -2.52 dlg4a -1.02
pomcb -0.5 gnrh3 -2.62 npy2r -1.08

slc22a15 -0.5 ca9 -2.67 sst1,1 -1.1
slc6a8 -0.53 slc1a1 -2.71 setd8a -1.12

cpdb -0.57 slc30a5 -2.75 fgf12a -1.19
homer1b -0.57 grm5a -2.89 npas3a -1.25

sapap2 -0.6 avpr1ab -3.04 scn1lab -1.29
gnrhr4 -0.91 adra1ab -3.29 pard3ba -1.39
drd4-rs -1.17 shank3a -3.53 drd1b -1.5

oxt -1.41 immp2l -4.02 sapap2 -1.5
uts2a -1.49 adra1aa -4.06 drd2b -1.87

immp2l -2.3 uts2a -4.23 oxt -1.88
disc1 -2.32 hdac5 -4.74 disc1 -2.04

Table S2. Ordering of lines by PCA component projection values. Related to Fig 3; values correspond
to the PCA results plotted in Fig 3.
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Transparent methods

Animal use

Zebrafish (Danio rerio; AB strain) were housed in mixed gender 3L tanks in a recircu-
lating Aquatic Habitats facility (Custom design, Pentair, USA). The fish were kept at
a density of 12 fish per 3L tank. Facility water temperature was kept at 28 ± 0.5oC,
and water sourced from deionized water conditioned with sodium bicarbonate (Catalog
#SC12-Pentair, USA) and Instant Ocean sea salt (Catalog #IS160-Pentair, USA) to a
pH of 7.2 ± 0.5 and conductivity of 420 ± 50µS. Fish were maintained on a 14-hour
light/10-hour dark cycle with light turning on at 07:00 AM. Fish were fed a diet of brine
shrimp (Catalog #BSEPCA-Brine Shrimp Direct, USA) twice daily and supplemented
with flake fish food (Tetramin Catalog #98525-Pentair, USA) every other day. All
animals were maintained and procedures were performed in accordance with the Institu-
tional Animal Care and Use Committees (IACUC) of Novartis Institute for Biomedical
Research (NIBR).

Genome-wide CRISPR-Cas9 sgRNA design

Because the current work was carried out in the AB strain and the public genome
assembly (GRCz11) is based on TU strain, we established a new genome assembly for
the AB strain. (NCBI genome database QQSU00000000, BioSample #SAMN09717249).
For designing CRISPR/Cas9 sgRNAs, we re-trained sgRNA-efficiency models using
random forest and naive Bayes methods based on previously published sgRNAs. 1280
sgRNAs sequences and their editing efficiencies were obtained from a previous study in
the TU-strain by Moreno-Mateos et al. (2015), and mapped to the AB genomic sequence.
About 150 features were used to train the two machine learning models in classification
mode, including genomic strand of sgRNA, GC%, identity of ±4 bp of sgRNA targeting
sequence, thermodynamics parameter, ∆G of sgRNA-genomic DNA heteroduplex for
sliding windows of different sizes (Sugimoto et al., 1995), the free-energy of stem-
loops 1, 2, and 3, tetraloop, repeat-anti repeat and linker structures of the full-length
sgRNA predicted by UNA-fold (Nishimasu et al., 2014; Markham and Zuker, 2008),
etc. Training accuracy of >0.7 was achieved by both models, and the efficacies of all
sgRNAs in the AB genomic sequence were predicted. Guide RNAs with high predicted
efficacy were selected to target the 5’ end of the coding exons or Pfam domains of the
genes in this study.

Micro-injections, CRISPR/Cas9 mutant founder identification

sgRNAs were synthesized using T7 in vitro transcription with the MEGAshortscriptTM

T7 Transcription Kit (ThermoFisher, AM1354). Cas9/sgRNAs were co-injected into
one-cell stage fertilized zebrafish embryos. Conditions were optimized to maximize
the CRISPR efficiency in our settings. High indel rates (>90%) were usually observed
in fully developed embryos injected with 500 ng/µL Cas9 protein (PNABio, CP01)
and 125 ng/µL sgRNA purified with MEGAclearTM-96 Transcription Clean-Up Kit
(ThermoFisher, AM1909).

Indel rate in the injected zebrafish was measured using NGS at 2 days post fertilization
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(dpf). PCR was performed on the genomic DNA extracted from zebrafish larvae using
the HotSHOT method (Meeker et al., 2007), and NGS libraries for PCR products
were generated using Nextera DNA Library Preparation Kit (Illumina, FC-121-1031).
Subsequently, Nextera libraries were sequenced on Illumina MiSeq, and >2000 avg.
reads for each amplicon were obtained. Sequencing reads were mapped to the reference
sequence using BLAT (Kent, 2002), and indels were extracted from the .psl file using a
bioinformatic pipeline developed in-house. The gene editing efficiency in the injected
embryos was calculated as the maximum indel rate within the ±30 bp regions of PAM
sites. It is possible for the effects of CRISPR-Cas 9 to be obviated or changed from that
predicted due to splicing around the targeted site. Hence, we performed RNAseq on
brains from 22 homozygous lines (adra1aa-/-, adra1ab-/-, chrm4a-/-, chrna2a-/-, disc1-
/-, dlg4a-/-, drd1b-/-, drd2b-/-, drd3-/-, drd4a-/-, esr2a-/-, fmr1-/-, grm5a-/-, homer1b-/-,
kctd13-/-, lrrn3-/-, oxt-/-, sapap2-/-, shank3b-/-, slc6a3-/-, srr-/- and tph2-/-) and found,
in all cases, that the mRNA was modified as predicted from the targeting, yielding a
stop codon near the 5’-end without anomalous splicing. Also, in several of the lines
(chrna2a-/-, drd4a-/-, fmr1-/-, homer1b-/-, kctd13-/-, slc6a3-/- and tph2-/-) there was
dramatic reduction in mRNA level, presumably by nonsense-mediated decay, which
further indicates that the mutations had the desired effects.

We sequenced five larvae per CRISPR-injected clutch to confirm the gene editing
efficiency. The rest of the fish from the confirmed clutch were raised to adulthood
and crossed with wild-type AB fish, and founder fish carrying the desired frameshift
mutation were screened from the F1 generation. F1 heterozygotes were inter-crossed,
and homozygotes, if viable, were identified and inter-crossed again to obtain sufficient
gene knockout fish for behavioral assays. Each CRISPR line was at least an F2 stable line
before being run in any assay. All founders and homozygote identification were carried
out using fin-clipping PCR, and sequencing the PCR product using NGS as described
above. The indel sequence of homozygous mutations and heterozygous mutations that
could not be bred to homozygous (scn1lab and slc18a2) are illustrated in Supplementary
Data S1, and also the predicted protein sequence aligned with that of the wild-type fish.

Experiment setup for behavioral assays

Attention was paid to ensure fish gender balance and matching of size and age, to
conduct experiments at similar times of days and feeding cycle, and to monitor by video
without human presence. All behavioral rooms were fed with water directly from the
main fish facility and room temperature and light cycle was consistent with the main
facility. The behavioral setups consisted of 20” diameter acrylic circular arena (Custom
Design: Acrylic Tank – Clear – 20” OD x 19.25” ID x 8” height – Open Top, Plastic
Supply, Inc., USA) filled to a depth of 1 3/4” (∼9 L total volume) with system water
fed directly from the main housing unit to ensure all water parameters were identical to
the housing conditions. The circular arenas were coated on the outside (I00810, Frosted
Glass Finish, Krylon, USA) to prevent the fish from being able to see outside of the
arenas but to allow IR light transfer. Underneath the tanks were 24 inch adjustable
IR panels (with 940 nm IR LEDs made by Shenzhen VICO). Basler Ace 2040-90µm
Near Infrared (NIR) cameras (Order #106541, Graftek Imaging, USA) were mounted
23 inches above the arena to collect a dorsal view of the fish. Infrared long pass filters
(Midopt LP780-62, Graftek Imaging, USA) were attached to the lens (Scheider Cinegon
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1.9, Graftek Imaging, USA) and were set to an aperture of 6. All trials were recorded
after 10 minutes habituation to allow recovery from any stress due to netting. Shoaling
assays were run with six fish (3 males and 3 females), which were randomly combined
from multiple tanks of siblings. Each trial consisted of a 30 minute recording at 60 fps.
Arenas were rinsed clean with system water at the end of the day and put through a
cabinet washer (Type: 9LAV65, IWT Tecniplast Inc., Italy) once a week on a hot water
only cycle. Multiple trials were performed for each line (Table S1).

Automated data collection

We used a virtual instrument console designed within LabVIEW (National Instruments,
USA) to control all cameras. The acquisition software was designed with four prioritized
functions: 1) saving the recorded video; 2) logging all relevant metadata accurately and
automatically; 3) enabling real time user visualization, verification and modification; 4)
generating associated files to streamline downstream analysis.

Non-default parameters were set within the NI-MAX (Measurement and Automation
Explorer) including dimensions and offsets for centering (1880x1880 pixels, offset
84/84) and frame rate (60 fps). One workstation (X2D65UT#ABA, Z440, Hewlett
Packard Inc., USA) was dedicated for simultaneous recordings of two USB3.0 Basler
ACE cameras. The resulting videos which are approximately 360 GB each were saved
on a local 4x2 TB SSD RAID0 (Samsung EVO 850, B&H Photos Inc., USA). All
cameras were named uniquely to allow us to trace back which videos were generated by
corresponding setups.

Fish trajectories were obtained from videos using automated tracking inspired by
idtracker (Pérez-Escudero et al., 2014). Tracking involved building fingerprint libraries
to minimize switching of fish IDs after repeated crossings, using locomotion quantifica-
tions such as trajectory, angle, speed, pairwise distance, and convex hull area. Although
this reduces the switching of fish IDs during tracking, it does not guarantee that individ-
ual identities are maintained over the course of a trial. Thus in our analysis we examine
variability across trials instead of the variability among individuals within a trial.

Data processing

Before further analysis, we filtered tracked data to remove errors and smoothed the data
to decrease noise in speed calculations. Using the (x, y) coordinates of the fish from
the raw output files (see Data Availability), we calculated the velocity vector, speed,
and scalar acceleration values. Initial data exploration found that fish identities were
occasionally switched for brief periods in the tracking. This resulted in either a quick
‘jump’ in the trajectory or a multi-frame high-speed linear movement. To correct for
this, errors were defined as sections of ≥3 consecutive frames with either unusually
high acceleration (>671 cm/sec2, ∼10 times the inter-quartile range of the acceleration
distribution for WT), or very low acceleration values combined with sufficiently high
speed (<0.0015 cm/sec2 acceleration and >231 cm/sec speed, the median speed across
all data). Error frames were marked with NaN values and excluded from calculations.

For WT, 4.5% of the trajectory points were marked as having tracking errors (overall
average was 3.7% across all lines). We used a strict filter on the data and only use
frames where no identified tracking errors were present for any of the fish in the group;
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with this criteria, 21% of the frames for WT were marked as having tracking errors
(overall average 16.5% across all lines). Loosening filter criteria did not substantially
alter results.

To reduce noise in the velocities calculated from the tracking output, we smoothed
the trajectory coordinates using a Gaussian filter with a standard deviation of 1 frame
(cut off to include 5 frames total). NaN values were replaced by linear interpolation to
replace segments of the trajectories identified as tracking errors. We calculated velocity
and heading from these smoothed and interpolated trajectories. Although this introduces
some errors (for example, when identity is switched), it greatly decreases the noise in
velocity calculations. The smoothing procedure was only used to calculate speed and
heading; unsmoothed trajectory coordinates were used for calculating distances.

A second type of tracking error was an ‘overlap’ error, when two nearby fish were
identified as having the same position, along with nearly identical velocity and heading.
This generally occurred when fish were close together but not necessarily moving in the
same direction. Since this type of error could artificially increase estimates of group
polarization, we removed frames where overlap errors occurred. Frames where a pair
of fish were < 1cm apart and had a heading difference of < .2 radians were labeled
as ‘overlap frames’, and were omitted from further calculations. For example, in WT,
5.8% of the trajectory points were identified by these criteria as having tracking overlap
(overall average 5.5% across all lines). We again used a strict filter on the data and
removed frames where overlap among any of the fish was detected; for WT, this led to
14.0% of the remaining data frames after the other filtering described above (overall
average 13.5% across all lines).

Behavioral metrics

We analyzed seven behavioral features: median speed, polarization, group spacing,
speed inter-quartile range (IQR), group centroid speed, nearest neighbor distance and
fraction of time moving. Metrics were calculated as follows.

Group spacing is the per-trial median of the mean pairwise distances across the whole
group:

median
(
〈rij(t)〉t,i 6=j

)
,

where rij is the pairwise distance between fish i and j at time t. We use the the notation
〈Q({x})〉{x} to denote the mean of the quantity Q, taken over the set of variables {x}.

Polarization is calculated as in Tunstrøm et al. (2013):

P (t) =
1

N

∣∣∣∣∣
N∑
i=1

v̂i(t)

∣∣∣∣∣ =

√
〈cos θi(t)〉2i + 〈sin θi(t)〉2i ,

where N = 6 is the number of fish in the group, θi is the heading of fish i and
v̂i = (cos θi, sin θi) is the unit velocity vector of fish i.

Centroid speed reflects the movement of the group as a whole, and arises from a
combination of individual speed and the coherence of the group motion. If individuals
are moving together in the same direction, centroid speed is high; if they are not moving
or are going opposite directions, centroid speed is close to zero. To obtain centroid
speed, we calculated the group centroid as c(t) = 〈ri(t)〉i, where ri(t) is the coordinate
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vector of fish i at time t. We then calculated the centroid speed as distance traveled
between frames divided by the time step, and took the median of this:

median (|c(t+ dt)− c(t)| /dt) .

Nearest neighbor distance was calculated by selecting the closest neighbor for each
fish at each time step, and taking the median of these values for a given trial.

To calculate fraction of time moving, note that we use ‘not moving’ to refer to times
when fish move very slow for consecutive periods of time. We therefore define not
moving, which we also refer to as ‘freezing’, by first taking a moving median of the
speeds of an individual fish:

ηi(t, τ) = median({si(t− τ/2) . . . si(t+ τ/2)}),

where ηi(t, τ) is the moving median speed of fish i at time t, calculated using a sliding
window of τ = 10 sec. We defined the fish to be not moving when the moving median
speed was less than a threshold of U . The value used, U = 0.87 cm/sec, is the 0.05
quantile of the combined speed distribution of all the filtered data for all of the lines. The
fraction of time moving is then simply the overall fraction of time where ηi(t, τ) > U
for all fish at all times during a trial, i.e. 〈ηi(t, τ) > U〉i,t.

Speed while moving was then calculated as the median speed during frames where
the fish was moving, i.e when ηi(t, τ) > U . Similarly, speed IQR (inter-quartile range)
was calculated as the difference between the 0.75 and 0.25 speed quantiles, using speed
values only at times when ηi(t, τ) > U .

Statistical tests on the behavioral metrics were used to evaluate differences in median
values obtained for the set of trials for each line. A Kruskal-Wallis test yielded p < 10-10

for all behavioral metrics. Comparisons between WT and mutant lines were done using
Dunnett’s test, which controls the family-wise error rate for many-to-one comparisons.
Calculations and statistical analyses on behavioral metrics were conducted in Python
and Matlab (Mathworks).

Principal component analysis

We performed principal component analysis (PCA) to find the primary axes of variation
across lines. PCA provides a dimensionality reduction technique that preserves global
structure, in contrast to methods such as tSNE that maximize clustering but distort global
patterns (see, for example, (Kobak and Berens, 2019)).

To find dominant axes of variation, we first create a data matrix XiQ, where the first
(lowercase) index i = 1..91 is for the different lines plus WT, and the second (uppercase)
index represents the 7 different quantities used as behavioral metrics. Following standard
procedures, we normalized the data matrix so that the column mean is zero and the
column standard deviation is 1, i.e. mean(XiQ)i = 0 and std(XiQ)i = 1, where the
notation fn(XiQ)i refers to the function fn evaluated over all indices of i for a given
value of Q. This data matrix is shown in Fig 2A.

Because many of the behavioral metrics depend on speed, we used the data to create
a ‘speed model’ for each quantity. For linear relationships, this can simply be calculated
using the correlations of the (normalized) data matrix. However, because fraction of time
moving is a bounded quantity, with many lines having values at or near 1, we instead
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used a generalized procedure which can account for this. For all quantities Q except
fraction of time moving, we fit a function

fQ(Si) = aQSi, (1)

where aQ is a slope parameter for quantity Q and Si = Xi1 is normalized speed for each
line, which is the first column of the data matrix. For fraction of time moving, we fit the
function

fQ(Si) = max(XiQ)i − e−aQ(Si−bQ), (2)

where aQ and bQ are parameters, and we note that the maximum is not 1 because of the
data normalization. The parameter values for either function were determined using a
least-squares fit with data input XiQ, i.e. minimizing the cost function

EQ =
〈

(fQ(Si)−XiQ)2
〉
i
. (3)

We again note that Eq. 3 has an analytical solution for the specific functional form of
Eq. 1, but instead we use the least squares fit (via curve_fit in the Python package
scipy) because it is more general. These functional fits for all quantities, along with
values of the Spearman (rank) correlation coefficient of each quantity with speed are
shown in Fig S2.

Using these functions, we then make a ‘speed model prediction’ for each quantity by
calculating

LiQ = fQ(Si),

and then create a new data matrix by subtracting this:

X
(s)
iQ = XiQ − LiQ. (4)

We then use this to calculate the remaining variance in the data as

e =
||X(s)

iQ ||2

||XiQ||2
. (5)

Note that if the data for a line does not follow predictions of the speed model, its variance
in the speed-adjusted data matrix X(s)

iQ could actually increase. Therefore the variance
fraction e in Eq. 5 is best described as the variance remaining after accounting for speed
correlations. We obtained e = 0.60, or, equivalently, that the overall variance is reduced
by an amount 1− e = 0.40 using the regression fits of each quantity to speed. However,
since the speed model of course perfectly removes variance in speed, an alternative
description is that a fraction 7/6e = 0.70 of the variance remains in quantities other
than speed, or that the overall variance in quantities other than speed is reduced by 0.30
using the regression fits. We use this value of 0.30 in the main text.

The speed-adjusted data matrix X(s)
iQ is shown in Fig 2B, and contains the six quanti-

ties with remaining variance after omitting speed. To provide a quantitative description
of how the different lines vary, we performed principal component analysis (PCA). This
showed that three components explain 90.8% of the variance in X(s)

iQ . The first com-
ponent is driven by spacing, and the other two components are a mixture of quantities:
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component 2 has positive changes in both polarization and fraction of time moving, and
component 3 has opposing signs for the changes in polarization and fraction of time
moving (Fig 3).

To account for sampling error due to the limited number of trials performed for
each line, and how this affects the PCA embeddings, we used a bootstrap procedure
to calculate confidence intervals on the projection of the each line onto each principal
component (Efron, 1982). To perform this procedure, first note that the speed-adjusted
data matrix X(s)

iQ contains the median value of a quantity Q calculated across trials for a
line i. We thus use bootstrap sampling of the trials for each line, repeated m = 1000
times, to calculate a distribution of line-level median values and to form a ‘sampled’ data
matrix XiQm, where each index m refers to median values from a specific bootstrapped
sample set. Denote the sampled median speed values as Sim. We use the functions and
parameters from the speed model as described above to create a speed-adjusted data
matrix for each set of sampled median values:

X
(s)
iQm = XiQm − fQ(Sim). (6)

We then project the values of X(s)
iQm for each line and each sample set onto the principal

components shown in Fig. 3A by calculating a dot product, and calculate the 0.05 and
0.95 quantiles of this distribution in order to determine the 90% confidence intervals
shown in Fig. S3.

Components orthogonal to time moving

Because time moving could be considered a physiological difference (similar to speed),
we asked how how much of the variance in X(s)

iQ is explained by time moving. The
process for this calculation is similar to adjusting the base data matrix for speed correla-
tions, except now we start with the speed-adjusted data matrix X(s)

iQ and calculate the
correlations of each quantity with the column of this matrix that contains speed-adjusted
fraction of time moving (Mi). Using a similar procedure as above, we fit simple slope
functions,

fQ(Mi) = mQMi,

where mQ is the slope parameter corresponding to quantity Q, to each column of X(s)
iQ .

To define the two components orthogonal to time moving, we first make a ‘freezing-
adjusted’ data matrix

X
(f)
iQ = X

(s)
iQ −mQMi.

We then perform PCA on the matrix X(f)
iQ to obtain the spacing and polarization compo-

nents shown in Fig S4C-D.
Denote the spacing, polarization, and freezing components as h(1)Q , h(2)Q , and h(3)Q ,

respectively, and the projections onto each axis as u(1)i , u(2)i , and u(3)i . The components
h
(1)
Q , h(2)Q and the projections u(1)i , u(2)i come from PCA on the freezing-adjusted data

matrix X(f)
iQ . The ‘freezing’ component is defined as the normalized vector of the values

of mQ, i.e. h(3)Q = mQ/||mQ||, and the projection onto this axis is simply a scaling of
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the values of Mi: u
(3)
i = Mi · ||mQ||. The reconstructed data matrix is calculated as

X
(s∗)
iQ =

∑
k

u
(k)
i h

(k)
Q ,

from which we can calculate that the variance of the speed-adjusted data matrix is
reduced by an amount 1 − ||X(s)

iQ −X
(s∗)
iQ ||2/||X

(s)
iQ ||2 = 0.906 using this alternative

dimensionality reduction procedure, which is nearly identical to the value of 0.908

obtained by simply performing PCA on X(s)
iQ . The variance remaining after subtracting

each component k = 1..3 is

ek =
||X(s)

iQ − u
(k)
i h

(k)
Q ||2

||X(s)
iQ ||2

.

Fig S4C shows the values of 1− ek for the three components.

Model of individual turning decisions

We fit a model to examine how the turning decisions of individual fish depend on
speed and the surrounding distribution of neighbors. Building on previous modeling
work (Couzin et al., 2002; Calovi et al., 2018; Harpaz et al., 2017; Katz et al., 2011;
Zienkiewicz et al., 2018), we use effective forces of attraction and alignment to describe
the response of a focal fish to its neighbors. The model has a form of

zi = αF (si)
1

N

∑
j 6=i

Gatt(rj)Hatt(φj)︸ ︷︷ ︸
attraction

+
1

N

∑
j 6=i

Gali(rj)Hali(θj)︸ ︷︷ ︸
alignment

(7)

Pi = 1/(1 + e−wzi), (8)

where si is the speed of the focal individual, rj , φj , and θj are the neighbor distance,
angular position, and relative heading, respectively (Fig 4A), and N = 6 is the number
of fish. Following Heras et al. (2018), we formulate the model as a ‘turn-classifier’
and calculate Pi, the probability of turning left after a specified time delay, using a
logistic function with weight parameter w. Positive values of zi predict left-turns, and
negative values predict right turns, with the magnitude setting the probability of the
prediction. The terms on the right-hand side of Eq. 7 correspond to effective attraction
and alignment interactions, which are defined by an overall attraction-alignment ratio
(α), a speed dependent attraction-alignment ratio (F (si)), and neighbor interactions
that depend on distance (Gatt(rj), Gali(rj)), relative angular position (Hatt(φj)), and
relative heading (Hali(θj)). Each interaction function is defined by a discrete set of
parameters, which correspond to discretizations of the input. The bins for discretization
were defined by the relevant quantile distributions (i.e. either for speed or neighbor
distance) of the combined dataset of all lines and all trials. The separable form used
in Eq. 7 is similar to the model developed by Calovi et al. (2018), and therefore the
functional forms of Gatt(rj), Hatt(φj), Gali(rj), and Hali(θj) can be compared with
those in Calovi et al. (2018), where a model was fit to the burst-glide motion of juvenile
zebrafish.
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We fit the model as a binary classifier which predicts whether the focal fish moved
left or right after a specified time delay of τ . Because of the speed differences, we use
different values of τ for each line. For WT, we set τ = 1 sec (this value was used in
other modeling work that examined motion prediction of adult zebrafish (Heras et al.,
2018)). For the other lines we use a scaled value τSWT/SL, where SWT is the median
speed for WT and SL is the median speed for line L. With this scaling, predictions are
made after approximately the same distance traveled for lines that moved at different
speed. The angle of movement of a focal fish i after a time delay τ is calculated as

γi(t, τ) = arctan2 (yi(t+ τ)− yi(t), xi(t+ τ)− xi(t))− θi(t). (9)

Note that alternatively the model can be fit to predict the heading change ∆θi(t, τ) =
θi(t + τ) − θi(t), instead of the angle of movement γi(t, τ). The values of γi(t, τ)
and ∆θi(t, τ) are equivalent in the limit τ → 0, but can differ as τ increases. We
use the position-based movement change γi(t, τ), because it is a more robust measure
of changes in movement. However, the results are qualitatively similar using either
quantity.

The overall magnitude parameter w is related to the predictive ability of the model;
higher values of w mean a higher predictive ability. For ease of interpretation we instead
report the fraction of turns predicted correctly, not the values of w. The fraction of
turns predicted correctly is the fraction of cases where sgn(Pi(t)−0.5) = sgn(γi(t, τ)),
where the implied threshold of 0.5 reflects left-right symmetry.

The combination of Eqs. 7-8 is a standard formulation for binary classification, and
we fit using a soft-margin loss function (Heras et al., 2018) (Goodfellow et al., 2017)
with additional normalization constraints on the interaction functions implemented via a
Lagrange-multiplier approach. The loss function for line L is

E = 〈ln (1 + exp [−Pi(t) sgn(γi(t, τSWT/SL))])〉i,t
+ λ
[

(〈|F (sk)|〉k − 1)2 + (〈|Gatt(rk)|〉k − 1)2 + (〈|Gali(rk)|〉k − 1)2

+
(
2π
〈
Hatt(φk)

2
〉
k
− 1
)2

+
(
2π
〈
Hali(θk)

2
〉
k
− 1
)2 ]

, (10)

where the Lagrange multiplier value of λ = 0.01 was used. 32 bins were used for the
angular functions Hatt(φk) and Hali(θk) (i.e. k = 1..32), and 10 bins were used for the
other functions F (sk) and G∗(rk) (i.e. k = 1..10). the normalization is a soft constraint
to enforce 〈|F (sk)|〉k = 1, 〈|Gatt(rk)|〉k = 1, (〈|Gali(rk)|〉k = 1,

∫ π
−πHatt(φ)2dφ =

1, and
∫ π
−πHali(θ)

2dθ = 1. The model was fit using PyTorch optimization libraries and
the Adam optimizer using the learning rate of 0.1. Convergence of the fit was defined to
be when the loss function changed by less than a threshold of 10−5 for 50 steps.

Before fitting the model, we performed a mirror reflection of the data to enforce sym-
metry, and filtered the data so that the interactions functions were only fit to cases when
the focal fish was sufficiently far from the boundary. To enforce left-right symmetry, we
used the same procedure as Heras et al. (2018), and fit to a combined dataset featuring
the original data and a left-right reflection in the frame of the focal fish. We use this
procedure because we find no evidence for handedness or left/right turn preferences in
zebrafish. Conceptually, the mirror reflection represents that a left turn towards neigh-
bors on the left is equivalent to a right turn towards neighbors on the right. By enforcing
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this symmetry, the input for each model fit contains exactly 50% left and 50% right turns.
Therefore, random predictions would achieve an average of 50% correct predictions.
To fit the model, we used data only when the focal fish was above a threshold distance
from the boundary (22.9 cm, ∼10% of the radius of the arena) (Heras et al., 2018). To
perform this filtering we first performed a procedure to estimate the location of the
boundary from the trajectory data. This was done by first thresholding the trajectories to
remove outlier coordinates, and then calculating a midpoint and a radius on thresholded
data points. However, since this can lead to incorrect values when the group did not use
the whole arena during a trial, we set the boundary equal to the median value across all
trials for that line for trials where the midpoint or radius differed sufficiently (threshold
set by visual inspection) from the median values. Note that boundary identification is
only used to filter frames where the fish are sufficiently far away from the boundary
for model fits, and therefore the results are not sensitive to the exact procedure. On the
other hand, we note that due to this approximate procedure in identifying the boundary,
fitting a model to the response of the fish to the boundary itself (as done in Calovi et al.
(2018)) yielded inconsistent results.

We first fit the full form of the model to a combined dataset featuring subsampled
data points from all of the highlighted lines. This fit is shown in Fig S5A. The fits of the
angular functions Hatt(φj) and Hali(θj) represent that fish turn towards to and tend to
align with their neighbors. Since fits to individual lines showed little variation in the H∗
and F (si) functions, we simplified the model comparison by holding these functions
constant, set equal to the combined fit shown in Fig S5A and only fit α and G∗(rj) to
compare the response of the different lines. The fits for WT, scn1lab+/-, disc1-/-, and
chrna2a-/- are shown in Fig 4, and the fits for the other highlighted lines (immp2l-/-,
ctnnd2b-/-) are shown in Fig S5B. For each line, we fit the interaction functions to either
all of the data for that line (bold lines in Figs 4 and S5), or to individual trials (thin lines).

The predictive ability of the model varied for each line. Fig 4B shows the fraction of
turn movements predicted correctly for fits to each line, using all data (the model was fit
to all data, regardless of the magnitude of the movement change γi(t, τ)). In Fig S5 we
also show the fraction predicted correct for turns in the range where 20o < |γi(t, τ)| <
160o, where the change in heading is more predictable (Heras et al., 2018).
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Pérez-Escudero, A., Vicente-Page, J., Hinz, R.C., Arganda, S., de Polavieja, G.G., 2014. id-
Tracker: tracking individuals in a group by automatic identification of unmarked animals.
Nature Methods 11, 743–748. doi:10.1038/nmeth.2994.

Sugimoto, N., Nakano, S.i., Katoh, M., Matsumura, A., Nakamuta, H., Ohmichi, T., Yoneyama,
M., Sasaki, M., 1995. Thermodynamic Parameters To Predict Stability of RNA/DNA Hybrid
Duplexes. Biochemistry 34, 11211–11216. doi:10.1021/bi00035a029.

Tunstrøm, K., Katz, Y., Ioannou, C.C., Huepe, C., Lutz, M.J., Couzin, I.D., 2013. Collective
States, Multistability and Transitional Behavior in Schooling Fish. PLOS Comput Biol 9,
e1002915. doi:10.1371/journal.pcbi.1002915.

Zienkiewicz, A.K., Ladu, F., Barton, D.A.W., Porfiri, M., Bernardo, M.D., 2018. Data-driven
modelling of social forces and collective behaviour in zebrafish. Journal of Theoretical
Biology 443, 39–51. doi:10.1016/j.jtbi.2018.01.011.

16

http://dx.doi.org/10.1073/pnas.1703817114
http://dx.doi.org/10.1101/400747
http://dx.doi.org/10.1101/gr.229202
http://dx.doi.org/10.1038/s41467-019-13056-x
http://dx.doi.org/10.1007/978-1-60327-429-6_1
http://dx.doi.org/10.2144/000112619
http://dx.doi.org/10.2144/000112619
http://dx.doi.org/10.1038/nmeth.3543
http://dx.doi.org/10.1016/J.CELL.2014.02.001
http://dx.doi.org/10.1038/nmeth.2994
http://dx.doi.org/10.1021/bi00035a029
http://dx.doi.org/10.1371/journal.pcbi.1002915
http://dx.doi.org/10.1016/j.jtbi.2018.01.011

	ISCI100942_proof_v23i3.pdf
	Genetic Control of Collective Behavior in Zebrafish
	Introduction
	Results
	Mutant Zebrafish Groups Exhibit Differences in Swimming Behavior
	Three Patterns Describe Distinct Behavioral Differences
	Model Fit Connects Group Behavior to Individual Interaction Rules

	Discussion
	Limitations of the Study

	Methods
	Data and Code Availability
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References



