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Abstract
The auditory system encounters motion cues through an acoustic object’s movement or

rotation of the listener’s head in a stationary sound field, generating a wide range of natu-

rally occurring velocities from a few to several hundred degrees per second. The angular

velocity of moving acoustic objects relative to a listener is typically slow and does not

exceed tens of degrees per second, whereas head rotations in a stationary acoustic field

may generate fast-changing spatial cues in the order of several hundred degrees per sec-

ond. We hypothesized that these two types of systems (i.e., encoding slow movements of

an object or fast head rotations) may engage functionally distinct substrates in processing

spatially dynamic auditory cues, with the latter potentially involved in maintaining perceptual

constancy in a stationary field during head rotations and therefore possibly involving corol-

lary-discharge mechanisms in premotor cortex. Using fMRI, we examined cortical response

patterns to sound sources moving at a wide range of velocities in 3D virtual auditory space.

We found a significant categorical difference between fast and slow moving sounds, with

stronger activations in response to higher velocities in the posterior superior temporal

regions, the planum temporale, and notably the premotor ventral-rostral (PMVr) area impli-

cated in planning neck and head motor functions.

1. Introduction
The auditory system encounters motion cues through the movement of a sound-emitting
object or rotation of the listeners head in a stationary sound field, generating a wide range of
naturally occurring velocities from a few to several hundred degrees per second [1–3]. Though
a number of prior psychophysical [4–8], neurophysiological [9,10], and neuroimaging [11–13]
studies have investigated the mechanisms underlying auditory motion detection, only a rudi-
mentary understanding of this system exists with no consensus on models or even existence of
a dedicated auditory motion system [14–16]. This is in marked contrast to studies of visual
motion that have extensively mapped out neural mechanisms of visual motion perception and
developed detailed computational models of motion and velocity detection [17–21].
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The visual and auditory spatial systems, however, are fundamentally different and the mecha-
nisms and models developed for vision cannot easily extend to the auditory domain. The human
visual system is highly directional with foveal resolving power of a few seconds of arc [22,23], a
line of gaze that may vary with respect to head position, and a peripheral field of view that covers
most, but not all of the frontal hemifield [24,15]. The auditory spatial system, however, is omnidi-
rectional, has low spatial resolving power of at best 1° [25,26], with ear positions that are in a
fixed reference frame relative to head position. During eye saccades or in response to head move-
ments that do not involve target pursuit, the visual input is selectively inhibited [27–29] whereas
the auditory systemmaintains a continuously open spatial channel. The two motion systems
likely play complementary but fundamentally different roles in a complex multimodal field.

The angular velocity of moving acoustic objects relative to a listener is typically slow and
does not exceed tens of degrees per second, whereas head rotations in a stationary acoustic
field may generate fast-changing spatial cues in the order of several hundred degrees per sec-
ond [3]. We hypothesized that these two types of systems (i.e., encoding slow movements of an
object or fast head rotations) may engage functionally distinct substrates in processing spatially
dynamic auditory cues, with the latter potentially involved in maintaining perceptual con-
stancy in a stationary field during head rotations and therefore possibly involving corollary-
discharge mechanisms in premotor cortex.

The current study was designed to determine if there exist neural centers associated with
encoding auditory motion velocity, and if yes, whether these centers categorically distinguish
between fast and slowmotion cues. No prior neuroimaging study has investigated auditory veloc-
ity discrimination. Wemeasured cortical response patterns to sound sources moving at a wide
range of velocities from 8 to 180°/s in 3D space. Stimuli were virtual-reality recordings of a real-
moving loudspeaker attached to a microprocessor controlled arc that rotated in a circular trajec-
tory in an anechoic chamber. This set up provided recordings of real moving sounds filtered
through head-related transfer functions (HRTFs) and hence contained the full complement of
dynamic cues associated with natural movements of a sound source [30,31,16]. When played back
through headphones in the scanner, these sounds were perceptually externalized and reported by
our listeners to be more natural than typical headphone-presented sounds. We found a significant
categorical differences between fast and slow moving sounds, with the posterior superior temporal
regions, the planum temporale, and notably the right premotor cortical areas associated with neck
and head motor planning more responsive to higher velocities of movement, consistent with the
hypothesized involvement of motor functions in processing high-velocity motion.

2. Materials and Methods

2.1 Subjects
15 subjects (7 females) ages 20 to 32 (μ = 24.6; σ = 3.67) participated in this study. All but two
were right-handed as identified using the Oldfield questionnaire [32]. They reported no history
of audiological or neurological disease. Subjects signed informed-consent forms and were paid
for their participation. This study was approved by the Institutional Review Boards of the
National Central University, and the National Yang-Ming University, Taiwan, and the Institu-
tional Review Board of the University of California, Irvine.

2.2 Stimuli and Apparatus
Stimuli were sinusoidally amplitude-modulated (AM) Gaussian noise bursts with a modulation
rate of 8 Hz which has been shown to produce low modulation-detection thresholds and strong
cortical responses [33,34]. The modulation depth was 50% to avoid silent gaps during stimulus
motion. The purpose was to generate a continuously moving auditory “image” without
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temporal gaps at any point during source movement. To generate 3D stimuli, sounds were pre-
sented through a small loudspeaker (4 cm radius) and recorded through miniature micro-
phones inside the open ear canals of a KEMAR manikin (GRAS Sound & Vibration, Holte,
Denmark) at a rate of 44.1 kHz via 16 bit A-to-D converters (Creative Sound Blaster Audigy
2ZS). The sounds were therefore filtered through generalized HRTFs. Recording sessions took
place in a steel double-walled acoustically isolated chamber (Industrial Acoustics Company,
New York, NY; interior dimensions, 2x2x2 m), the surfaces of which were covered with
10.2-cm acoustic foam wedges (Sonex, Seattle, Washington).

The loudspeaker was attached to a microprocessor controlled arc (Arrick Robotics, model
MD-2, Tyler, TX) which rotated in a circular trajectory with a radius of 70 cm around the
KEMAR’s head on the azimuthal plane (ear level). Stimuli comprised 6 motion velocities of 8,
15, 30, 60, 90, and 180°/s. The fastest-velocity source moved across the -90° to 90° azimuth in
1s, and the slowest in 22.5 s. It is standard practice in studies of auditory motion perception to
report velocity as an angular measure, with the reasoning that psychophysical thresholds for
motion detection are affected primarily by angular velocity and angular distance (not absolute
velocity or distance), i.e., by dynamically changing interaural time and level cues which are
largely unaffected by source distance.

To maintain steady velocity throughout the 180° azimuthal region of interest (frontal hemi-
field), the rotating arc accelerated to a given velocity prior to reaching the point at which the
sound source was activated. Recorded stimuli were then segmented into six azimuthal regions:
-90° to -60°, -60° to -30°, -30° to 0°, 0° to +30°, +30° to +60°, +60° to +90°, with negative azi-
muthal values representing locations to the left, positive values to the right, and 0° directly in
front of the head. A 1-ms rise/decay ramp was imposed on each segmented stimulus to avoid
abrupt transients. This brief rise/decay ramp was sufficient to eliminate clicks at onset and off-
set of sounds, and short enough as not to significantly affect the perceived distance traversed
(i.e., a long rise/decay time may have shortened the perceived movement distance by effectively
eliminating the early and late portions of motion, especially for fast velocities). Stimuli were
recorded in both the right and left directions of motion. The segmentation procedure therefore
created a set of motion stimuli with different azimuthal start and end points, but which always
traversed 30°. This 30° arc was traversed in 167 ms for the fastest velocity (180°/s) and 3.75 s
for the slowest velocity (8°/s) employed. In addition, a set of spatially stationary (non-moving)
sounds (8Hz AM noise at 50% modulation depth) were generated which were used to identify
motion-selective regions by contrasting cortical activation patterns in response to stationary
and motion stimuli.

Stimuli were presented at a nominal level of 75 dB SL through MRI compatible insert ear-
phones (Sensimetrics, Model S14) which provide high-quality acoustic stimulus delivery while
attenuating scanner noise. These insert earphones are small enough to fit within any head coil
and were additionally covered with circumaural ear-covers for further attenuation of low-fre-
quency scanner noise. Subjects reported auditory percepts that were externalized at slightly less
distant than that at which sounds were presented from the loudspeaker during stimulus
recording. This is expected given the use of generalized transfer functions which produce exter-
nalized percepts that are not as strong as those expected from individualized HRTFs. Nonethe-
less, the virtual reality stimuli used here generate significantly more realistic spatial percepts
compared to standard lateralization paradigms in which sounds are perceived intracranially.

MR images were obtained in a Siemens 3T (TIM Trio, Siemens, Erlangen, Germany) fitted
with a 12-channel RF receiver head coil located at the National Yang-Ming University. Func-
tional images were acquired using a gradient fast echo-planar T2�-sensitive sequence
(TR = 2.16 s, TE = 30 ms, flip angle 90°, matrix 64×64, field of view 192×192 mm) with thirty-
six axial slices (slice thickness: 3 mm, gap: 0.5 mm). High-resolution anatomical scans were
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acquired using a T1-sensitive sequence (TR = 2530 ms, TE = 3.03 ms, flip angle = 7°, voxel size:
1.0×1.0×1.0 mm).

2.3 Procedure
Participants were instructed to look directly at a fixation point (plus sign) at the center of a pro-
jection screen while auditory stimuli were presented. After termination of the auditory stimu-
lus, the fixation point was replaced with a white filled circle which indicated that the subject
should identify the direction of perceived motion (left or right) within 3 seconds on an MRI
compatible keypad. The white circle then turned green to indicate that the subject’s response
was recorded. Head and eye movements were monitored to ensure no movements occurred
during trials within a run.

Each subject then completed 8 test runs and 2 control runs. The entire experimental session,
including setup time, lasted approximately 80 minutes per subject. For runs 1 to 8, half the trials
were “motion” and half were “stationary” trials. Each trial was 15 seconds in duration, which
included 12s of sound presentation and a 3s response interval. The 12 seconds of sound on each
trial consisted of a number of exact repetitions of the moving sound recording (30° segments)
with no silence between repeats. The duration of each repetition was the time to traverse 30° of
arc. Thus, at 8°/s, 3 repeats of ~4s were presented over the 12 seconds. At 90°/s, 36 repeats of 333
ms were presented. Each motion sound trial was “paired” with a stationary sound trial within a
run. The “paired” stationary sound was selected to be of a duration that matched that of its paired
motion trial, and hence presented the same number of times as the motion stimulus within a
trial. For example, a 30°/s velocity trial contained 1s motion stimuli that were presented 12 times,
and its “paired” stationary trial comprised a 1s duration stationary sounds that were presented 12
times at random locations within the same azimuthal range as that of the motion stimuli. We
should note that for the shortest duration stimuli (fastest rate of repeat during 12 s stimulus pre-
sentation), the stationary sources changed locations every 167 ms. In spite of this rapid rate of
repeat, subjects reported no noticeable change in perceived extensity.

The order of presentation of the motion and stationary trials were fully randomized within
a run, with the contingency that “paired” stimuli were not presented back to back. On a given
motion trial, one velocity, one 30° azimuthal arc, and one direction of motion (left or right)
were randomly selected without replacement from the set of 72 stimuli (6 velocities x 6 azi-
muthal arcs x 2 directions). The total number of trials per subject per session was 576. Com-
bined across 15 subjects, this guaranteed a minimum of 30 trials per velocity and azimuth.
Each run lasted approximately 5 minutes, with 2 minute breaks between runs.

Run 9 was a control condition in which a diotic broadband Gaussian noise was sinusoidally
modulated at 8 Hz (50% depth) and presented as an auditory cortex localizer. This run was
used only to confirm general activity within auditory cortex consistent with prior work, but
was not used to place constraints on analyses. This run lasted approximately 5 minutes. Run 10
was also a control condition that examined the effects of the number of auditory repetitions
within a 15-s trial. This run comprised 4 velocities (30, 60, 90 and 180°/s) by 3 repetition num-
bers (1, 3, and 6 times within a trial), and hence 12 trials within the run. On each trial of this
run, a sound was presented at a fixed motion velocity and a fixed number of times. All permu-
tations of velocity by “number of repetitions” were presented within a run but in a random
order across subjects. Run duration was approximately 3 minutes.

2.4 Data Analysis
We utilized both a standard whole brain group analysis to replicate previous studies and an
ROI-based approach to allow us more power in assessing our specific hypothesis. Data
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preprocessing and analyses were performed using Matlab software with spm8 toolbox (http://
www.fil.ion.ucl.ac.uk/spm/software/spm8/). First, motion correction was performed by creat-
ing a mean image from all of the volumes in the experiment and then realigning all volumes to
that mean image. The images were then smoothed with an isotropic 6 mm full width half maxi-
mum (FWHM) Gaussian kernel. Regression analysis was performed with regressors created by
the motion conditions representing velocities of 8, 15, 30, 60, 90, and 180°/sec. The two regres-
sors used in the estimation of the model were the following: For slow-motion condition we
entered 8, 15, 30°/sec regressors into the model, and for fast-motion condition we entered 60,
90, 180°/sec regressors into the model. A t-statistic was calculated for each voxel and statistical
parametric maps (SPMs) were created for each subject. To test specific hypotheses, linear con-
trasts were also performed and t-statistics were computed at each voxel to identify regions sig-
nificantly activated in each static condition compared with corresponding motion conditions.
Second-level analysis was then performed on the linear contrasts of the parameter estimates
from each participant, treating participants as a random effect and voxel-wise t-tests were
performed.

3. Results
Several groups have reported activation in the posterior parietal and temporal cortices in
response to auditory motion [35,36]. In our study, standard GLM univariate statistical analyses
were conducted using SPM8 and Automated Anatomical Labeling of Activations in the SPM
Toolbox (AAL, www.cyceron.fr/web) to test whether BOLD responses in ROIs that included
the right posterior parietal cortex, superior temporal gyrus, and the supramarginal gyrus were
selectively responsive to motion velocity. In each case, we filtered out clusters for which the
FDR criterion was not reached. All contrasts were based on the same model using correspond-
ing weighting arrays in each contrast.

3.1 Moving versus stationary source contrast
Fig 1 shows group effects from a GLM contrast of all motion conditions minus all stationary
conditions. Significant activation (p<0.05, FWE corrected) occurs in the right superior tempo-
ral gyrus (rSTG). The activation maps are shown overlaid on SPM8 render and section T1 tem-
plates. MNI coordinates of significantly activated areas in the group contrast between motion
and stationary conditions are shown in Table 1. This contrast identifies those cortical regions
that appear selectively responsive to auditory motion. All significantly activated clusters are in
the right hemisphere, with the main peak in the right-STG. This finding is different than those
reported by [16] who also used a virtual-space paradigm (i.e., sounds filtered through HRTFs)
and found no regions in the auditory cortex that were selective to motion. Other neuroimaging
studies, however, have suggested that such motion-selective regions may exist in human cortex
[37,38] consistent with identification of motion sensitive neurons in animal models [9]. Smith
et al. [16] had also suggested that motion selective regions in human cortex likely do exist, but
that prior neuroimaging studies in humans had not appropriately controlled for confounds
that potentially resulted in misidentification of motion selective areas.

3.2 Fast versus slow movement velocities
Standard group GLM contrast was performed between two categories: the three faster motion
velocities (180, 90, 60°/s) minus the three slower velocity conditions (30, 15, 8°/s) averaged across
all subjects (Fig 2). Analysis of spatially normalized peak data is shown in Table 2, with threshold
set at p<0.001 uncorrected, cluster number> = FDRc. Peaks were found bilaterally on the supe-
rior temporal cortex, and a number of non-auditory regions including the right precentral gyrus
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(Broadman area 6), the right precentral sulcus, and the left precentral and middle frontal gyrus.
On average, t-values were higher in voxel clusters of the right hemisphere than the left.

Fig 3 shows group contrasts between individual fast/slow velocities. Each panel shows one
fast movement condition (columns) minus one slow movement condition (rows). For example,
the top-left panel shows activation patterns resulting from the 180°/s velocity subtracted from
activation associated with 30°/s velocity. Pairwise F-tests on activation levels in ROIs across all
6 velocities (15 permutations) are shown in Table 3. Significant activations are only observed
between pairs of velocities that are selected across fast (180, 90, 60°/s) and slow (30, 15, 8°/s)
velocity categories, but not from within a velocity category. The fastest velocity of motion
(180°/s) produces the most significant difference in cortical activation when contrasted to any
of the slower motion velocities.

Two trends are immediately evident. First, faster velocities when contrasted to slower ones
generate stronger activation patterns in STG. Second, and more interestingly, significant bilat-
eral activation is observed in premotor areas (MNI coordinates [52, –4, 54]; [–54, 0, 46]; [–44,
–6, 58]) in response to faster velocities of motion. These loci include the premotor ventral-ros-
tral (PMVr) area which has been implicated in planning neck and head motor functions
[39,40]. Consistent with this finding, when cortical activation associated with the 3 faster veloc-
ity conditions are contrasted to that for stationary sounds, strong activity is observed in

Fig 1. Contrast betweenmotion and stationary source conditions.Group effects for all motion conditions
minus stationary conditions as determined by a standard GLM contrast. MNI coordinates for loci of maximum
activation are shown in Table 1.

doi:10.1371/journal.pone.0157131.g001

Table 1. Spatial coordinates of local maxima for motionminus stationary contrast.

Coordinate(x, y, z in mm) Voxel Level (t-score) Local maxima in cortex labeled in AAL

Left Hemisphere Right Hemisphere

64, -36, 12 9.25 Superior Temporal

48, -50, 4 7.53 Medial Temporal

50, -54, 12 6.51 Medial Temporal

Threshold: p<0.001 uncorrected; cluster number > = FDRc.

doi:10.1371/journal.pone.0157131.t001
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premotor areas, whereas when the 3 slower velocities are contrasted to the stationary sound
condition, activity in premotor areas are weak and statistically non-significant.

3.3 Control for number of stimulus repetitions within a trial
Run 10 was included to ensure that the observed activation patterns are associated with motion
velocity and not the number of stimulus repetitions within a 15-s trial. This run comprised 4
velocities by 3 repetition rates. No significant activation differences were observed within a
velocity category as a function of the number of stimulus repetitions within a trial. An addi-
tional contrast analysis was conducted on the two most extreme stationary stimulus conditions
that differed in the number of stimulus repetitions within a trial, the stationary condition

Fig 2. Contrast between fast and slowmotion velocities.Group effects for fast (180, 90, 60°/s) minus
slow (30, 15, 8°/s) movement velocities as determined from a standard GLMmodel. MNI coordinates for loci
of maximum activation are shown in Table 2.

doi:10.1371/journal.pone.0157131.g002

Table 2. Spatial coordinates of local maxima for fast minus slow velocity contrast.

Coordinate(x, y, z in mm) Voxel Level (t-score) Local maxima in cortex labeled in AAL

Left Hemisphere Right Hemisphere

　 52, -14, 0 13.66 STG (TE 1.0)　

　 58–34, 12 9.52 pSTG　

　 52, -4, 54 8.99 PreC/Mid Front G. (6)　

　 44, 6, 34 8.59 Inf. Front S. (~44)

　 38, 0, 58 4.8 Middle Front G.

-48, -30, 14 　 11.02 STG inside SF (OP 1)

-54, 0, 46 　 6.94 Precentral G. (Area 6)

-44, -6, 58 　 4.8 Precentral G. (Area 6)

-40, 0, 40 　 4.35 Precentral S.

Threshold: p<0.001 uncorrected; cluster number > = FDRc. STG (superior temporal gyrus); SF (sylvian fissure); OP (parietal operculum).

doi:10.1371/journal.pone.0157131.t002

Auditory Motion

PLOS ONE | DOI:10.1371/journal.pone.0157131 June 13, 2016 7 / 12



Fig 3. Contrasts between individual fast/slow velocities. Imaging results for group effects comparing individual velocities as determined from a
standard GLMmodel. Each panel shows one fast movement condition (columns) minus one slow movement condition (rows). For example, the top-left
panel shows the activation pattern for the 180°/s velocity condition minus the activation associated with the 30°/s velocity condition.

doi:10.1371/journal.pone.0157131.g003

Table 3. Pairwise contrasts across velocities.

180 deg/s 90 deg/s 60 deg/s 30 deg/s 15 deg/s

90 deg/s n.s.

60 deg/s n.s. n.s.

30 deg/s ** ** *

15 deg/s ** ** * n.s.

8 deg/s ** * * n.s. n.s.

Threshold: cluster > = number of FDRc

**: p<0.001

*: p<0.05

n.s.: not significant.

doi:10.1371/journal.pone.0157131.t003
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associated with the 180°/s velocity with 72 repetitions per trial, and the stationary condition
associated with the 8°/s velocity with only about 3 repetitions per trial. We observed no activa-
tion differences between these two conditions using a Standard group GLM contrast, even at a
more liberal threshold of p<0.005 uncorrected, cluster number> = FDRc (see supplementary
material at the University of California Data Repository Site). This further confirms that the
observed differences in activation patterns between fast and slow velocities do not result from a
difference in number of stimulus repetitions within a trial.

4. Discussion
Evidence for corollary discharge mechanisms exists in the auditory domain. Prior studies have
identified significant bi-directional projections from motor and premotor regions to the audi-
tory cortex [41–43]. Other studies have shown that activity in auditory cortical neurons may be
suppressed for several hundred milliseconds prior to initiation of motor actions (e.g., vocaliza-
tion), suggesting an influence of motor-related corollary signals on auditory processing
[44,45].

Our findings show that contrasting fast to slow movement velocities generates significant
activity in non-auditory premotor regions of cortex associated with planned neck and head
motor movements [39,40]. This result is consistent with the hypothesis that processing rapid
auditory motion cues, which are produced almost exclusively by normal head rotations, may
be categorically distinct from processing slow-velocity movement cues. That head rotation in a
stationary sound field generates dynamic auditory motion cues without the percept of move-
ment (i.e., perceptual constancy) suggests that a corollary motor signal must inform the system
that the sound source is stationary. A network that uses such a signal may generate activity in
motor regions in response to rapidly changing interaural cues that are uniquely associated with
head rotation. There is significant evidence that a percept which is normally tightly linked with
an action may induce activity in the associated motor regions of the cortex even in the absence
of an overt motor output. For example, listening to speech activates motor areas involved in
speech production [46] or viewing the motion of human body parts generates activity in pre-
motor regions [47]. Such a system must also be able to induce activity in motion regions of cor-
tex in the absence of explicit motion cues. If the head is rotating in pursuit of a moving sound
source, resulting in constant (unchanging) interaural cues, the putative corollary discharge
associated with head rotation should generate a percept of motion in spite of constant inter-
aural cues.

While we have discussed here two motion systems (slow vs fast velocity coding), there may
in fact exist multiple motion systems in the auditory domain. Two other candidates are the
phi-motion system and auditory autokinesis. In phi-motion, when two transient and spatially
separated sounds occur within short temporal intervals (<100 ms), a single image is perceived
that moves continuously through the spatial extent between the two sources [48–52]. It is note-
worthy that the listener has no a priori knowledge of the location of the second sound until it
has occurred, and therefore the percept of continuous motion must be generated retroactively
[51]. Autokinesis is yet another potential auditory motion mechanism likely to have higher-
order origins. In autokinesis, stationary auditory objects are perceived as moving even when
there has been no prior motion in the sound field [53–55]. This type of movement is extremely
slow and occurs both in the free field and through headphone listening, and with or without a
visual frame of reference[56]. No neuroimaging or neurophysiological studies have investi-
gated the cortical origins of these motion phenomena.

In summary, we hypothesized the existence of two motion systems with functionally distinct
roles in auditory perception. One system codes for naturally moving sound sources with
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relatively slow velocities (under 30°/s), and the second system codes for rapid velocities result-
ing from head rotations (often exceeding 100°/s). The first type of system likely involves coding
of natural sound sources in motion. These typically generate slow angular velocities. For exam-
ple, a sound emitting animal or object moving across the azimuth at a distance of 50 m (164 ft)
and a velocity of 50 km/h (31mph) would generate an angular velocity of only around 16°/s. A
velocity of 50 km/h is a relatively high speed for naturally occurring auditory phenomena, i.e.,
the type of sounds that would exert adaptive evolutionary pressures. The second type of system,
which processes rapid velocities, may involve coordination of concomitant neural signals
across sensorimotor and auditory regions, and may potentially be responsible for maintaining
perceptual constancy during head movements. We found evidence for this dual system by sub-
tracting cortical activity resulting from slow movement of 3D sounds from that associated with
rapid motion, resulting in significant activity in sensorimotor regions of cortex associated with
head and neck movement.
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