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ABSTRACT
The ongoing coronavirus 2019 (COVID-19) pandemic, triggered by the emerging
SARS-CoV-2 virus, represents a global public health challenge. Therefore, the develop-
ment of effective vaccines is an urgent need to prevent and control virus spread. One
of the vaccine production strategies uses the in silico epitope prediction from the virus
genome by immunoinformatic approaches, which assist in selecting candidate epitopes
for in vitro and clinical trials research. This study introduces the EpiCurator workflow
to predict and prioritize epitopes from SARS-CoV-2 genomes by combining a series
of computational filtering tools. To validate the workflow effectiveness, SARS-CoV-2
genomes retrieved from the GISAID database were analyzed. We identified 11 epitopes
in the receptor-binding domain (RBD) of Spike glycoprotein, an important antigenic
determinant, not previously described in the literature or published on the Immune
EpitopeDatabase (IEDB). Interestingly, these epitopes have a combination of important
properties: recognized in sequences of the current variants of concern, present high
antigenicity, conservancy, and broad population coverage. The RBD epitopes were
the source for a multi-epitope design to in silico validation of their immunogenic
potential. The multi-epitope overall quality was computationally validated, endorsing
its efficiency to trigger an effective immune response since it has stability, high
antigenicity and strong interactions with Toll-Like Receptors (TLR). Taken together,
the findings in the current study demonstrated the efficacy of the workflow for epitopes
discovery, providing target candidates for immunogen development.

Subjects Bioinformatics, Genomics, Virology, Computational Science, COVID-19
Keywords Epitopes prediction, SARS-CoV-2, HLA alleles binding affinity, Immunoinformatic
approaches, EpiCurator

INTRODUCTION
The emergence of the SARS-CoV-2 infection, causing COVID-19 disease, has spread
rapidly worldwide and represents a global challenge for public health (Cohen & Normile,
2020; Chakraborty et al., 2020). This virus was first reported in Wuhan in December
2019 (Huang et al., 2020) and quickly evolved, with the emergence of several variants
(Cella et al., 2021; Brüssow, 2021). According to the World Health Organization (WHO)
classifications, there are four variants of concern (VOCs) currently spread worldwide
designated as Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) (Faria et
al., 2020; Rambaut et al., 2020;WHO, 2021; Tegally et al., 2021). In addition, the VOCs are
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characterized by the possibility to impact the disease severity, such as the possible increased
risk of hospitalization, mortality, and capability of evading vaccination-induced immune
response (Prévost & Finzi, 2021;Geers et al., 2021). The constant emergence of new variants
keeps the contagiousness of SARS-CoV-2, which increases the uncertainty of virus spread
(Brüssow, 2021; Naveca et al., 2021).

Current research aims to develop effective interventions for controlling and preventing
the COVID-19 pandemic; furthermore, vaccination is still the most economical and
effective approach to prevent infection by the virus (Shang et al., 2020). At the time
of writing, 22 vaccines against SARS-CoV-2 have been approved by at least one
country (McGill COVID19 Vaccine Tracker Team, 2021). Five vaccines were approved
for emergency use authorization and listed by WHO Emergency Use Listing (EUL) (Bulla,
2021; Mascellino et al., 2021). The Pfizer/BioNTech vaccine is based on messenger RNA
(mRNA), coding for viral spike (S) protein (Badiani et al., 2020). The Moderna vaccine is
a lipid nano-particle-encapsulated mRNA-based vaccine that encodes a full-length spike
(Mahase, 2020). The Johnson & Johnson (Janssen) is a recombinant, non-replicating
adenovirus vector encoding a full-length S protein (Livingston, Malani & Creech, 2021).
The Oxford-AstraZeneca is a chimpanzee adenovirus vectored DNA vaccine (Knoll &
Wonodi, 2021), and the CoronaVac is an inactivated SARS-CoV-2 virus vaccine (Gao et al.,
2020;Mallapaty, 2021).

The current vaccines are generally based on B cell immunity with neutralizing antibody
production (Thanh Le et al., 2020; Siracusano, Pastori & Lopalco, 2020; Yoshida et al.,
2021). However, several studies report the capability of a new mutation interrupting
the binding with some neutralizing antibodies (Greaney et al., 2021; Hoffmann et al., 2021;
Andreano et al., 2021), which could clarify the spread of the current VOCs. The main
reasons for this capability are the several changes (mutation and deletion) in the S protein,
which is responsible by the increased affinity between the receptor-binding domain (RBD)
and the human cellular receptor angiotensin-converting enzyme 2 (ACE2), promoting the
antibodies escape (Thomson et al., 2021; Greaney et al., 2021; Liu et al., 2021; Rotondo et al.,
2021).

To improve the vaccine’s effectiveness against SARS-CoV-2, global efforts in resources,
cooperation, and innovation have contributed to the accelerated development of COVID-
19 vaccines (Bloom et al., 2021). These efforts lead various researchers to carry out
diversified methodologies of vaccine design such as a peptide-based vaccine, virus-like
particle, replicating and non-replicating viral vectors, DNA or RNA, live attenuated virus,
recombinant designed proteins, nanoparticles vaccine, and inactivated virus (Medhi et
al., 2020; Krammer, 2020; Di Natale et al., 2020; Kyriakidis et al., 2021; Shahcheraghi et al.,
2021).

This work highlights the peptide-based vaccine described in several studies about
SARS-CoV-2 vaccines (Malonis, Lai & Vergnolle, 2020; Chakraborty et al., 2020; Crooke et
al., 2020; Fatoba et al., 2021; Naveed et al., 2021). Currently, ten from 33 vaccines in phase
3 clinical trial, and four from 22 approved vaccines have a peptide-based design (McGill
COVID19 Vaccine Tracker Team, 2021). The advantages of peptide-based vaccines include
their capability to target very specific epitopes decreasing the risks associated with allergic
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and autoimmune responses, besides involving minimal viral components to stimulate
adaptive immunity (Di Natale et al., 2020). Additionally, their chemical or recombinant
cloning synthesis allows large-scale production with low costs and high reproducibility
(Sun, 2013; Skwarczynski & Toth, 2016; Hudu, Shinkafi & Umar, 2016).

The peptide-based vaccine design requires the immunoinformatic approach as part
of the computational vaccinology strategy for epitopes prediction (Ramana & Mehla,
2020; Oli et al., 2020; Lu et al., 2021). This approach regards the wide availability of the
SARS-CoV-2 NGS (Next-Generation Sequencing) information associated with human
leukocyte antigen (HLA) profile (Kazi et al., 2018; Oli et al., 2020; Sharma et al., 2020) to
identify T cell epitopes. Therefore, these epitopes have the capability to effectively bind to
HLA molecules activating a long-lasting immune response mediated by CD8+ and CD4+
T cells (Fast, Altman & Chen, 2020; Wang & Gui, 2020).

T cell epitopes offer advantages for vaccine design since it does not depend on the
recognition of structural proteins (Bashir et al., 2021; Redd et al., 2021) and are less affected
by deletions and mutations of emergent variants (Ribes, Chaccour & Moncunill, 2021; Jin et
al., 2021). Concerning COVID-19 immune response, T cell epitopes have the potential to
provide long-term protection from SARS-CoV-2. This characteristic allows the detection
of memory T cell responses to multiple SARS-CoV-2 proteins, which might contribute
to disease control (Chen & John Wherry, 2020; Karlsson, Humbert & Buggert, 2020; Sette &
Crotty, 2021).

To provide effective T cell epitopes for in vitro peptide-based vaccine design a
robust, refined and accurate in silico selection of epitopes is crucial. Despite the many
immunoinformatic tools for epitope prediction, the curation for epitope selection is still
limited and needs different web servers to complete the analysis. In this paper, we focus
on a computational prediction, curation and validation of SARS-CoV-2 epitopes. We have
as a central proposal a workflow (EpiCurator) that brings together different approaches
for accurate selection of epitopes, providing the refined identification of promising SARS-
CoV-2 epitopes. To validate the efficacy of this new tool, we use samples of circulating
Brazilian lineages available in GISAID (https://www.gisaid.org/) (Elbe & Buckland-Merrett,
2017) from December 2020 to April 2021.

MATERIALS & METHODS
Genome retrieval and protein annotation
Genome sequences of 1,652 SARS-CoV-2 genome isolated in Brazil were retrieved from the
GISAID database (Elbe & Buckland-Merrett, 2017) available from December 2020 to April
2021 (Table S1). The lineage distribution of the retrieved genomes includes P.1 (Gamma,
n= 770), P.2 (Zeta, n= 525), B.1.1.28 (n= 223) and B.1.1.33 (n= 136). These genomes
were analyzed by The Viral Annotation Pipeline and iDentification (VAPiD) (Shean et
al., 2019) to determine the amino acid sequence for all SARS-CoV-2 proteins using as
reference NC_045512.2 from the NCBI database (https://www.ncbi.nlm.nih.gov/). The final
genome processing includes clustering the amino acid sequences for each protein using the
CD-HIT package (Li & Godzik, 2006) with a 100% sequence identity threshold.

Ferreira et al. (2021), PeerJ, DOI 10.7717/peerj.12548 3/33

https://peerj.com
https://www.gisaid.org/
http://dx.doi.org/10.7717/peerj.12548#supp-11
https://www.ncbi.nlm.nih.gov/
http://dx.doi.org/10.7717/peerj.12548


Spike protein comparison
Clustal Omega and MView tool performed a homology analysis for the Spike protein
(Sievers & Higgins, 2018); (Brown, Leroy & Sander, 1998) among 100 random samples of
Brazilian lineages and the VOCs, retrieved from the GISAID database (Elbe & Buckland-
Merrett, 2017), to measure the identity of the sequences to Gamma (P.1) samples.

Epitope prediction
The T and B cell epitopes prediction was performed using the softwares NetCTL,
NetMHCpan, and NetMHCIIpan (https://services.healthtech.dtu.dk/) that allow the high-
throughput computing analysis. These predictors support FASTA files containing amino
acidsmarkedwith ‘‘X’’ in the sequence expanding the possibility of public genomes analysis,
even with minor sequencing errors. This prediction features decreasing the pre-processing
sequence steps and avoids the false-positive epitopes provided by joining sequences.

Prediction of SARS-CoV-2 epitopes
To predict CD8+ T cell epitopes, the FASTA sequences of SARS-CoV-2 proteins are
processed using NetCTL v1.2 (Larsen et al., 2007). First, the sequences and the HLA class I
supertypes, provided by the software, are submitted to select 9-mer peptides (Chen et al.,
1994; Sakaguchi et al., 1997; Gfeller et al., 2018), then peptides with amino acids marked
with ‘‘X’’ are removed (Fig. 1A). The predicted peptides in NetCTL are further processed
using NetMHCpan v.4.0 software (Hoof et al., 2009; Jurtz et al., 2017) to identify epitopes
with strong binding affinity to HLA class I alleles. The prediction parameter is based on
the predicted percentile rank ≤ 0.5% and half-maximal inhibitory concentration (IC50)
< 500 nM (Chen et al., 1994; Sakaguchi et al., 1997; Gfeller et al., 2018) (Fig. 1A). To assess
binding affinity, alleles of HLA-A, B, and C loci were selected from Allele Frequency Net
Database (Gonzalez-Galarza et al., 2020) by their Brazilian population frequency > 5%
(Table S2).

To predict CD4+ T cell epitopes and estimate binding affinity to HLA class II molecules,
the FASTA sequences are processed using NetMHCIIpan v3.2 software (Greenbaum et al.,
2011). This tool selects the epitopes with 15-mer peptide lengths based on the predicted
percentile rank ≤ 2.0% and IC50 < 500 nM (Fig. 1A). For the affinity prediction, the loci
HLA-DRB1, HLA-DPA1-DPB1, and HLA-DQA1-DQB1 were selected by the phenotypic
frequency > 5% in the Brazilian population (Table S2) from Allele Frequency Net Database
(Gonzalez-Galarza et al., 2020). For both cells (CD8+ and CD4+ T cell), the epitopes with
broad HLA affinity coverage (≥3 alleles) are filtered (Fig. 1A).

The prediction of linear B cell epitopes from SARS-CoV-2 structural proteins was
performed by BepiPred v.2.0 software (Jespersen et al., 2017), with a threshold of 0.5
(corresponding specificity > 0.817 and sensitivity < 0.292) (Fig. 1A). Only the epitopes
with more than seven and less than 50 amino acid residues in length and sequence without
amino acids marked with ‘‘X’’ are considered for subsequent curation analysis.

Accurate selection of epitopes - EpiCurator
We developed a rigorous analysis workflow for accurate selection of epitopes, the
EpiCurator, bringing together a set of filters according to pre-established criteria,
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Figure 1 Schematic overview of the prediction, accurate selection and epitopes validation to identify
new SARS-CoV-2 epitopes. The pipeline comprises four main analyses: prediction and curation epitopes
selection, immune properties evaluation and multi-epitope validation. (A) The prediction encompasses
four DTU Health Tech softwares (blue boxes) subdivided according to the type of identified epitopes:
CD8+ T cell, CD4+ T cell and B cell epitopes. (B) The curation step uses the predicted epitopes for an ac-
curate selection comprising our proposal EpiCurator workflow (pink boxes) and online server to evaluate
the antigenicity, toxicity and allergen analysis. (C) The pipeline has a set of individual analyses that iden-
tify the population coverage, immunogenicity and other immunogenic properties using on-line servers
(yellow boxes). (D) Additionally, a in silico validation of final RBD selected epitopes has been performed
using a multi-epitope construct. Their linear, 2D and 3D sequences are evaluated using online servers (yel-
low boxes) to characterize the multi-epitope and the construct-TLR complexes as stable and immuno-
genic. Each analysis has its respective parameters presented below the boxes.

Full-size DOI: 10.7717/peerj.12548/fig-1

optimizing the analysis since it brings tools available to use by high-throughput computing
architectures. They also group a series of analyses to guarantee the selection of unpublished
and qualified epitopes. The workflow allows the identification of epitopes by the following
analysis: conservancy, homology with the human genome, the overlap between epitopes
of different classes, and the identification of epitopes previously published in PubMed
Central R© (PMC) or available in the IEDB database (Vita et al., 2019) beyond identifying
their protein coordinates and mutations (Fig. 1B).

Prediction of epitope conservancy
The first module of EpiCurator calculates the conservancy of a predicted epitopes list in
SARS-CoV-2 genomes using the BLAST command-line tools (Madden, 2020) (Fig. 1B).
A customized BLAST database, optimized for shorter sequences (blastp-short task), was
generated with proteins of some SARS-CoV-2 circulating lineages from Brazil (B.1.1.28,
P.1, P.2) retrieved from the GISAID database (2,787 genome sequences) (Elbe & Buckland-
Merrett, 2017). This database allows the comparison among the sequences of the predicted
epitopes and the SARS-CoV-2 proteins. Thus, the analysis reports the percentage of identity
(conservancy) per epitope using four criteria: 100% of identity; above 90%; between 70%
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and 90%, and less than 70%. The epitopes conserved with 100% of identity in at least 90%
of the genomes are used for further analysis (Fig. 1B).

Human homology
This module uses the human proteins dataset from Ensembl (GRCh38.p13) to identify
the predicted epitopes sequence in the human genome. The workflow keeps the human
protein sequences in memory to enhance the analysis readiness, searching strictly for the
corresponding epitope sequences (exact match). Only the unmatched epitopes are selected,
returning a filtered list of epitopes without human homology (Fig. 1B).

Epitope sequence overlap
A comparison is performed between the sequence of the epitopes derived from three
groups of prediction (B Cell, HLA Class I, and HLA Class II T Cell). This analysis calculates
the intersection and the identity among the lists of epitopes belonging to these groups
returning four reports: (i) the intersection of all groups, (ii) B cell x Class I epitopes, B cell
x Class II epitopes, and (iii) Class I x Class II epitopes. The result keeps the epitopes with
less than 60% similarity in each report (Fig. 1B).

Search for epitopes from published articles - EpiMiner
The EpiMiner was developed to execute an automatic search of the predicted epitopes list
on Pubmed and PMC published papers (Canese & Weis, 2013) (Fig. 1B). It is a pipeline
performed in four steps. The first retrieves Pubmed and PMC articles that include the
epitopes sequence. The second step extracts the sentences of the body, abstract or tables
of the article, highlights the figure captions and breaks apart supplementary table data.
The third step executes natural language processing techniques such as tokenization to
divide the sentences into words and part-of-speech tagging to filter nouns and verbs
(Chowdhury, 2005). These techniques contribute to reducing search time for epitope
sequence recognition, eliminating uninformative sentences. The fourth step executes an
entity recognition to identify epitopes sequence classified as nouns, saving the sentences
and their respective publication into a report. Epitopes information is not searched if it is
a part of the pictures or is in supplementary file in text format (i.e., .doc, .docx, .txt, .pdf).

IEDB matching
To perform this analysis, the complete ensemble of epitopes from the Immune Epitope
Database (IEDB) v3 release (https://www.iedb.org/database_export_v3.php) was retrieved
(accessed on July 2021), and the structured files were parsed to filter the epitopes belonging
to SARS-CoV-2 organisms (n= 1,268) (Vita et al., 2019). This filtered file is used to
calculate the identity between the predicted list of epitopes and the ones retrieved, apprising
the IEDB epitope ID and the respective similarity (Fig. 1B).

Mutation screening
Epitopes mutation is reported by comparing the epitope sequence with the SARS-CoV-2
Wuhan protein sequence and assigning the epitopes’ coordinates in the respective whole
protein. The alignment is conducted with the blastp function of the BLAST command-line
tools (Madden, 2020). The SARS-CoV-2 reference protein sequences used for alignment are
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published on the Uniprot Database (https://covid-19.uniprot.org/). This analysis describes
the coordinates and presence of mutations in the predicted epitopes (Fig. 1B).

Epitope properties
Evaluation of antigenicity, toxicity, and immunogenic profile
The VaxiJen v2.0 server was applied to analyze the antigenicity of the predicted B cell and
T cell epitopes with a conservative score threshold of 0.7 (Doytchinova & Flower, 2007a;
Doytchinova & Flower, 2007b) (Fig. 1B). The toxicity is retrieved from the ToxinPred online
server with support vector machine (SVM) based methods (threshold −0.4) and e-value
cut-off 0.01 (Gupta et al., 2013) (Fig. 1B). The allergenic properties are retrieved from the
AlgPred2 online server with a hybrid predictionmodel (threshold 0.5) (Sharma et al., 2020)
(Fig. 1B). Despite being part of the accurate selection (Fig. 1B), they are not available for
incorporation into the analytic workflow (EpiCurator) which prevents us from optimizing
their assay. In addition, several online servers were used to evaluate the immunogenic
profile of the T cell epitopes (Fig. 1C). The immunogenicity predictions were performed
by the IEDB server (https://www.iedb.org/) (Paul et al., 2015; Calis et al., 2013; Dhanda et
al., 2018; Vita et al., 2019). Likewise, their capability to induce interferon-gamma (IFNγ ),
interleukin-4 (IL-4), interleukin-10 (IL-10), and interleukin-17 (IL-17) (Dhanda, Vir &
Raghava, 2013; Dhanda et al., 2013; Gupta et al., 2017; Nagpal et al., 2017) was evaluated.
Additionally, their proinflammatory activity (Gupta et al., 2016) and immunomodulatory
potential (Nagpal et al., 2018) was verified. The servers and parameters to evaluate the
immunogenic profile are shown in Fig. 1C.

Estimation of population coverage
The IEDB’s Population Coverage online tool (http://tools.iedb.org/population/) is used to
analyze how T cell epitopes-HLA binding alleles diverge across ethnicities, regions, and
countries around the world (Bui et al., 2006; Vita et al., 2019) (Fig. 1C). The predicted
epitopes and their respective HLA binding alleles (Table S3) were inputted in the IEDB
tool with separated allele class option and a list of countries/regions (Argentina, Brazil,
England, France, Italy, Spain, United States, and World) was selected.

Docking analysis of the HLA-epitope complex
To validate the binding affinity of the predicted epitopes with HLAs structures, docking
analysis was performed using the PepDock tool (Lee et al., 2015) of the GALAXY web
server (Fig. 1C). To docking analysis, the Protein Data Bank archive (PDB) of eight HLA
alleles (HLA-A*01:01, HLA-A*02:01, HLA-B*08:01, HLA-C*12:03, HLA-DRB1*03:01,
HLA-DRB1*04:01, HLA-DRB1*12:02 and HLA-DRB1*15:01) was retrieved from the
pHLA3D database (Menezes Teles et al., 2019) and RCSB PDB database (Berman et al.,
2000; Burley et al., 2021).

The PepDock uses the HLA alleles PDBs and the epitopes sequence to perform a
template-basedmodel selection and then proceeds to the docking and refinement processes
to optimize the energy score ranking ten complex models. The best model of each HLA-
epitope complex was selected based on the major similarity score of protein structure and
interaction beyond the highest estimated accuracy. Additionally, to identify the free energy
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and the residue’s contacts of the selected complexes, the Prodigy tool (Xue et al., 2016) and
Chimera software (Goddard, Huang & Ferrin, 2005) were used respectively.

Genomes for EpiCurator pairwise comparison validation
Protein sequences for SARS-CoV-2 isolates reported by Crooke et al. (2020) were identified
and retrieved from the Virus Pathogen Resource (ViPR) database (n = 641,635);
additionally, six genome sequences reported by Kiyotani et al. (2020), two sequences for N
and S protein reported by Chen et al. (2020), and five S sequences reported by Chukwudozie
et al. (2021) were retrieved from NCBI GenBank. These samples were processed using
prediction parameters of the HLA alleles reported by the authors with the approach
reported in this Methods section (Epitope prediction and Accurate selection analysis).
Regarding item Accurate selection of epitopes - EpiCurator of the Methods, we used only
the three main analysis steps (conservancy, human homology and IEDB matching) to
compare the selected epitopes ensemble by the papers, and ones chosen independently by
our approach, leaving out the EpiMiner analysis since all the epitopes are published.

Multi-epitope construct and structural modelling for EpiCurator
validation
The RBD epitopes (n= 11) were used to construct a multi-epitope sequence connected
by specific linkers (Fig. S1). The linker aimed to separate the epitopes, so that it improved
their expression, folding and stability beyond to prevent their fusion and facilitate the
immune processing of antigen (Arai et al., 2001; Kar et al., 2020). In the multi-epitope
arrangement are also added an adjuvant (Escherichia coli 50S ribosomal protein L7/L12
(UniProt P0A7K2)) in the N-terminal sequence and a histidine hexamer in the C-terminal
portion (Fig. 1D, Fig. S1).

Linear and secondary structure evaluation
To evaluate the properties and immune profile of multi-epitope, its linear sequence was
submitted to several analyses (Fig. 1D) as follow: antigenicity (Doytchinova & Flower,
2007a; Magnan et al., 2010), allergenicity (Dimitrov et al., 2014b; Dimitrov et al., 2014a),
and solubility for cell-free expression analysis (Hebditch et al., 2017), for overexpression
analysis (Magnan, Randall & Baldi, 2009), and structurally solubility profile (Hou et al.,
2020). In addition, we assess its physicochemical properties (Gasteiger et al., 2005). The
servers and parameters to linear multi-epitope properties evaluation are shown in Fig. 1D.

The linear sequence was also analyzed by the C-IMMSIM server (https://kraken.iac.rm.
cnr.it/C-IMMSIM/) to evaluate the in silico immune profile of the multi-epitope construct
(Rapin et al., 2010). Two simulations were performed with intervals of 4 or 12 weeks
(Saad-Roy et al., 2021; Cobey et al., 2021) (Fig. 1D). Furthermore, the secondary structure
of the multi-epitope was evaluated with PSIPRED v.4 with an accuracy of 84.2% (Jones,
1999;McGuffin, Bryson & Jones, 2000; Buchan & Jones, 2019) (Fig. 1D).

Multi-epitope 3D structure modelling, refinement, and evaluation
The tertiary structure multi-epitope construct is modeled by the RaptorX server
(http://raptorx.uchicago.edu/ContactMap) that predicts structural properties such as
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solvent accessibility (ACC) and disorder regions (DIS) (Källberg et al., 2014) (Fig. 1D).
This tertiary structure was submitted to a refinement process using the GalaxyRefine
(http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE) server which improves global
and local model quality by rebuilding all side-chain conformations and applying structural
relaxations (Heo, Park & Seok, 2013). The quality of the refined model is assessed by
several parameters, as reported in Fig. 1D. The refined 3D structure is further evaluated
by the ProSA-web server (https://prosa.services.came.sbg.ac.at/prosa.php) to validate the
structural models checking for potential errors (Berman et al., 2000; Wiederstein & Sippl,
2007) (Fig. 1D). The final refined 3D structure was used to perform a docking by the
ClusPro server (https://cluspro.bu.edu) (Desta et al., 2020) using the multi-epitope 3D
structure and the Toll-Like Receptors TLR4 (PDB: 2Z63) and the TLR3 (PDB: 3CIG).
The complex model with the lowest energy is chosen for each receptor (Fig. 1D).
Their stability is assessed with molecular dynamics simulation on the iMODS server
(http://imods.chaconlab.org) that performs Normal Mode Analysis (NMA) to describe
functional motions between macromolecules in complexes and simulates feasible
trajectories between two conformations (López-Blanco et al., 2014) (Fig. 1D).

RESULTS
Linear epitopes prediction from SARS-CoV-2 genome
Three main epitopes prediction comprise HLA Class I (CD8+ T cell), HLA Class II
(CD4+ T cell), and B cell. To predict potential CD8+ T cell epitopes, the NetCTL and
NetMHCpan, predictive algorithms were performed for all proteins annotated from 1,652
SARS-CoV-2 genomes (see Methods). Thus 9-mer epitopes were predicted with strong
binding affinity assigned by percentile scores (rank) ≤0.5% across HLA class I alleles
frequent in the Brazilian population (Fig. 1A). Cumulatively reaching the prediction of
5,261 HLA class I epitopes with HLA promiscuity, binding to ≥3 HLA alleles, implying
broad population coverage. The affinity to HLA-C alleles matches the highest epitope
binding locus suggesting it could be the best grooves for these epitopes and would lead to
the activation of the cell-mediated response (Table 1).

We also sought to predict potential 15-mer epitopes with binding affinity to HLA
class II, using the NetMHCIIpan software (Fig. 1A), reaching 7,649 candidate HLA class
II epitopes from the SARS-CoV-2 genomes. They have a strong binding affinity to ≥3
HLA alleles across a reference panel of HLA molecules (see Methods). These epitopes
showed a preferential affinity for alleles from locus HLA-DRB1 (n= 3,702), suggesting
that HLA-DRB1 alleles could lead these epitopes to activate the cellular immune response
(Table 1).

To pairwise the cellular and humoral immune responses activation, the additional
prediction of linear B cell epitopes was performed by BepiPred algorithm identifying 257
epitopes from SARS-CoV-2 structural proteins (Table 1).

Quality assessment analysis of the EpiCurator
A robust and refined accurate selection of epitopes is crucial to improve the development
of peptide-derived vaccines. To this goal, the EpiCurator brings together six analyses
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Table 1 Summary of SARS-CoV-2-derived epitopes predicted with high binding affinity to each HLA loci.

Protein Protein length
(amino acids)

Number of epitopes

HLA class I-restricted T cell epitopes
(rank≤ 0.5)

HLA class II-restricted T cell epitopes
(rank≤ 2)

B cell
epitopes

All HLA-A HLA-B HLA-C All HLA-DP HLA-DQ HLA-DR All

Envelope 75 33 22 26 69 54 – – 13 10
Membrane 222 99 104 55 127 83 6 6 44 7
Nucleocapsid 419 226 143 205 217 390 21 22 202 147
ORF10 38 23 12 12 29 10 – 1 8 –
ORF1ab 7096 3621 2454 3517 4262 5225 1291 630 2608 –
ORF3a 275 343 256 298 435 357 46 24 260 –
ORF6 61 32 15 20 26 47 13 4 24 –
ORF7a 121 96 65 110 96 102 101 2 71 –
ORF7b 43 15 9 7 15 3 – – 1 –
ORF8 121 98 51 87 113 139 57 8 35 –
Spike 1273 675 427 652 775 1239 531 120 436 93
TOTAL - 5261 3558 4989 6164 7649 2066 817 3702 257

(Conservancy, Human homology, Epitopes overlap, EpiMiner, IEDB matching, and
Mutation screening) to the accurately selected epitopes (Fig. 1B).

To the workflow’s quality assessment analysis, we sought to characterize the number
of epitopes taken for the main analysis. The epitopes conservancy selected 29.23% of the
predicted epitopes with 100% identity across at least 90% of the SARS-CoV-2 samples.
Nevertheless, 70.77% of the predicted epitopes do not correspond to the conservancy
parameter (Fig. 2, Fig. S2). Human homology analysis identified only 0.1% of the predicted
epitopes sequence in the human genome, keeping 99% accurately selected, unmatched with
human sequences (Fig. 2, Fig. S2). In addition, the screening by the previously published
epitopes (EpiMiner and IEDB matching analysis) allowed selected > 80% of new epitopes,
since 17.57% of them have already been described in the literature and/or IEDB server
(Fig. 2, Fig. S2). To confirm the effectiveness of the EpiMiner we provide all the articles
IDs and DOI in which the epitopes were found in Table S4.

To further assess the quality of the EpiCurator analysis, a pairwise comparison validation
was performed. The comparison used NGS data reported by four papers with substantial
similarity with our methodologies (Kiyotani et al., 2020; Chen et al., 2020; Crooke et al.,
2020; Chukwudozie et al., 2021). The prediction step allows identifying the same HLA class
I and HLA class II-restricted T cell epitopes. At the same time, the accurate selection
provided by the EpiCurator gathered 51.1% of the paper’s epitopes (Table S5). The
conservancy across SARS-CoV-2 genomes samples reached 95,6% of the paper’s epitopes,
with only 4.4% not conserved by our parameters. The human homology step certifies the
absence of the article’s selected epitopes in the Human genome since the analysis does not
recognize the homology of any of them. Interestingly, the IEDB matching step identified
45.6% of the paper’s epitopes as having already been published on the IEDB server showing
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Figure 2 Efficiency of EpiCurator analysis for accurate selection of epitopes. The plot represents the
percentage of epitopes removed in each different analysis.

Full-size DOI: 10.7717/peerj.12548/fig-2

the importance of this step analysis if we want to describe the epitopes by the first time
(Table S5).

Properties of accurately selected epitopes
Assembling the workflow analysis results, 199 (3.78%) HLA class I-restricted T cell
epitopes were selected from SARS-CoV-2 proteins, mainly identified in ORF1ab (n= 154
(77.4%)) and Spike glycoprotein (n= 15 (7.5%)) (Table 2, Fig. 3A). The epitopes keep
a high affinity for HLA-C alleles (Fig. 3C). The HLA class II epitopes’ accurate selection
reached 153 (2%) epitopes, also mainly identified in ORF1ab (n= 111 (72.5%)) and Spike
glycoprotein (n= 22 (14.4%)). The HLA class II epitopes showed an affinity prevalence for
the HLA-DPA1-DPB1 haplotypes (Fig. 3D). The comprehensive workflow analysis for B
cell epitopes selected 14.6% of predicted epitopes with 60% of the epitopes from the Spike
glycoprotein (Table 2). Interestingly, all epitopes have high antigenicity (0.92 ± 0.30), are
non-toxic and non-allergenic (Table S3).

Furthermore, the T cell epitopes immunogenic potential was assessed to characterize
the capability of inducing in silico protective immune responses. The analysis identified the
profile of HLA class I and HLA class II epitopes respectively as follow: IL-4 inducer activity
(26.6% and 23.8%), IFNγ production (22.1% and 39.7%), immunomodulatory activity
(2% and 3.3%), and proinflammatory activity (78.9% and 81.4%) (Table S3).

In addition, to assess the capability to be an in silico Brazilian epitopes candidate, we
sought to estimate their distribution among the Brazilian circulating lineages at the time
of analysis (P.1, P.2 and B.1.1.28). Firstly, we identify the number of epitopes in common
across P.1, P.2 and B.1.1.28 lineages identifying the highest proportion of HLA class II
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Table 2 Summary of final SARS-CoV-2-derived epitopes accurately selected to each SARS-CoV-2 protein.

HLA class I-restricted T cell epitopes HLA class II-restricted T cell epitopes B cell epitopes

Protein Prediction
(n)

Curation
(n - %)*

Prediction
(n)

Curation
(n - %)*

Prediction
(n)

Curation
(n - %)*

Envelope 33 – 54 1 (1.85) 10 1 (10)
Membrane 99 1 (1.01) 83 – 7 –
Nucleocapsid 226 10 (4.25) 390 5 (1.28) 147 14 (9.52)
ORF10 23 – 10 – – –
ORF1ab 3621 154 (4.25) 5225 111 (2.12) – –
ORF3a 343 11 (3.21) 357 4 (1.12) – –
ORF6 32 – 47 – – –
ORF7a 96 3 (3.12) 102 – – –
ORF7b 15 – 3 – – –
ORF8 98 5 (5.10) 139 10 (7.19) – –
Spike 675 15 (2.22) 1239 22 (1.77) 93 21 (22.58)
TOTAL 5261 199 (3.78) 7649 153 (2.00) 257 36 (14.01)

Notes.
*Percentage related to number of predicted epitope per protein.

Figure 3 Identification of final SARS-CoV-2-derived HLA class I- and class II-binding epitopes. (A)
Distribution of the accurately selected epitopes in the SARS-CoV-2 proteins. Each color represents a dis-
tinct protein. (B) Distribution of the accurately selected epitopes in each current Brazilian lineage. Each
color represents a distinct epitope type. (C) Distribution of epitopes in HLA class I alleles. The color de-
gree represents the variation of the number of epitopes. (D) Distribution of epitopes in HLA class II alle-
les. The color degree represents the variation of the number of epitopes.

Full-size DOI: 10.7717/peerj.12548/fig-3
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epitopes (61.4%), following byHLA class I (46.7%) and B cell (14.3%) (Fig. 3B). Thereafter,
considering the most representative lineage in Brazil, at the time data was retrieved (P.1),
remarkably, proportions highest than 50% for all the epitopes were identified, with 70.1%
of HLA class II epitopes, 69.8% of HLA class I, and 51.4% of B cell epitopes in P.1 (Fig.
3B).

In the last analysis, considering the HLA promiscuity epitopes selection, the population
coverage for theT cell epitopes associatedwith their respectiveHLAallele binding (Table S3)
was estimated by the IEDB server. Notably, the T cell epitopes have a wide population
coverage, presenting 99.52% (HLA class I epitopes) and 100% (HLA class II epitopes) of
cumulative Brazilian population coverage and 98.45% (HLA class I epitopes) and 99.87%
(HLA class II epitopes) of worldwide population coverage (Table S6).

Epitope-specific RBD Spike as a baseline for validation of EpiCurator
selection
The EpiCurator allows the selection of themajority of the epitopes in the ORF1ab and Spike
glycoprotein. The SARS-CoV-2 Spike glycoprotein has greater prominence concerning
the virus and host interaction and has been the main target in epitopes prediction (Shang
et al., 2020; Walls et al., 2020). Therefore, we assumed the spike epitopes as a baseline to
validate the EpiCurator accurate selection. The Spike epitopes (n= 58) were mainly in the
N-terminal domain (NTD) (53.4%) and receptor-binding domain (RBD) (18.9%) (Fig. 4).

The RBD epitopes (n = 11) comprise three of HLA class I (461-NYNYRYRLF-
469, 506-QSYGFQPTY-514, 516-FGYQPYRVV-524), three of HLA class II (322-
EKGIYQTSNFRVQPI-336, 322-EKGIYQTSNFRVQPR-336, 443-TGCVIAWNSKNLDSK-
457), and five B cell epitopes (332-RVQPTES-338, 424-APGQTGK-430, 424-APGQTGT-
430, 455-DSKVGGNYN-463, 474-LKPFERD-480) (Fig. 4).

To evaluate the robust and refined RBD epitopes selection, we perform a diversified
analysis. They unveil the highest antigenicity (1.1 ± 0.27) (Fig. 5A) reflecting their ability
to bind molecules of adaptive immunity. Notably, their affinity for several HLA alleles are
high (0.49 ± 0.15) (Fig. 5A) and achieves promiscuity with ≥ 5 HLA allele binding per
epitope (Fig. 5B). The RBD epitopes HLA data pairwise with population coverage that
remains at around 80% in the Brazilian and worldwide population (Fig. 5B). To further
characterize the RBD epitopes, they reach the conservancy of over 99% across SARS-CoV-2
genomes samples of lineages P.1, P.2 and B.1.1.28 published on GISAID (See Methods)
(Table S3).

The high conservancy observed suggests that epitope sequences are shared in the
circulating Brazilian lineages. Considering the natural homology among the SARS-CoV-2
lineages but regardless of the epitopes’ conservancy with other lineages, we expand the
identification of the RBD epitopes for diversified samples available in GISAID at the time
of writing. Interestingly these epitopes were identified in more than 1 million samples for
around 1 thousand lineages of GISAID (Table S7). These findings include some samples of
current VOCs: Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) (Table S7). Concern
about the natural lineages’ homology mentioned, we perform a comparison among spike
glycoprotein of described Brazilian lineages and VOCs. The evaluation of random 100
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Figure 4 Distribution of the accurate selected epitopes in the structure of SARS-CoV-2 Spike glyco-
protein. Representation of Spike protein structure and their main domains. The epitopes are distributed
in the Spike structure by their coordinate in the protein sequence allowing the identification of the do-
mains where the epitopes were found. The specific sequence and coordinate of the epitopes found in the
RBD domain are shown. The epitopes are colored by their type (Class I, Class II and B cell epitopes).

Full-size DOI: 10.7717/peerj.12548/fig-4

samples available in GISAID of each lineage shows 99.1% of identity with 99.9% of
coverage confirming the sequence lineages similarity (Table S8).

One of the mentioned properties of RBD epitopes is the high affinity for HLA alleles.
To validate these findings the in silico structural binding performance was assessed by
the PepDock docking tool. Thus, the RBD epitopes and the most major HLA alleles
in studies with COVID-19 (see Methods) were structurally bonded in complex HLA-
epitope (Fig. S3). All complexes were seen with high-performance scores demonstrating
in silico epitope effectiveness in activating the cell-mediated immune response via MHC
presentation. Their high estimated accuracy selected the two most significant HLA-epitope
complexes (Table S9, Fig. 6). The HLA class I epitope 516-FGYQPYRVV-524 in complex
with HLA-A*01:01, HLA-A*02:01, HLA-B*08:01, and HLA-C*12:03; and the HLA class
II epitope 443-TGCVIAWNSKNLDSK-457 in complex with HLA-DRB1*03:01 and the
HLA-DRB1*12:02 alleles (Table S9, Fig. 6). Additionally, the best measured free energy of
the complexes was 1G = −23 kcal/mol for 461-NYNYRYRLF-469 HLA class I epitope in
complex withHLA-A*01:01 and1G=−31.6 kcal/mol for 322-EKGIYQTSNFRVQPR-336
HLA-class II epitope in complex with the HLA-DRB1*04:01 allele (Table S9, Fig. 6). An
additional analysis was performed to assess the specific residues involved in the structural
binding allowing to identify the specific amino acids in contact between the epitopes and
the HLA alleles (Table S9).

Multi-epitope construct for in silico validation of RBD epitopes
To further validate the RBD epitopes and consequently confirm the effectiveness of
EpiCurator in providing a curated selection, the epitopes were inserted in a multi-epitope
construct. It consists of 287 amino residues, including 11 RBD selected epitopes joined
by linkers (Fig. S1). The structural appraisal of the secondary structure predicted by the
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Figure 5 Properties of epitopes from Spike RBD domain. (A) The affinity values of the selected epitopes
(x axis) are indicated as bars on the right y axis, and the antigenicity values are indicated as dots on the left
y axis. (B) The number of HLA binding alleles for the selected epitopes (x axis) are indicated as bars on
the left y axis, and the cumulative percentage of population coverage is depicted as dots on the right y axis.
Each color of bars represents a distinct epitope type and each color of lines represents a distinct popula-
tion.

Full-size DOI: 10.7717/peerj.12548/fig-5

PSIPRED server revealed 31.7% alpha-helix, 13.5% beta-strand and the disordered region
was 12% (Fig. S4). Some evaluation of the linear sequence of multi-epitope were identified
as follows: high antigenicity by the Vaxijen 2.0 (0.87) and the AntigenPro (0.93), good
solubility by SolPro (0.91), Protein-sol (0.66), and SOLart (65.80%), non-allergenic feature
by AllerTOP and AllergenFP, hydrophilic property (hydropathicity=−0.438) and stability
(instability index = 20.56), with pI 7.03, and molecular weight calculated to be 29 kDa.

Another assessment of linear sequence includes the in silico immunogenic profile
provided by the C-IMMSIM immune server. The analysis showed a gradual increase of
IgM, IFN-γ (associated with both CD8+ T cell and CD4+ Th1 response as shown in
Fig. 7A), and IL-2 level after each multi-epitope exposure indicated an elevated immune
response (Fig. 7B). Besides, an adequate generation of both IgG1 and IgG2 was shown
(Fig. 7C) with high levels of clonal proliferation of B cell and T cell population (Figs. S5A
and S5B). In addition, the development of in silico immune memory was assessed by the
abundance of different types of B cells and T cells (Figs. S5C and S5D).

The favorable in silico immunogenic profile of linear construct led to a multi-epitope
3D modelling to assess TLR binding capability adding validation for the curated selection
provided by the EpiCurator. In this context, we modeled and evaluated the 3D multi-
epitope to choose the best model for the TLR binding assay. The best predicted tertiary
structure returned by RaptorX has an RMSD score of 11.218 (Fig. S6A), 62% of residues are
predicted to be exposed and 30% are predicted to be disordered (Fig. S6B). The refinement
by GalaxyRefine allows the choice of the best model based on its quality scores available in
Table S10. This model highlights the epitopes according to their type (B cell, HLA class I
T cell and HLA class II T cell) (Fig. S7). The overall model quality of the refined structure
was further validated in the ProSA web (Fig. S8A), showing the energy results by position
(Fig. S8B) with good local quality since all energy values of the residues are negative.
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Figure 6 Structure of the HLA-epitope complex for the main T cell epitopes in Spike RBD domain.
Structure complexes provided by docking simulation shows the MHC binding grooves (blue ribbons), and
the epitope (red structure). For each complex, the amino acids sequence of the epitope, HLA binding allele
and the binding free energy are available.

Full-size DOI: 10.7717/peerj.12548/fig-6

Figure 7 In silico simulation of immune response using multi-epitope construct as an antigen. The
multi-epitopes injection occurs on day 1 and within a 6-month interval. (A) Evolution of Th0, Th1, Th2
and Th17 response in cell/mm3 and percentage across the days. (B) Cytokine production across the days
- specific subclasses are indicated as colored peaks. (C) multi-epitope injections (black vertical lines) pro-
moting the immunoglobulin production - specific subclasses are indicated as colored peaks.

Full-size DOI: 10.7717/peerj.12548/fig-7

Considering the accuracy of the refined model, a docking between our multi-epitope
and the immune receptors (TLR3 and TLR4) was performed to check stability and binding
affinity. The best complexes (Fig. 8) for each receptor had free energy values of1G=−1,048
kcal/mol (TLR3) and 1G = −1020 kcal/mol (TLR4), indicating a high binding affinity.
In addition, the stability and physical movements of the complexes were confirmed using
molecular dynamics simulation in the iMODS server. The complex results are presented
in Figs. S9 and S10.
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Figure 8 Structure of the multi-epitope-TLR complexes. The immune receptors TLR3 and TLR4
are demonstrated in gray color and the ligands (multi-epitope) are shown in pink color. (A) The
multi-epitope-TLR3 complex (B) the multi-epitope-TLR4 complex.

Full-size DOI: 10.7717/peerj.12548/fig-8

DISCUSSION
Several studies have used immunoinformatic approaches to select B cell and T cell SARS-
CoV-2 epitopes for epitopes-based vaccine formulation (Ramana & Mehla, 2020; Oli
et al., 2020; Siracusano, Pastori & Lopalco, 2020; Yoshida et al., 2021; Ribes, Chaccour &
Moncunill, 2021; Jin et al., 2021). However, current computational methods are limited
since they identify a large number of epitopes and need different web servers for accurate
selection (Bui et al., 2006; Doytchinova & Flower, 2007b; Gupta et al., 2013). This study
developed an approach that gathered diversified analysis assembled in a workflow
(EpiCurator). It accurately selects SARS-CoV-2 epitopes with useful in silico properties for
an immunogen candidate target.

Its effectiveness was validated with a pairwise comparison analysis with four previously
published papers (Kiyotani et al., 2020; Chen et al., 2020; Crooke et al., 2020; Chukwudozie
et al., 2021). The main analysis of this validation was the IEDB matching that promotes
a robust and refined selection of epitopes which confirms the importance of the IEDB
database in the epitopes analysis studies (Beaver, Bourne & Ponomarenko, 2007). In
addition, our approach can be used for extensive scale search and high-throughput
computing analysis with the SARS-CoV-2 genomes available, an advantage to analyze a
pandemic emergent virus (Ojha et al., 2020;Minervina et al., 2021; Pham et al., 2021).

Remarkably, our workflow conducts a thorough and facilitated accurate selection
that enables us to prioritize the epitopes candidates. The EpiCurator recognizes patterns
of cross-conservation with SARS-CoV-2 and human epitopes, eliminating the ones with
significant human homology (Meyers et al., 2021). In addition, notably identifying epitopes
in published articles, ensuring the selection in silico candidates with a plausible assumption
to be described by the first time in this study. Consequently, this analysis might also validate
the effectiveness of our workflow’s accurate selection analysis, since our epitopes were
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identified in different studies previously published (Prachar et al., 2020). The workflow
also allows the selection of epitopes by high conservancy (≥90%), across more than
two thousand SARS-CoV-2 circulating Brazilian lineages in accordance with previous
reports for SARS-CoV-2 epitopes selection (Zaheer et al., 2020; Mahapatra et al., 2020;
Mallajosyula et al., 2021).

Three main phases comprise our approach to SARS-CoV-2 epitopes identification,
the prediction, accurate selection and epitopes validation. Therefore, taking the spike
glycoprotein epitopes as parameters, they represent 10% of the predicted epitopes and
2% of the accurately selected similarly to those presented in other reports (Kiyotani et al.,
2020; Crooke et al., 2020) with the resembling result for the other proteins. Indeed, the
spike data give us an advantage since they were used to optimize the validation of the
epitopes accurately selected by EpiCurator. Thus, they are taken as a baseline to conduct
a thorough analysis. This baseline is reached since the Spike plays the most crucial role
in the entry of viral particles into host cells, promoting an effective infection (Ou et al.,
2020). These characteristics make the spike a chosen target for epitope screening leading
to vaccine development (Shang et al., 2020; Walls et al., 2020; Lin et al., 2020). Pertaining
to the Spike, the RBD region induces responses that block S protein binding with the
human cell receptor, neutralizing SARS-CoV-2 infection (Rakib et al., 2020; Yang et al.,
2020), having substantial importance to peptide-based vaccine studies. Considering this
importance, we prioritize 11 epitopes of this study identified on Spike RBD regions.

The RBD epitopes were identified in several SARS-CoV-2 lineages emphasizing samples
of the current VOCs. They have favorable in silico structure interactions with the main
HLA alleles related to the COVID-19 response (Tavasolian et al., 2020; Tomita et al., 2020;
Shkurnikov et al., 2021). Thereby, it is plausible to assume that these epitopes could be
responsible for the strong activation of the cell-mediated immune response (Patronov et
al., 2011; Sarma, Olotu & Soliman, 2021) in case of an experimental assay. In addition,
the RBD epitopes have a broad populational coverage consistent with studies for SARS-
CoV-2 epitopes identified in lineages isolated from India, England and the United States
(Mallavarpu Ambrose et al., 2021). These findings combined with the high conservancy,
antigenicity and immunogenicity suggest these epitopes’ in silico immunogen profile
(Zheng & Song, 2020; Mallavarpu Ambrose et al., 2021; Jahangirian et al., 2021), validating
the accurate selection of EpiCurator.

Indeed, the RBD epitopes have substantial evidence and are seen as good epitope
candidates. Despite sharing this evidence, they could together increase the immune
responses and confer better protection against SARS-CoV-2 (Jahangirian et al., 2021).
Accepting this assumption, they were used to design a multi-epitope construct to further
validate their immunogenic properties (Kalita et al., 2020; Mohammad et al., 2020; Singh
et al., 2020; Yang, Bogdan & Nazarian, 2021; Lim et al., 2021; Sharma et al., 2021). The
multi-epitope has the capability of in silico activation of memory B and T cell with
Th1 response. Several experimental studies about immune response against COVID-
19 endorse these findings (Lipsitch et al., 2020; Hartley et al., 2020; Ghazavi et al., 2021;
Quast & Tarlinton, 2021; Tarke et al., 2021). On the other hand, no response Th17 was
found in the in silico assay, a common response that characterizes the severe COVID-19
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profile (Wu & Yang, 2020). Additionally, the multi-epitope had low binding energy and
high stability of in silico structure interactions with TLR3 and TLR4 similar to other
computational studies (Kar et al., 2020; Rahman et al., 2020; Yang, Bogdan & Nazarian,
2021; Nemati et al., 2021; Saba et al., 2021). This interaction is important since TLR is an
innate immune receptor that recognizes viral proteins and triggers infection resistance
(O’Neill, Golenbock & Bowie, 2013). Furthermore, TLR3 and TLR4 are specifically related
by different studies as part of immune response in COVID-19 (Patra, Chandra Das &
Mukherjee, 2021; Khanmohammadi & Rezaei, 2021; Kaushik, Bhandari & Kuhad, 2021).
The findings in multi-epitope analysis confirm the importance of the RBD epitopes,
selected by the EpiCurator, as good in silico immunogens candidates, reinforcing our
approach’s efficiency for a curated selection of epitopes.

CONCLUSIONS
It is important to reinforce that this work focuses on a computational prediction and
selection of epitopes seeking to perform several in silico validation. Therefore, our
approach is useful to researchers designing an experimental peptide-based vaccine to
control the disease. Since, indeed, the development of an effective vaccine requires a
detailed experimental investigation of the immunological correlations with SARS-CoV-2.
Regarding the computational analysis, assembling the accurate selection of epitopes and
their validation consolidate our approach as a helpful workflow analysis to provide epitopes
for immunogens. These epitopes could significantly activate the in silico immune response
against some circulating Brazilian variants. Furthermore, considering that the pandemic is
still ongoing, our approach could contribute to continuous monitoring and identification
of new SARS-CoV-2 epitopes according to the emergence of variants over time.
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