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Glioblastomamultiforme (GBM) is one of themost devastating brain tumors withmedian survival of one year and presents unique
challenges to therapy because of its aggressive behavior. Current treatment strategy involves surgery, radiotherapy, immunotherapy,
and adjuvant chemotherapy even though optimal management requires a multidisciplinary approach and knowledge of potential
complications from both the disease and its treatment. Thymoquinone (TQ), the main bioactive component of Nigella sativa L.,
has exhibited anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of
tumorigenic processes and counteract carcinogenesis, malignant growth, invasion,migration, and angiogenesis. TQ can specifically
sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells. Its
potential to enter brain via nasal pathway due to volatile nature of TQ adds another advantage in overcoming blood-brain barrier.
In this review, we summarized the potential role of TQ in different signaling pathways in GBM that have undergone treatment
with standard therapeutic modalities or with TQ. Altogether, we suggest further comprehensive evaluation of TQ in preclinical and
clinical level to delineate its implied utility as novel therapeutics to combat the challenges for the treatment of GBM.

1. Introduction

Glioblastomamultiforme (GBM) is a primary neuroepithelial
tumor of the brain, characterized by an aggressive clinical
phenotype derived from inter- and intrapatient genomic and
histopathological diversity [1]. In the latest reclassification of
the World Health Organization (WHO), the GBMs are listed
in the group of diffuse astrocytic and oligodendroglial tumors
reflecting their highly malignant behavior [2]. It constitutes
more than 40% of all malignant brain tumors and approx-
imately 54.4% of all malignant gliomas with mean age at
diagnosis being 64 years and 1.5 times more common in men
than women [3]. Even after the treatments by multimodal
therapy that involved surgery, radiotherapy, and combined
chemotherapy, GBM is nearly incurable with approximate
survival rate of around 8 to 15 months after diagnosis
[4]. Genomic analysis for prognostic markers of GBM has

been conducted with large-scale genomic characterization.
These investigations found mutations or amplifications of
different signaling pathways [5–8]. The most commonly
disrupted signaling cascades in GBM are pathways related
to receptor tyrosine kinase (RTK), including epidermal
growth factor receptor (EGFR), platelet derived growth
factor receptor alpha (PDGFRA), basic fibroblast growth
factor receptor 1 (FGFR-1), and insulin-like growth factor
receptor (IGFR-1) [9], and nuclear factor-𝜅B (NF-𝜅B) [10].
GBM has also been associated with aberration in signaling
through the mitogen-activated protein kinase (RAS/MAPK),
phosphatase inosine 3 kinase/protein kinase B (also known as
AKT)/mammalian target of rapamycin (PI3K/AKT/mTOR),
cell cycle-regulating retinoblastoma (RB) tumor suppressor
related pathways, tumor protein p53 (TP53) [11], promoter
methylation of O-6-methylguanine-DNA methyltransferase
(MGMT), isocitrate dehydrogenase (IDH) mutation, and
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altered expression of cyclin dependent kinase (CDK) genes
[12].

The logical leap from such investigation is that targeting
disrupted pathways may be an effective means of treating
GBM as is the case for other type of cancers [13].The changes
in RTK, PI3K, TP53, cell cycle, neoangiogenesis, cellular
metabolism, NF-𝜅B [10], signal transducer, and activator of
transcription 3 (STAT3) [14, 15] signaling pathways have
already paved the way for considering them as feasible targets
in GBM [10, 16, 17]. Among the RTKs, the instance of
increased gene copy number of EFGR is prevalent in GBM,
which is frequently responsible for increased proliferation,
transformation, adhesion, migration, and escape from apop-
tosis [18]. Though extensive preclinical studies with GBM
have shown promising results in EGFR targeting, several
clinical trials designed for therapeutic targeting of EGFR in
GBM patients have failed so far [19]. The lipid kinases PI3K
family are situated downstream of RTKs and with the inter-
action of numerous intermediary signal transduction kinases
(e.g., Akt, PTEN, and mTOR), control protein translation,
ribosome biosynthesis, and cell growth [20, 21]. Targeting
PI3K, PTEN, and mTOR pathways have shown moderate
success in combination with conventional therapy at clinical
level [17, 22, 23]. Alterations in cell cycle regulatory signaling
pathways, for example, CDK signaling (especially mutation
of CDK4, CDK6, and CDKN2A followed by E2F1 transcrip-
tion factor dysregulation), and inactivation of TP53 (either
dependent or independent of MDM2 mutation), have also
been extensively targeted in GBM [8, 24]. Moreover, some
studies with cell cycle inhibitors in GBM therapy have shown
promise in radiosensitization as well as in the promotion of
senescence and apoptosis of tumor cells [25, 26]. Neoangio-
genesis, a characteristic histopathologic feature of GBM, is in
part secondary to the hypoxic tumor microenvironment that
induces hypoxia-inducible factor-1𝛼 (HIF-1𝛼) followed by
subsequent VEGF accumulation, RTK activation, fibroblast
growth factor (FGF), PDGF, hepatocyte growth factor (HGF,
also known as scatter factor), integrins, angiopoietins, and
STAT3 upregulation [14, 27]. Depriving cell of oxygen and
nutrients to halt further growth is the initial justification for
targeting angiogenesis. The Food and Drug Administration
(FDA) of the United States of America has already approved a
monoclonal antibody targeting VEGF (Bevacizumab) in
GBM therapy [4] but other interventions targeting angio-
genesis have not shown improvement in overall survival in
GBM [28, 29]. Clinical trials targeting multiple players in
the angiogenesis pathways in GBM are underway but the
outcomes are yet to be published [17].Themutation of IDH (a
component of the tricarboxylic acid cycle) occurs early in the
gliomagenesis, leading towards neoenzymatic activity that
converts 𝛼-ketoglutarate to 2-hydroxyglutarate and disrupts
cellular metabolism in GBM [30, 31] providing rationale for
considering IDH as a therapeutic target and it has already
prompted several clinical trials whose outcome is yet to be
available [30, 32, 33]. Glioma stem cells (GSCs) represent
another viable target in GBM treatment due to their impor-
tant role in mediating therapeutic resistance [34]. A number
of other novel targets, such as poly-ADP ribose polymerase
(PARP) (DNA repair protein), BRAF (a protein kinase

that mediates MAP kinase signaling), bone-marrow X-
linked kinase (BMX), Bruton’s tyrosine kinase, and gamma-
secretase, are now under investigation for GBM treatment
at preclinical level[17, 35–37]. However, chemotherapeutic
drugs still remains the mainstay in glioblastoma treatment.
At present, the chemotherapeutic drugs for GBM approved
by FDA act as alkylating agents (Temozolomide (TMZ) and
Nitrosourea) [4, 38] which are not sufficient to combat GBM.
Based on this situation, there have always been a need to find
new therapeutics for GBM.

Thymoquinone (2-methyl-5-isopropyl-1, 4-benzoquin-
one; TQ) is the principle active ingredient of the volatile oil
of black cumin or black seed (Nigella sativa L. (NS)) (family
Ranunculaceae) [39]. People in different societies used NS as
condiment and different traditional medicinal system such as
Ayurvedic and Unani systems consider NS for the treatment
of various maladies [40–43]. The pharmacological investiga-
tions of TQ [44] are almost as old as its isolation from NS in
1963 by El-Dakhakhny [45]. Since then, numerous preclinical
studies have been performed including those to determine
the anticancer effects of TQ. The molecular mechanism of
throughwhat TQ shows selective cytotoxicity for human can-
cer cells is widely reported [46]. Studies have shown that TQ
causes selective cancer cell death and possess tumor growth
inhibitory activities in addition to its role in interference with
other tumorigenic processes such as angiogenesis, invasion,
and metastasis [47, 48]. TQ is involved in tumorigenesis or
development of drug resistance [49] aswell as in the sensitiza-
tion of cancer cells to chemotherapeutic agents and radiation
therapy through the resistance mechanisms [31, 50]. The
result of a registered investigation for studying the role of NS
in a precancerous disease, actinic keratosis (AK), is yet to be
reported (ClinicalTrials.gov Identifier: NCT01735097; web-
site: https://clinicaltrials.gov/ct2/show/record/NCT01735097
accessed on 26 June, 2017). Hence, the usefulness of TQ in
cancers including GBM is now more than a speculation and
it can target different hallmarks [51] of GBM.

There are several reviews on GBM [52], its pathology
[53, 54], possible therapeutic targets [17, 55, 56], and current
challenges in its therapies [54]. The treatment with TQ alone
has shown antitumor efficacy in several in vitro and in vivo
studies [57, 58] and also as in adjuvant therapy either to
prevent carcinogenesis [59] or to potentiate the efficiency of
conventional therapeutic modalities [60]. However, there is
no systemic compilation of the potential role of TQ as a
therapeutic agent or as an adjuvant agent for the treatment or
the prevention of GBMor an agent for slowing the progress of
GBM. In this review, we have compiled the potential role of
TQ in GBM therapeutics focusing on the major gliomagene-
sis signaling pathways.

2. Potential Role of TQ in Modulating
Proliferative and Migratory Signaling
Pathways of Glioblastoma

Two of the most important signaling cascades frequently
deregulated in GBM are the PI3K/Akt/mTOR and Ras/Raf/
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Figure 1: Signaling pathways of proliferation in glioblastoma targeted by Thymoquinone (NF-𝜅𝛽: nuclear factor-𝜅𝛽; FAC: Focal Adhesion
Molecule; MMP-2: Matrix Metalloproteinase-2; MMP-9: Matrix Metalloproteinase-9; PAK1: p21 protein (Cdc42/Rac) activated kinase 1;
PI3K/AKT/mTOR: phosphatase inosine 3 kinase/protein kinase B (also known asAKT)/mammalian target of rapamycin. Ras/Raf/MEK/ERK:
a chain of proteins in the cell that communicates a signal from a receptor on the surface of the cell to the DNA in the nucleus of the cell; Ras:
a type of small GTP-binding protein; Raf: Raf kinase family of serine/threonine-specific protein kinases; MEK: a protein kinase; ERK: a
member of the mitogen-activated protein kinase superfamily). Aside from FAC, MMP-2, and MMP-9, other signaling pathways primarily
affect glioblastoma proliferation.

MEK/ERK pathways that promote cell growth and pro-
liferation [61, 62]. In addition, the dysregulation of RTK,
non-RTK (c-src activity), growth factors (e.g., PDGF, FGF,
TGF, and IGF-1), GTPase activating protein (G protein),
serine/threonine-specific protein kinase (STK), and NF-𝜅B
activity differentially contributes to GBM proliferation [63–
66]. Studies have shown that aberrant constitutive activation
of NF-𝜅B, in response to PDGF overexpression/PI3K sig-
naling/PTEN inactivation, can promote GBM proliferation
through inappropriate activation of regulatory genes that
control cell proliferation and cell survival [67]. Nonreceptor
tyrosine kinase, Focal Adhesion Kinase (FAC), is associated
with increased rates of both migration and invasion in GBM
[68]. The FAC signaling regulates cell adhesion and motility
by relaying extracellularmatrix (ECM) signals to ERK signal-
ing and secreting matrix metalloproteinase- (MMP-) 2 and
MMP-9 [69–71].

No study has been conducted yet regarding the role of
TQ in modulating the proliferative signaling pathways in
GBM but studies in other type of cancer have demonstrated
that TQ upregulates PTEN signaling [72, 73], interferes with
PI3K/Akt signaling and promotes G(1) arrest, downregulates
PI3K/Akt and NF-𝜅B and their regulated gene products,
such as p-AKT, p65, XIAP, Bcl-2, COX-2, and VEGF, and
attenuates mTOR activity [73–78], providing the strong
rationale that TQ might play a crucial role in inhibiting
PI3K/Akt/mTOR signaling pathways, NF-𝜅B, resulting in
inhibiting proliferative signaling pathways of GBM. Studies
in colorectal cancer have demonstrated that TQ inhibits the
Ras/Raf/MEK/ERK signaling and disrupts its prosurvival
function, especially affecting the kinase domain of the p21
protein (Cdc42/Rac) activated kinase 1 (PAK1), consequently
disturbing its interaction with pPAK(Thr423) [79]. Phospho-
rylated Pak1 level in the cytoplasm has also been reported
to correlate with shorter survival time in patients with GBM

[80]. Multiple studies have reported that TQ downregulates
FAC and reduces the secretion of MMP-2 and MMP-9
and thereby reduces GBM cells migration, adhesion, and
invasion [81, 82].Therefore, there is a strong possibility of TQ
to provide therapeutic benefits for the treatment of GBM
(Figure 1). However, we propose further investigation in this
regard.

3. Cytotoxic and Antiapoptotic Potential of
TQ against Glioblastoma

TQ may exhibit glioma cell-specific cytotoxic effects [83] by
influencing cell cycle, DNA structure and synthesis, struc-
tural proteins like tubulin, apoptotic mechanism, and ROS
generation (Figure 2). It has been reported that TQ can
interfere in normal cell cycle progression and thereby inhibit
GBMgrowth [84]. Several studies have shown that TQhas the
capacity to cause cell cycle arrest at different phases [46, 85].
TQ treatment can alter the expression of multiple cell cycle
regulatory proteins, such as cyclin D1, cyclin E, and the CDK
inhibitor p27 [74], and induce apoptosis (accumulation of
sub-G1 population) through caspase activation and PARP
cleavage [86].

TQ influences both p53-dependent and p53 independent
pathways for apoptosis [72, 87]. TQ augments the proapop-
totic and reduces the antiapoptotic regulatory proteins. TQ
induced apoptosis involves changes in mitochondrial mem-
brane potential, activation of caspases and PARP cleavage
[88], increase in the Bax/Bcl-2 ratio via downregulating Bcl-2
and upregulating Bax level [88], raise in level of cytochrome c
and caspase-3, along with suppressed expression of Bcl-xL
and survivin [74], degradation of alpha and beta tubulin, and
increase in p73 expression leading to apoptosis in cancer cells
[87].
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Figure 2: Antiapoptotic and chemosensitization potential of Thymoquinone.

TQ is hypothesized to act as an antoxidant at lower
concentrations and a prooxidant at higher concentrations
depending on its environment [89]. In tumor cells specif-
ically, TQ generates ROS production that leads to reduced
expression of prosurvival genes, loss of mitochondrial poten-
tial, and structural changes in proapoptotic changes causing
caspase-dependent apoptosis in the cells [90]. A recent study
on human colon cancer cells demonstrated elevated level
of ROS generation and simultaneous DNA damage when
treated with a combination of TQ and artemisinin [91]. TQ
mainly attenuates its proapoptotic and oxidative potential
through suppressing the NF-𝜅B pathway [92]. This simul-
taneously inhibits the activation of IKBA kinase, IKBA
phosphorylation, IKBA degradation, p65 phosphorylation,
and p65 nuclear translocation. The expressions of NF-𝜅B-
regulated antiapoptotic (IAP1, IAP2, XIAP Bcl-2, Bcl-xL,
and survivin), proliferative (cyclin D1, cyclooxygenase-2, and
c-Myc), and angiogenic (matrix metalloproteinase-9 and
VEGF) gene products are also downregulated by TQ [92, 93].

TQ affects the DNA structure by targeting the copper in
the chromatin, which is associated closely with the base gua-
nine [89]. In normal cells, DNA damage will initiate repair by
p53 mediated p21 triggered growth inhibitory effects. How-
ever, in GBM cells, TQ induced DNA damage directly causes
cell death [94]. DNA-dependent protein kinase (DNA-PKcs)
is necessary for repairing breaks in DNA double strand in
order to maintain genomic integrity [95]. However, despite

the prominent cell damage in DNA-PKcs deficient GBM
cells, they are found to be less sensitive to TQ induced
cytotoxicity as compared to DNA-PKcs proficient GBM cells.
The significant cell death seen in DNA-PKcs proficient GBM
cells justifies the theory that these cells are attacked by TQ
and that DNA-PKcs activation is essential for cellular death
in GBM [96].

Telomere attrition, due to inhibition of telomerase by TQ
through the formation of G-quadruplex DNA stabilizer, sub-
sequently leads to rapid DNA damage which can eventually
induce apoptosis in cancer cells specifically [97]. In a recent
GBM cell line study, TQ has shown to reduce telomerase
activity and cause significant DNA damage [94] in addition
to its inhibitory role inDNA synthesis in cancer cells affecting
cellular proliferation and viability [58].

4. Targeting Chemosensitization and
Drug Resistance Mechanisms of
Glioblastoma by TQ

GBM possesses very complex resistance mechanisms associ-
ated with cell cycle and DNA repair, apoptosis, drug efflux,
growth factors, and cellular maintenance pathways [98, 99].
Evidently, TQ can significantly affect the drug resistance of
GBM through inhibition of its resistance strategies and
induce chemosensitization, by acting as an adjuvant to a
therapy via affecting variety of signaling pathways (Figure 2).
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GBM stem cells are seen to demonstrate an increased sense of
repair to injury after radiotherapy, due to enhanced activation
of ATM, Rad17, Chk1, and Chk2 [100]. Another cell surface
protein molecule known as L1CAM, which is expressed
nearly twice in resistant GBM cells, amplifies the DNA repair
capacity through adhesion [101].There is a 32-fold increase in
the level of the repair enzyme MGMT transcripts in GBM
cells which acts as ameans of resistance against the anticancer
alkylating agents [102]. TQ is seen to reduce the level of Chk1
(cell cycle checkpoint kinase) in p53−/− HCT116 colorectal
carcinoma cells. As a result this increases the caspase 3 activ-
ity leading to DNA damage and apoptosis, decreasing the
extent of DNA repair [103].

GBM cells have decreased sensitivity to both Fas-
mediated and TRAIL-mediated apoptosis [104, 105]. The
reduced presence of caspase-8 [106] and increased expression
of Bcl-2, an antiapoptotic regulatory protein [107], are the
contributory causes behind the resistance. In a study with a
model of colorectal tumorigenesis, it was observed that TQ
increases the chemosensitivity of 5-fluorouracil (5-FU) by
suppressing the NF-𝜅B pathway and upregulating antitu-
morigenic proteins [108]. Telomerase and DNA-PKcs defi-
ciency play huge role in cellular resistance to apoptosis of
GBM cells [94, 109]. However, GBM cells also carry specific
mutations andmiRNAs that inactivate the apoptosis [107] for
what further investigations are required regarding the rele-
vance of TQ treatment.

The higher apoptotic index in GBM is supported by their
higher proliferation, presence of hypoxic region, angiogene-
sis, and migration [107]. The cancer cells facing hypoxia tend
to remain inactive, do not proliferate, and create resistance to
the cytotoxic anticancer drugs which cannot reach those [110,
111]. Extensive research has elucidated the fact that cancer
cells express higher level of hypoxia-inducible factors [112].
Hypoxia induces the production of ROS that favors the tumor
survival, progression, and adaptation [113]. TQ acts as an
antioxidant in this case and scavenges the ROS including
the superoxide anion, hydroxyl radical, and singlet molecular
oxygen [114]. It has the capacity to readily travel across the
blood-brain barriers (BBB) and reach the subcellular com-
partments [115], thus reaching the inner hypoxic regions of
the tumor in the brain.

ThemTOR is a protein kinase that ensures supply of nutri-
ents to tumor cells and inhibits apoptosis and autophagy.This
kinase is upregulated in tumors causing enhanced growth
and proliferation, through Akt signaling [20]. The Notch
signaling is another pathway found enhanced in tumor cells,
which is necessary for the activation of transcription factors
required for regulation of nervous system. Its activity is
mediated by an enzyme gamma-secretase that stimulates its
active signaling [116]. However, gamma-secretase activity can
be inhibited by reducing Akt activity [117]. Thus both mTOR
and Notch pathways involve Akt/ERK signaling that is
downregulated by TQ [77]. TQ was found to chemosensitize
gemcitabine against cancer cells in inducing apoptosis by
inhibition of Akt/mTOR/S6 signaling pathways and reduced
expression of antiapoptotic proteins [118], providing a strong

rationale for the potentiating role of TQ with gemcitabine in
GBM therapy [119].

Active efflux of anticancer drugs out of the cancer cell by
ATP-binding cassette (ABC) transporters is one of the major
criteria of resistant glioblastoma cells [120]. Overexpression
of P-glycoprotein (P-gp), an ABC transporter, occurs because
of the upregulation of the MDR1 gene, which is induced
by mutation, activation of Raf, anticancer drugs, and DNA
damaging agents [121]. Although TQ cannot prevent drug
efflux directly, but it can indirectly help through inhibition
of Raf activation, by downregulatingMAPK [122], which will
consequently downregulate the MDR1 gene expression, thus
preventing the overexpression of P-gp. TMZ is currently the
most widely used chemotherapy for GBM [123]. TQ is seen
to give synergistic effect with TMZ in inducing apoptosis
and cell growth inhibition in GBM cells [124]. As TQ is a
small lipophilicmolecule and, asmentioned earlier, can easily
cross the BBB, it can help the chemotherapeutic agent in
reaching the tumor while being used as an adjuvant and also
by preventing the drug efflux indirectly, creating chemosen-
sitization.

5. Potential Role of TQ to
Mediate Neuroinflammation and
Immunotherapy in Glioblastoma

GBM plays role in generating immunosuppressive microen-
vironment by producing different immunosuppressive cy-
tokines including IL-6, IL-10, and TGF-𝛽 as well as tumor
aggravating IL-1 and basic fibroblast growth factor (bEGF)
resulting in neuroinflammation [125–127]. These cytokines
promote antitumor immune response by inhibiting effector
T cell response and activating regulatory T cell (Tregs)
expression [128, 129]. In addition to cytokines, macrophage
and myeloid derived suppressor cells also infiltrate into the
GBM microenvironment and cause inhibition of antitumor
immune response [130, 131]. Also, immunosuppressive check-
points including CTLA-4, PD-1, LAG-3, and TIM-3 is known
to have potential role in escaping immune environment of
GBM [132].

Successful immunotherapeutic approach depends on its
targeting of GBM cells specific antigen and its ability to kill
tumor cells [129]. There are a number of antigens found that
are glioma associated such as EPhA2, HER-2, gp 100, and
TRP-2 [133–135]. However, EGFR found in around 25 percent
of GBM patients is the most targeted one to the researchers.
Peptide based vaccines for GBM usually target antigens such
as EGFRvIII, survivin, and heat shock protein and currently
couple of vaccines are in various stages of clinical trial
including CDX-100 and M57-KLH [136]. Studies have pro-
vided evidence that TQ has potential to downregulate tumor
associated antigen [137] and therefore hold promise to pos-
sess therapeutic benefit in inhibitingGBMantigen expression
but further investigations are required in this regard.

Dendritic cells (DCs) vaccination is an important avenue
of immunotherapy that utilizes DCs to make a bridge
between innate and adaptive immune responses [138, 139].
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Since DCs cannot process antigen effectively in immunosup-
pressive microenvironment, they are being cultured outside
of patient body with exposing to antigen. Reinvigorated DCs
are then inserted back to patient body which then activate T
cells like CD4, CD8, and natural killer cells [129, 140]. Even
though the DC based vaccine appears to be comparatively
safe, its efficacy and clinical output are still limited. However,
positive immune response among GBM patients were found
when they are treatedwithDCs pulsedwith different antigens
with different degree of success [141, 142]. Studies have
demonstrated that TQ compromises inflammation induced
DCmaturation, an important step towards antigen presenta-
tion to T cell and for effective antitumor immunity [143], and
blunts inflammation induced cytokine release and migration
of DCs [144], providing avenue for the further investigation
regarding the role of TQ in DC cell based GBM therapy.

Immune stimulatory adjuvant are thought to initiate
innate immune response through activation of toll-like recep-
tors (TLRs) and pattern recognition receptors (PRRs), neces-
sary components for maintaining the balance between both
cellular and humoral immune response [145]. Commonly
used adjuvants include CpG oligonucleotides, poly-ICLC,
and tetanus toxoid. In two separate phase II clinical trials
among GBM patients, it has been found out that treatment
with poly-ICLC was well tolerated and improves the efficacy
of radiotherapy [146, 147]. Studies have shown that TLR
mediated byNeu1 sialidase activation [148]which ismediated
by TQ provides avenue for further investigation regarding
the role of TQ in the TLR mediated beneficial effect in GBM
immune adjuvant therapy [149].

Immunomodulatory cytokines play important role in
GBM and other cancer types. IL-6 is recognized for stimulat-
ing tumor growth in GBM patients, whereas IL-10 is known
for inhibiting IFN-𝛾 andTNF-𝛼 production [150, 151]. IL-10 is
also responsible for decreased expression ofMHC class II and
inducing anergy inT cells [152, 153]. TGF-𝛽 is known tomedi-
ate immunosuppression by regulating T cell proliferation, IL-
2 production, and NK cell activity and promoting regulatory

T cells (Tregs) activity [154, 155]. A phase I clinical study
among malignant glioma patients revealed that inhibiting
Tregs by basiliximab, amonoclonal antibody to IL-2 receptor,
generates improved immune response [56, 156]. TQ is known
to inhibit the ability of TNF-𝛼 to induce IL-6 production
in a different disease group [157]. This implies that further
investigation is necessary to find out the impact of TQ on
immunomodulatory cytokines in GBM patients.

TQ possesses significant antineuroinflammatory effect
[158] and improves the anticancer activity of other therapeu-
tic agent through either inhibition of autophagy or apoptotic
cell death of GBM cell line [124, 159].We hypothesize that TQ
might help overcome those immunosuppressive mechanisms
[160–162] in GBM immunotherapy and therefore further
investigations are required for the potential role of TQ in dif-
ferent immunotherapeutic modules including the potential
synergistic role of TQ on the therapeutic efficacy of immune
checkpoints (CTLA-4 and PD-1) blockers for the treatment
of GBM (Figure 3).

6. Potential Role of TQ to Inhibit
GBM Stem-Like Cells from Acquiring a
Mature Postmitotic Phenotype and
Decrease Survival

It has been widely suggested that the subpopulations of
tumor-initiating or stem-like cells are one of the primary
factors causing GBM recurrence and resistance to treatment
[100, 163]. It has been observed that GBM stem-like cells have
higher levels of nuclear p65 and NF-𝜅B-dependent gene
expression than regular glioma cells [164]. Studies have
suggested that NF-𝜅B signaling has been linked to the
proliferation, migration, and differentiation of neural stem
cells [165] which is considered as one of the potential cell of
origin of brain tumors. One of the subunits of NF-𝜅B,
RelB, is highly expressed in mesenchymal GBM and studies
have shown RelB regulates expression of Olig2 [166], a
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critical factor in normal and tumorigenic stem-like cell
proliferation. Studies have shown that TQ interferes with the
expression of RelB [167] and thus shows potential to interfere
with tumorigenic stem-like cell proliferation. Studies have
suggested that activation of NF𝜅B may keep differentiating
glioblastoma-initiating cells (GICs) from acquiring a mature
postmitotic phenotype, thus allowing cell proliferation and
support the rationale for therapeutic strategies aimed to
promote premature senescence of differentiating GICs by
blocking key factors within the NF𝜅B pathway [168]. It is
well established that TQ blocks NF-𝜅B from multiple molec-
ular pathways but further investigation is suggested for the
role of TQ in promoting senescence of GICs. Studies have
shown that STAT3 is upregulated in GBM-derived brain
tumor stem cells (BTSCs) [169] and inhibition of STAT3
either by pharmacological agent or by gene knockdown
resulted in reduced BTSC survival regardless of endogenous
MGMT promoter methylation or EGFR, PTEN, and TP53
mutational status [170]. TQ has shown to suppress STAT3 in
myeloma, gastric, and colon cancer [86, 171, 172] and, there-
fore, we hypothesize that TQ would be inhibiting BTSCs
but further investigations are warranted. We also propose
more investigations regarding the role of TQ in preventing
treatment resistance mediated from GBM stem-like cells in
conventional GBM therapy.

7. Potential Beneficiary Role of TQ
in Surgery and Ionization Radiation
Therapy in Glioblastoma

Surgery and radiation therapy are two major modules for
GBM treatment. The underlying molecular mechanisms that
are overactivated or inactivated nearby the surgical area of
GBM is still poorly understood [173] which partly contribute
to the GBM reappearance, aggressive proliferation, and
induction of metastatic potential in the microscopic tumors
that are not eliminated through tumor resection [174, 175].
Many mitogenic and proangiogenic factors, such as TGF-𝛽,
FGF, VEGF, EGF-like growth factors, and endostatin, were
found in the wound fluids that stimulate cancer cell prolifera-
tion and neoangiogenesis during postsurgery wound healing
period [176–178]. Studies have shown that TQ attenuates
tumorigenic signaling, including those mediated by TGF-𝛽,
VEGF, EGF, and several other promitogenic, angiogenic, and
metastatic factors, with the inhibition of cancer cell growth,
migration, and invasion [48, 179–182]. Studies have shown
that TQ counteracts the trauma-induced chemotaxis of
circulating malignant cells and their epithelial to mesenchy-
mal transition (EMT) [48, 181, 183] and interferes in the
activation of nuclear factor erythroid-related factor-2 (Nrf-2),
NF-𝜅B, and STAT-3 that are responsible for the transcrip-
tional activation of genes encoding proteins involved in cell
proliferation, angiogenesis, and metastasis [50, 184]. Thus,
TQ demonstrates very strong rationale for possible beneficial
agent as a preoperative and/or postoperative neoadjuvant in
GBM treatment.

Radiation therapy for GBM has been used in conjunction
with surgery for over 35 years [185] and almost 50% of all

cancer patients receive this therapy in one form or another
during their course of illness [186]. It causes cell to undergo
apoptosis due to double-stranded breaks via inducing DNA
damage. Even though it is an effective therapeutics, it is
restricted by some inherent limitations, such as the detrimen-
tal effect to surrounding normal tissues and the stimulation
of cancer cells adaptive responses to counteract the damage
process. Cancer cells that survived after initial cycles acquire
resistance through multiple cellular mechanisms such as
activation of NF-𝜅B, PI3K, Akt, and mTOR [187] but the
resistance to radiotherapy in GBM is primarily attributed to
EGFRvIII.Thismutation confers an EGF ligand-independent
dimerization of the EGF receptor resulting in constitutive
activation of the EGF/EGFR signaling pathway [188, 189]
and thus cellular resistance to radiation therapy by upreg-
ulating the DNA double-stranded break repair machinery
[190]. Therefore, EGFRvIII inhibitors are readily rationalized
to possess increased overall GBM sensitivity to radiation
therapy. Studies have found that EGFRvIII mutant GBM cell
proliferation is more sensitive to TQ than wild-type GBM
cells. It was also found that TQ inhibits autophagic flux
and induces caspase-independent apoptotic cell death of the
EGFRvIII mutant GBM cells to the similar extent of the
wild-type GBM cells [115]. TQ might enhance radiation
therapeutic benefit by enhancing the cytotoxic efficacy of
radiation throughmodulation of cell cycle and apoptosis [31],
preventing the radiation-induced metastatic progression
through restoration of TGF-𝛽 [179] and activation of several
signal transduction pathways including PI3K-Akt-mTOR
[49, 187, 191, 192] or by rescuing T-lymphocytes from gamma
irradiation-induced apoptosis [193]. Even though free radical
scavenging ability and antioxidant properties of TQ are
primarily considered for the mechanistic explanations of TQ
mediated beneficial effect [192] but it is obvious that other
mechanisms are involved and thus we propose further exten-
sive investigations.

8. Summary and Future Perspective

GBMis one of the least understood diseases.Highly heteroge-
neous cell populations and complex pathogenesis add further
complexities for effective therapeutic agent developments.
The presence of BBB adds another layer of complexity in
combating this disease. Though considerable advancements
have been accomplished in GBM molecular pathogenesis
and thereby in treatment strategies, the overall survival rates
remain poor. Targeting a particular molecule or signaling
pathway, involved in one of the singular aspects of the mul-
tistep complex tumorigenesis processes, has recently been
deemed as extravagant attempt to curtail malignant progres-
sion. Due to the inherent heterogeneous nature, GBM can
always evade a particular therapeutic modality and continue
to survive on alternative pathways followed by recurrence of
tumor at a far more aggressive form.Therefore, the paradigm
in cancer treatment strategy is now shifting from targeted
therapy to combination or multitargeted approaches or tar-
geting cancer with modalities that affect multiple signaling
pathways.
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As a multitargeting therapeutic substance, TQ has been
investigated in numerous disease models along with different
types of cancer in vivo and in vitro models including GBM.
Studies have focused on various signaling pathways providing
evidence for its potential use in the GBM therapeutics. The
prominent GBM signaling pathways includes the role of TQ
in interfering in the phosphorylation and subsequent activa-
tion of several upstream tyrosine kinases (e.g., MAPK, Akt,
mTOR, and PIP3) that are involved in tumor cell proliferation
signaling pathways [49, 180]. Transcriptional factors (e.g.,
Nrf2, NF-𝜅B, and STAT-3) that are considered as key players
in various oncogenesis process are other crucial molecu-
lar targets of TQ [49, 57, 84]. It has been suggested by
multiple studies that, by regulating the activation of these
transcription factors, TQ might counteract different tumori-
genic processes including inflammation, cell proliferation,
cell survival, angiogenesis, cell invasions, andmetastasis. Fur-
thermore, TQ shows chemopreventive properties by down-
regulating carcinogen metabolizing enzymes (e.g., CYP 1A2
and CYP 3A4), upregulating cytoprotective enzymes (e.g.,
glutathione S-transferase, superoxide dismutase, and oxi-
doreductase), attenuated production of proinflammatory
mediators (e.g., cytokines, chemokines, and prostaglandins)
[49]. Among different signaling pathways several are signifi-
cant in the context of GBM therapy with TQ; the JAK/STAT
and NF-𝜅B are getting increasing attention in the context
of GBM. The JAK/STAT signaling in GBM consists of four
JAKs (JAKs1–3 and TYK2) and seven STATs (STATs1–4, 5a,
5b, and 6) [194] but STAT3 is generally considered as the
most eminent among cancers [195]. In GBM, protein kinase
C𝜀 has been shown to drive serine phosphorylation of
STAT3 in a RAK/MEK/ERK-dependent fashion, and this
modification of STAT3 enhances the invasive capacity and
apoptosis resistance of GBM [196, 197]. STAT3 upregulation,
hyperactivation, and nuclear accumulation is a well-known
feature of GBM [198]. Studies have shown that TQ inhibits
proliferation in gastric cancer via STAT3 pathway in vivo and
in vitro [171] alone and also in combination with other drugs
in breast cancer [199]. We propose further investigation for
the role of TQ in GBM in JAK/STAT3 pathways. Further
investigations are also required whether TQ affect specific
parts of NF-𝜅B such as I𝜅K complex that is involved in the
regulating NF-𝜅B activation or regulate NF-𝜅B signaling in
a more selective manner by specifically interacting with NF-
𝜅B dimers or whether TQ blocks NF-𝜅B by directly targeting
the subunits (p65 and p50) themselves. This is of particular
interest because of the fact that one available drug, TMZ, has
opposite effects in the subunits [200]. Previous study in GBM
cells has shown that Ikk inhibitors decrease proliferation and
increase apoptosis directly [201] or via inhibiting nuclear p65
translocation [202]. Study regarding the effects of TQ on pro-
teasomes is also suggested since inhibitors of proteasomes has
shown to have beneficiary effects on GBM [203] but whether
such effects are mediated by TQ has not been investigated.

TQ induces selective and time-dependent proteasome
inhibition, both in isolated enzymes and in GBM cells, sug-
gesting that this inhibition leads to intracellular increases in
the levels of apoptotic proteins such as p53 and Bax, and may
be linked to the onset of apoptotic events [204].Therefore, we

propose further investigations on TQ as its potential appli-
cation as an adjuvant in the treatment of cancer and other
diseases. In the clinical settings, no such study has been
conducted with TQ for the treatment of GBMbut one general
conclusion is that improved understanding of the molecular
mechanism by which GBM is regulated is a strategy that can
make a significant impact in the successful management of
GBM.

Interestingly, even the lower efficacy [205] and poor bio-
availability [206, 207] of TQare the primary bottleneck of TQ,
its volatile nature [208] provides opportunity to be exploited
for use in novel drug delivery strategy via intranasal pathway
to brain due to unique connection provided by the olfactory
and/or trigeminal nerve systempresent between the olfactory
epithelium and the central nervous system. Such delivery
system provides opportunity to bypass both the BBB and
hepatic first-pass metabolism [209].

It is evident that TQ is multitargeting in its nature but
majority of the signaling pathways in the GBM pathogenic
context is yet to be explored. Due to its lower efficacy and
systemic bioavailability, we propose further investigation on
its role as adjuvant therapy with other chemotherapeutic
courses. Further investigation could also be conducted for its
more efficacious analogues and formulating those into dif-
ferent delivery systems to cross BBB in GBM treatment
along with determination of their pharmacokinetic behavior,
efficacy, and toxicity. To better understand these differential
cellular effects of TQ, more in vitro, in vivo, and in silico
studies could be conducted at both proteomic and genomic
level. Findings from such studies will enable us to devise
clinically effective combination therapeutics where TQ or its
derivatives can potentiate the antitumorigenic potential of
various conventional and established GBM therapeutic
courses.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Muhammad Shahdaat Bin Sayeed and A. G. M. Mostofa
conceived the idea, FablihaAhmedChowdhury andMuham-
mad Shahdaat Bin Sayeed wrote the major sections of the
manuscript, Md Kamal Hossain wrote Section 5, and Maruf
Mohammad Akbor provided critical insights.

References

[1] W. Szopa, T. A. Burley, G. Kramer-Marek, and W. Kaspera,
“Diagnostic and therapeutic biomarkers in glioblastoma: cur-
rent status and future perspectives,” BioMed Research Interna-
tional, vol. 2017, Article ID 8013575, 13 pages, 2017.

[2] D. N. Louis, A. Perry, G. Reifenberger et al., “The 2016 world
health organization classification of tumors of the central
nervous system: a summary,” Acta Neuropathologica, vol. 131,
no. 6, pp. 803–820, 2016.

[3] Q. T. Ostrom, H. Gittleman, P. Farah et al., “CBTRUS statistical
report: primary brain and central nervous system tumors



BioMed Research International 9

diagnosed in the United States in 2006–2010,” Neuro-Oncology,
vol. 15, supplement 2, pp. ii1–ii56, 2013.

[4] K. Anjum, B. I. Shagufta, S. Q. Abbas et al., “Current status
and future therapeutic perspectives of glioblastomamultiforme
(GBM) therapy: A review,” Biomedicine & Pharmacotherapy,
vol. 92, pp. 681–689, 2017.

[5] A. Sottoriva, I. Spiteri, S. G. M. Piccirillo et al., “Intratumor het-
erogeneity in human glioblastoma reflects cancer evolutionary
dynamics,” Proceedings of the National Acadamy of Sciences of
theUnited States of America, vol. 110, no. 10, pp. 4009–4014, 2013.

[6] T. R. Jue and K. L. McDonald, “The challenges associated
with molecular targeted therapies for glioblastoma,” Journal of
Neuro-Oncology, vol. 127, no. 3, pp. 427–434, 2016.

[7] Cancer Genome Atlas Research Network, “Comprehensive
genomic characterization defines human glioblastoma genes
and core pathways,” Nature, vol. 455, no. 7216, pp. 1061–1068,
2008.

[8] D. W. Parsons, “An integrated genomic analysis of human
glioblastoma multiforme,” Science, vol. 321, no. 5897, pp. 1807–
1812, 2008.

[9] H. Ohgaki and P. Kleihues, “Genetic alterations and signaling
pathways in the evolution of gliomas,” Cancer Science, vol. 100,
no. 12, pp. 2235–2241, 2009.

[10] K. E. Cahill, R. A. Morshed, and B. Yamini, “Nuclear factor-𝜅B
in glioblastoma: Insights into regulators and targeted therapy,”
Neuro-Oncology, vol. 18, no. 3, pp. 329–339, 2016.

[11] C. W. Brennan, R. G. Verhaak, and A. McKenna, “The somatic
genomic landscape of glioblastoma,” Cell, vol. 155, no. 2, pp.
462–477, 2013.

[12] J. T. Huse and E. C. Holland, “Targeting brain cancer: advances
in the molecular pathology of malignant glioma and medul-
loblastoma,” Nature Reviews Cancer, vol. 10, no. 5, pp. 319–331,
2010.

[13] Z. Piotrowska and L. V. Sequist, “Epidermal growth factor
receptor-mutant lung cancer: New drugs, new resistance mech-
anisms, and future treatment options,” Cancer Journal, vol. 21,
no. 5, pp. 371–377, 2015.

[14] N. Chang, S. H. Ahn, D.-S. Kong, H. W. Lee, and D.-H. Nam,
“The role of STAT3 in glioblastoma progression through dual
influences on tumor cells and the immune microenvironment,”
Molecular and Cellular Endocrinology, vol. 451, pp. 53–65, 2017.
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[105] C. Zang,M.Wächter,H. Liu et al., “Ligands for PPAR𝛾 andRAR
cause induction of growth inhibition and apoptosis in human
glioblastomas,” Journal of Neuro-Oncology, vol. 65, no. 2, pp.
107–118, 2003.

[106] L. Ricci-Vitiani, F. Pedini, C.Mollinari et al., “Absence of caspase
8 andhigh expression of PEDprotect primitive neural cells from
cell death,” The Journal of Experimental Medicine, vol. 200, no.
10, pp. 1257–1266, 2004.

[107] C. P. Haar, P. Hebbar, G. C. Wallace IV et al., “Drug resistance
in glioblastoma: A mini review,” Neurochemical Research, vol.
37, no. 6, pp. 1192–1200, 2012.

[108] X. Lei, X. Lv, M. Liu et al., “Thymoquinone inhibits growth and
augments 5-fluorouracil-induced apoptosis in gastric cancer
cells both in vitro and in vivo,” Biochemical and Biophysical
Research Communications, vol. 417, no. 2, pp. 864–868, 2012.

[109] Y. Kondo, S. Kondo, Y. Tanaka, T. Haqqi, B. P. Barna, and J.
K. Cowell, “Inhibition of telomerase increases the susceptibility
of human malignant glioblastoma cells to cisplatin-induced
apoptosis,” Oncogene, vol. 16, no. 17, pp. 2243–2248, 1998.

[110] P. Vaupel, D. K. Kelleher, andM.Höckel, “Oxygenation status of
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