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An analysis of a mathemat ical model, which describes the dynamics of an aerially transmitted disease,
and the effects of the emergence of drug resistance after the introduction of treatment as an intervention 
strategy is presented. Under explicit consideration of asymptomatic and symptomatic infective individ- 
uals for the basi c model without intervention the analysis shows that the dynamics of the epidemic is 
determined by a basic reproduction number R0. A disease-free and an endemic equilibrium exist and 
are locally asymptotica lly stable when R0 < 1 and R0 > 1 respectively. When treatment is included the 
system has a basic reproduction numbe r, which is the largest of the two reproduction numbers that char- 
acterise the drug-sensitiv e (R1) or resistant (R2) strains of the infectious agent. The system has a disease- 
free equilibrium, which is stable when both R1 and R2 are less than unity. Two endemic equilibria also 
exist and are associated with treatment and the development of drug resistance. An endemic equilibrium 
where only the drug-resistant strain persists exists and is stable when R2 > 1 and R1 < R2. A second ende- 
mic equilibrium exists when R1 > 1 and R1 > R2 and both drug-sensitive and drug-resistant strains are 
present. The analysis of the system provides insights about the conditions under which the infection will 
persist and whether sensitive and resistant strains will coexist or not.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction 

A characteristic that influences the transmission dynamics of 
many infectious diseases is the existence of a subclinical state,
where an infected person does not show any symptoms but can,
however, spread the infection to other individuals. These, so called,
silent spreaders can make a substantial contribution to the trans- 
mission of the infectious agent in a population. Therefore, their 
contribution to the transmission dynamics of an infection should 
be incorporate d into the associated models.

During a disease outbreak, any intervention strategy aimed at 
mitigating the disease impact is highly dependent on the ability 
to identify infected individuals, a task which is greatly impeded 
in the absence of clinical symptoms [1]. In particular , this becomes 
a vital task for a newly emergent pathogen (e.g. severe acute respi- 
ratory syndrome, pandemic influenza), due to the absence of a vac- 
cine in the early stages of the outbreak. Policy decisions for public 
health planning rely on early estimate s of disease parameters,
however, unreported subclinical cases lead to difficulties in accu- 
ll rights reserved.
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rately estimating the basic reproduction number of the disease 
[2]. The resultant uncertainty in epidemiologica l models greatly 
hinders the decision making process and casts doubt on the effec- 
tiveness of proposed interventions. The presence of subclinical 
infections in a population can significantly influence the outcome 
of non-pharma ceutical interventions , for example monitoring 
internati onal borders for symptomatic travellers can be under- 
mined as asymptomatic individua ls are impossible to identify 
using standard methods [3]. Furthermore, isolating and/or treating 
clinical cases may be inadequate to protect vulnerabl e populations 
from the further spread of disease. Prophylaxis of exposed popula- 
tions can be a useful intervention, in particular, when a vaccine 
needs time to be developed. However, the possibilit y of drug resis- 
tance as a byproduct of the treatment process is an undesirable,
but potential, side effect and its epidemiolog ical impact and the 
likelihoo d of transmission of drug-resistant infectious agents need 
to be studied closer.

Subclinic al infections are typically modelled using two ap- 
proaches . The first separates the infectious population into asymp- 
tomatic and symptomati c states immedia tely following the onset 
of infectiousnes s [4–6]. However, not all diseases follow such a
straightfo rward path and, in particular, the relative duration s of 
the latent and incubation periods should be considered. For certain 
diseases, a more appropriate model may allow for a preclinical state
where an asymptom atic infectious state precedes the onset of 
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Fig. 1. Disease pathway.
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clinical symptoms, Fig. 1. Such a model has been used in the con- 
text of influenza where the incubation period is believed to exceed 
the duration of the latent state [7–12].

In this paper we present some features of a mathematical model 
for aerially transmitted diseases (e.g. meningitis, influenza, staph- 
ylococcus aureus). In the model there are two classes of infected,
and thus infectious, individuals; those who develop symptoms 
after an asymptomatic period and those who remain asymptom- 
atic but infectious and recover without having passed through 
the symptomatic state. We provide a comparison with an alterna- 
tive widely-used model which neglects the existence of a preclin- 
ical infectious state. We investigate the same features in a modified
version of the model, where treatment is applied as an intervention 
strategy and the resultant developmen t of drug resistance as a side 
effect is evaluated. Both models are based on a previously devel- 
oped model for the emergence of drug resistance during influenza
epidemics under explicit consideration of asymptomati c cases [7].
We now generalise that model for any persistent infectious disease 
with infectious asymptomati c cases and in addition we elaborate 
on the dynamics when treatment is used as interventi on strategy.
2. The basic model 

The total population NðtÞ is divided into four distinct classes 
such that NðtÞ ¼ sðtÞ þ iAðtÞ þ iSðtÞ þ rðtÞ, where sðtÞ denotes the 
number of susceptible individuals at time t, iAðtÞ the number of 
asymptomati c infectives , iSðtÞ the number of symptomatic infec- 
tives and rðtÞ the number of recovered people. The infection is 
transmitted to a susceptible person through contact with either a
symptomati c or asymptomatic infected person. Once infected, all 
susceptible individuals enter an asymptomatic state, indicating a
delay between infectious ness and symptom onset. From here, an 
individual can either progress to the symptomatic state of infection 
or recover without ever developing symptoms. It is assumed that 
there are no disease related deaths and all infected individuals 
eventually recover. We further assume that recovered individuals 
Fig. 2. Transition diagram for SIRS model with asymptomatic and symptomatic 
disease states.
do not obtain lifelong immunity to infection. This assumption 
incorporate s the antigenic drift of some infectious agents, such as 
influenza, which results in previously infected individuals becom- 
ing susceptibl e to the virus again. The transition diagram for the 
infection pathway is shown in Fig. 2 and the model is described 
by the system of equations 

ds 
dt 
¼ Kþ ar � ls� ðbAiA þ bSiSÞ

s
N
;

diA

dt
¼ ðbAiA þ bSiSÞ

s
N
� ðdþ cA þ lÞiA;

diS

dt
¼ diA � ðcS þ lÞiS;

dr 
dt 
¼ cAiA þ cSiS � ðlþ aÞr;

where K and l are the constant birth and natural death rates 
respective ly. We assume all infected individua ls eventually recover ,
losing their acquired immunit y after a period of 1=a days and return 
to the suscep tible class. The transition rates associated with asymp- 
tomatic and symptom atic individua ls are bA and bS respective ly.
Follow ing the onset of symptom s, the average time to recove ry is 
1=cS days. For an asympt omatic case two scenarios are possible.
An individua l may remain asympt omatic for the duration of the 
infection and recover after 1=cA days. Alternat ively, an individua l
may remain asymptomat ic (preclinical) for a shorter period of 1=d
days before ultimately developin g symptom s. Therefo re, the aver- 
age residence time in the IA class is 1=ðdþ cA þ lÞ.

The limiting case d ! 0, yields a standard SIRS model for a si- 
lent (asymptomatic) infection [13]. In contrast, the asymptomatic 
state becomes redundant in the limit d ! 1, which corresponds 
to individua ls spending an infinitely short time in the asymptom -
atic stage and again results in a standard SIRS model for a purely 
symptom atic infection. Symptomatic individuals, on coming in 
contact with susceptibl e individua ls, transmit the infection more 
readily than asymptomati c individuals due to physical signs of ill- 
ness (coughing, sneezing, etc.). However, asymptomatic individu- 
als will presumably have more contacts since lack of symptom s
implies a lack of self-induced quarantine [14]. We assume that 
the first effect outweighs the second and take bS ¼ cbA, with c > 1.

The change in the total population size follows 

dN 
dt 
¼ ds 

dt 
þ diA

dt
þ diS

dt
þ dr 

dt 
¼ K� lN;

and the total population then develops via 

NðtÞ ¼ K
l
þ Nð0Þ �K

l

� �
e�lt ;

with N approachi ng the limiting value N1 ¼ K=l. We assume that 
the population is approximat ely constant over the infection 
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Fig. 3. Bifurcation diagram showing how the steady state value of S varies with R0.
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timescale and we set K ¼ lN yielding a constant population size 
where births balance natural deaths. The constant populat ion 
assumption also allows us to write rðtÞ ¼ N � ðsðtÞ þ iAðtÞ þ iSðtÞÞ
and eliminate the equation for r from the analysis. It is conve nient 
to scale each compartm ent with the total populati on so that the 
resulting variable s represen t the proportio n of the total population 
in each compar tment. The model now becomes 

dS 
dt 
¼ lð1� SÞ þ að1� S� IA � ISÞ � ðbAIA þ bSISÞS; ð1Þ

dIA

dt
¼ ðbAIA þ bSISÞS� ðdþ cA þ lÞIA; ð2Þ

dIS

dt
¼ dIA � ðcS þ lÞIS; ð3Þ

and the fraction of recovered individua ls is determine d from 
R ¼ 1� ðSþ IA þ ISÞ. Equilibria of the system (1)–(3) are obtained 
by setting the right-ha nd side of each of the equations equal to zero.
Clearly the point P0 ¼ ð1;0; 0Þ is a solution and represe nts a disease- 
free state. The disease-free equilibrium can be used to determine 
the basic reproduct ion number. It represents the averag e number 
of secondary infections arising from an average primary infection 
in an entirely susceptible population [15]. It can be explici tly de- 
rived by calculating the next generation matrix using the methods 
outlined in [16–19]. The basic reproduction number is given by 
the largest eigenv alue of this matrix which is found to be 

R0 ¼ RA þ RS;

where

RA ¼
bA

dþ cA þ l
; RS ¼

bsd
ðdþ cA þ lÞðcS þ lÞ :

The spread of infection can be viewed as a series of linked subepi- 
demics. One subepidem ic will be driven by infection s caused 
through contact with subclinic ally infected individua ls (bS ¼ 0)
with a reproduct ion number RA and another driven by infection 
through contact with clinically infected individuals (bA ¼ 0) with 
a reproductio n number RS. In practice, it is extremely difficult to 
estimate transmission rates for an epidemi c in progre ss. However,
the basic reproduction number can be determine d from disease 
incidence data. Accordingly , R0 is effectively a known paramete r
from which the transmissi on rate bA can be determine d, and the 
symptom atic transmission rate is calculate d from bS ¼ cbA, where 

bA ¼
ðdþ cA þ lÞðcS þ lÞ
ðcS þ lþ cdÞ R0: ð4Þ

Now in addition to the disease -free equilibrium P0, the system also 
possesses an endemic state Pe given by 

Se ¼ 1
R0
; ð5Þ

Ie
A ¼

ðcS þ lÞðlþ aÞ
aðcS þ lÞ þ adþ ðdþ cA þ lÞðcS þ lÞ 1� 1

R0

� �
; ð6Þ

Ie
S ¼

dðlþ aÞ
aðcS þ lÞ þ adþ ðdþ cA þ lÞðcS þ lÞ 1� 1

R0

� �
: ð7Þ

When 0 < R0 < 1 the infected populations become negative and the 
equilibrium point is no longer biologic ally feasib le. When R0 ¼ 1 the 
endemic state merges with the disease-free state to yield a single 
equilibrium . When R0 > 1 both equilibria exist.

2.1. Local stability analysis 

Following the results outlined in [16], the disease-free equilib- 
rium P0 of the system (1)–(3) will be locally asymptotically stable 
when R0 < 1. To determine the stability of the endemic equilibrium 
Pe, given by (5)–(7), the Jacobian matrix is evaluated at this point 
JjPe ¼
�X0 � X0X1X2

M ðR0 � 1Þ �a� bA
R0
�a� bS

R0

X0X1X2
M ðR0 � 1Þ bA

R0
�X1

bS
R0

0 d �X2

2664
3775;

where, for convenience , we have set 

X0 ¼ aþ l;
X1 ¼ dþ cA þ l;
X2 ¼ cS þ l;
M ¼ aX2 þ adþX1X2:

The characterist ic equation is the cubic polynom ial FðkÞ ¼
P3

i¼0fik
i

with coefficients 

f3 ¼ MR0;

f2 ¼ X0X1X2R0ðR0 � 1Þ þMR0ðX0 þX1 þX2Þ �MbA;

f1 ¼ X0X1X2R0ðaþX1 þX2ÞðR0 � 1Þ þMR0X0ðX1 þX2Þ �MX0bA;

f0 ¼ MX0X1X2R0ðR0 � 1Þ;

and stability requires 

f0f3 > 0; f 2f3 > 0; f 1f2 � f0f3 > 0:

Clearly f0 > 0 when R0 > 1. In any case, this conditio n must be sat- 
isfied for Pe to exist. The second inequality can be written as 

R0 > 1�MT2ðX0 þX2Þ þ cdMðX0 þX1 þX2Þ
X0X1X2ðX2 þ cdÞ ;

which is alway s satisfied when R0 > 1. Finally , the third inequal ity 
can be written in the form 

f1f2 � f0f3 ¼X0X1X2R0ðR0 � 1Þ ðaþX1 þX2Þ
X2

MbSdþX0X1X
2
2R0ðR0 � 1Þ

h i�
þMR0 X2

2 þX0ðaþX2Þ þ lX1 þ aðcA þ lÞ
h i�

þ f2MX0

X2
bSdþ R0X

2
2

h i
> 0:

Hence, the endemic equilibrium Pe is always locally asympto tically 
stable. The existence and stability of the equilibria is complet ely 
determine d by the threshold paramete r R0. The disease-free equilib- 
rium exists for all R0, is stable when R0 < 1 and unstable when 
R0 > 1. The endemic equilibrium exists only for R0 > 1 and is alway s
stable. This is an exampl e of a transcrit ical bifurcatio n. As R0 crosses
unity from below the disease- free equilibrium loses its stability and 
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a positive asymptotic ally stable endemic equilibrium appears. The 
forward bifurc ation is shown in Fig. 3, where we plot the steady 
state value of S as a function of R0.

2.2. An alternative modelling approach 

As discussed in the introduction , another model commonly 
used to describe an asymptomatic- symptomatic infection neglects 
the possibility of a preclinical state, with the instantaneo us devel- 
opment of clinical illness following the onset of infectious ness. In 
addition, this model assumes that all asymptomati cally infected 
individuals recover without ever developing symptoms. We be- 
lieve this is an oversimplification of the disease pathway for many 
infections (e.g. influenza). In this section we investigate the impact 
of neglecting the preclinical state on disease dynamics. For clarity,
we will refer to this model as Model II. The alternativ e system of 
equations is given by 

dS 
dt 
¼ lð1� SÞ þ að1� S� IA � ISÞ � ðbAIA þ bSISÞS; ð8Þ

dIA

dt
¼ ð1� pÞðbAIA þ bSISÞS� ðcA þ lÞIA; ð9Þ

dIS

dt
¼ pðbAIA þ bSISÞS� ðcS þ lÞIS; ð10Þ

where all variables and paramete rs are defined as before and p de-
notes the proportio n of infected individua ls who develop symp- 
toms. The two limiting cases of a solely asymptom atic or 
symptom atic infection occur in the limits p ! 0 and p ! 1
respective ly. In fact, the two models are identical when p ¼ d ¼ 0
or in the limit d ! 1 with p ¼ 1. The averag e residence time in 
the asympt omatic state differs in both models, with Model II yield-
ing a longer residen ce time of 1=ðcA þ lÞ.

As in the previous case, we can obtain an expression for the ba- 
sic reproduction number from the next generation matrix,

R0 ¼ RA þ RS ¼ ð1� pÞ bA

cA þ l
þ p

bS

cS þ l
;

where RA and RS describe the contributio ns to the initial epidemi c
growth of each infectiou s (asymptomatic/sym ptomat ic) state. The 
basic reproduct ion number is a characteris tic of the disease and 
can be estima ted from incidence date. In contrast, it is all but 
impossibl e to estimate the transmission rate and, accordingl y, R0

is fixed and the above expressio n is used to determine the transmis- 
sion rate for Model II,

bII
A ¼

ðcA þ lÞðcS þ lÞ
ð1� pÞðcS þ lÞ þ cpðcA þ lÞR0; ð11Þ

where it is assumed that bII
S ¼ cbII

A . On compari son with the trans- 
mission rate for the basic model (4) we see that, with all other 
paramete rs fixed by the observed disease dynamic s, the two models 
yield unique transmis sion rates. So that, for a fixed value of R0, the 
two models will yield different transmission rates. For clarity, we 
denote the transmission rates of Model II as bII

A and bII
S and the cor- 

responding asympt omatic and symptom atic reproduction numbers 
as RII

A and RII
S respective ly.

The transmission rate contains information about the contact 
structure within the population and its value will depend on the 
partitioning of the population into the different disease states.
The two models distribut e the infected population differently,
determined by the parameters p and d, and we propose that this 
can lead to two distinct transmission rates. To compare the two 
models we write bII

A ¼ Fðd; pÞbA where

Fðd; pÞ ¼ ðcA þ lÞðcS þ lþ cdÞ
ðdþ cA þ lÞ½ð1� pÞðcS þ lÞ þ cpðcA þ lÞ� ; ð12Þ
which contains the informa tion about the different distribution of 
cases between the two models. Identical transmission rates, corre- 
sponding to Fðd; pÞ ¼ 1, are achieved in the two limiting cases of a
purely asymptom atic (d ¼ p ¼ 0) or symptomatic (p ¼ 1 and 
d ! 1) infection . In addition, it can be easily shown that 

F dc; pð Þ ¼ 1; where dc ¼
p

1� p
ðcA þ lÞ: ð13Þ
2.3. The case of influenza

The recent influenza 2009 H1N1 pandemic has heightened the 
need for public health authorities to have pandemic preparednes s
plans in place in advance of a future outbreak. However , the pres- 
ence of silent spreaders, in the form of asymptomati cally infected 
individua ls, can severely undermine potential control strategies.
In particular, such individuals can have a profound impact on 
immunolog ically naive or compromise d populations, such as those 
in schools and health care facilities, where unavoidable close con- 
tact encounters can lead to the rapid spread of an infection. Disease 
transmis sion by asymptom atic individua ls was documented in 
such settings during the 2009 outbreak [20,21]. Furthermor e, viral 
shedding during the preclinical stage of infection was confirmed to 
occur in approximately 1–8% of infections [22] and preclinical 
transmis sion was also recorded in early H1N1 outbreaks [23].
Mathema tical models have demonstrated how preclinical trans- 
mission can influence the magnitude of outbreaks in large closed 
populations , such as schools, workplaces and military facilities,
and highlight s the importance of such transmis sion in the decision 
process [24]. In particular, a greater transmis sion ability during the 
preclinic al period has been associated with children [25] and this 
increases the need to understa nd the effects of this state on the dis- 
ease pathway. In this section we investigate the behaviou r of the 
two models previously discussed for the specific case of the influ-
enza virus. In particular, we consider the impact of a simple public 
health intervention applicabl e to large closed populations, where 
the easily identifiable clinical cases are isolated from the general 
population.

To parameterise the model we take the average human lifespan 
to be 70 years, with infection acquired immunity being lost after a
period of 1 year. The degree to which asymptomatic individuals 
contribute to transmission is uncertain. Existing mathematical 
models assume the relative transmis sion from an asymptomatic 
case is from as little as one tenth [7–9] to as high as twice [26] that
of a symptomati c case. However, while it is widely acknowled ged 
that asymptomatic infection is common, the ability of such indi- 
viduals to efficiently transmit has been questioned, due to the 
low levels of viral shedding in such cases [22,27,28]. So as not to 
overestimat e the asymptomati c contribution we take the value 
c ¼ 10. For modelling purposes, the proportion of infected individ- 
uals developing symptoms is commonly taken as approximately 
two thirds [4,5,29]. Justification for this choice is rarely provided,
however , a recent review of experimental studies in which volun- 
teer exposure to wild-type influenza virus was examine d deter- 
mined that the frequency of symptom developmen t was 66.9%
[30]. We adopt this assumption and set p ¼ 0:67.

The course of infection for influenza is not fully understood. The 
primary uncertainty surrounds the incubation period and the pos- 
sibility that it is longer than the latent period resulting in asymp- 
tomatic individuals who are infectious [1]. A mean incubation 
period of 2.05 days was estimated from laboratory confirmed cases 
of H1N1 in the United Kingdom [31]. Viral shedding has been de- 
tected on average one day after inoculation with the influenza
virus indicating that a latent period of approximately 1 day pre- 
cedes the onset of infectious ness [30]. Accordingl y, the duration 
of the preclinical infectious state is approximat ely 1 day and we 
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take d ¼ 1 day �1, in agreement with experimental observations 
[30]. We neglect the latent period in our analysis as it essentially 
introduces a delay into the system and rarely results in qualita- 
tively different dynamics [13,15]. Infected individuals are com- 
monly assumed to recover from clinical illness after an average 
period of 4 days and we set cS ¼ 0:25 day �1 [4,32,33]. This estimate 
is predominantly derived from studies that estimate the average 
duration of viral shedding and represents a rather conservati ve 
estimate. One could also use values derived from estimates of 
the mean serial interval, which in general have been somewhat 
lower, approximately 3 days, depending on the viral strain [33].
The duration of infectiousnes s for an asymptomatic case is un- 
known but previous modelling studies have taken it to be half that 
of a symptomati c case [34,35] and we also adopt this assumpti on,
taking cA ¼ 0:5 day �1. The choice of a 2 day duration for the 
asymptomati c state yields a probabili ty of progressing to a symp- 
tomatic state given by d=ðca þ dþ lÞ � 0:67, in agreement with 
the corresponding probability in Model II of p ¼ 0:67. With the 
Table 1
Parameter values used in the model.

Parameters 

N Population 

l Per-capita natural death rate 

a Rate at which immunity is lost 

p Proportion of infected who develop symptoms 
d Inverse of preclinical duration 
dr Inverse of preclinical duration for resistant strain 
cA Recovery rate from asymptomatic infection 
cS Recovery rate from symptomatic infection 
r Rate that infected are identified and isolated 
h Treatment rate of IS and IS;r

q Relative infectivity of IS;tr compared with IS

r Relative recovery of IS;tr compared with Ia
S

q Probability of emergence of acquired drug resistan
g Rate of drug resistance development during treatm
c Increased infectivity of symptomatic infections 
R0 Basic reproduction number b

Note: Transmission rates for the treatment model are calculated using the values of R1
a Values given are for treatment with neuraminidase inhibitors.
b Transmission rates are calculated from this value using (4) or (11).

0 50 100
0

0.004

0.008

0.012

0.016

0.02

Ti

Infected
Population

Fig. 4. Infected population predicted by the two models. The dark and pale lines den
symptomatic infections and dashed lines indicate asymptomatic infections. All param
ISð0Þ ¼ 0:01.
above choice of paramete rs, the average residence times in the 
asymptomati c state predicted by the basic model and Model II
are approximat ely 2/3 day and 2 days respectively . It should be 
noted that, although the basic model yields a significantly short- 
er residence time, all infected individuals pass through this state 
and are capable of eluding intervention attempts while preclini- 
cal and silently spreading the infection within a susceptible 
population.

The basic reproduction number can vary significantly between 
different pandemic and seasonal outbreaks. Estimates for the 
2009 H1N1 pandemic are in the range 1.3–1.7 [36] and an average 
seasonal value is approximat ely 1.3 [37] and we take this value in 
our simulations . The paramete r choices discussed above yield 
identical transmis sion rates for the two models since dc � 1 day �1

from (13) and , thus, Fð1;0:67Þ ¼ 1 in (12). All paramete rs and the 
values used in numerical simulations are listed in Table 1.

The solution for the infected populations of both models, with 
initial conditions Sð0Þ ¼ 1� 1=N, IAð0Þ ¼ 0 and ISð0Þ ¼ 1=N, is 
Values for influenza Reference 

10 4 Estimated
1

70 �365 day�1 Estimated
1

365 day�1 Estimated

0.67 [30]
1 day �1 [30]
1 day �1 Estimated
0.5 day �1 [34,35]
0.25 day �1 [4,32]
0.05 day �1 Estimated
0.7 day �1 Estimated
0.67 [39,40]
1.5 [8]

ce a 0.01 [41]
ent a 0.2 day �1 [42]

10 [7–9]
1.3 [37]

and R2 indicated in the caption of the relevant figure.

150 200 250
me (days)
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plotted in Fig. 4. This initial condition corresponds to one symp- 
tomatically infected person in a completely susceptible population 
of size N � 1. A population of N ¼ 104 is taken in all simulations.
The solutions are qualitatively similar, however, Model II yields a
higher peak incidence. Significantly, identical transmission rates 
does not produce quantitative ly identical disease incidence and 
the partitioning of the population into unique disease states is an 
important factor in the modelling process. In fact, there will still 
be differences between the models in the generation time, as well 
in several other quantities, such as the expected number of cases 
generated by an asymptotic individual. The delay observed in the 
basic model is invariably due to the delay introduced by all newly 
infected individuals being required to first pass through the 
asymptomati c state prior to symptom onset and the reduced trans- 
mission therein. The reverse occurs when the initial infectious seed 
is asymptomatic. The solution with initial conditions Sð0Þ ¼ 1�
1=N, IAð0Þ ¼ 1=N and ISð0Þ ¼ 0 is plotted in Fig. 5. Under this sce- 
nario, the delay in symptomati c cases is observed to occur in Model
II. This can be attributed to the relatively small transmission poten- 
tial of the asymptomati c cases and the resultant time taken for the 
infection to gain a foothold in the population. Whereas, some of the 
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Fig. 5. Infected population predicted by the two models. The dark and pale lines den
symptomatic infections and dashed lines indicate asymptomatic infections. All param
ISð0Þ ¼ 0.
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Fig. 6. A comparison of asymptomatic and symptomatic reproduction numbers for the tw
solid line denotes the basic model. All parameters are listed in Table 1.
initially asymptomatic individua ls in the basic model quickly tran- 
sition to the symptomatic cases and can start transmitting the 
infection more efficiently.

The impact of the duration of the preclinical state on the epi- 
demic growth can be analysed by considering the relative contri- 
butions of each infectious state for varying d, Fig. 6. It is clear 
that RA ! R0 and RS ! 0 as d ! 0 and the only contribution 
to the basic reproduction number comes from the asymptom atic 
population, as expected with a silent infection. Similarly,
RS ! R0 and RA ! 0 as d ! 1 indicating the sole presence 
of symptomati c individuals. When d < 1 the basic model predicts 
a larger RA and smaller RS than Model II. This implies that, when 
the duration of the preclinical state exceeds 1 day, asymptom atic 
infections make a more significant contribution in the basic 
model and Model II may underest imate their contribution to 
the initial epidemic growth. Conversel y, when d > 1, correspond -
ing to a preclinic al state of less than 1 day, the basic model pre- 
dicts a smaller RA and larger RS than Model II, with the greater 
contributi on coming from the symptomati c cases, since the aver- 
age residence time spent in the asymptomati c state decreases as 
d increases.
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To investigate the consequences of the different population 
partitionings adopted by the two models we consider the imple- 
mentation of one of the simplest public health interventions ,
whereby symptomatic individuals are isolated from the general 
population. The models can be easily adapted to incorporate this 
process by removing symptomatic individuals at the rate r that
they are identified and placed in isolation. The proportion 
of isolated cases Q at time t will then satisfy the differential 
equation
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Fig. 7. Infected population predicted by the two models with isolation of clinical cas
respectively. Solid lines indicate symptomatic infections and dashed lines indicate asym
Sð0Þ ¼ 1� 1=N, IAð0Þ ¼ 0 and ISð0Þ ¼ 1=N.
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Fig. 8. Infected population predicted by the two models with isolation of clinical cas
respectively. Solid lines indicate symptomatic infections and dashed lines indicate asym
Sð0Þ ¼ 1� 1=N, IAð0Þ ¼ 1=N and ISð0Þ ¼ 0.
dQ 
dt 
¼ rIS � ðcS þ lÞQ ;
where isolated individua ls recover and rejoin the general popula- 
tion after an average of 1=cS days. The transmissi on term must also 
be modified to account for the fact that the fraction of infectiou s
contact s changes from I=N to I=ðN � QÞ.

The results of the introduction of isolation as an intervention 
measure are qualitatively similar to before, Figs. 7 and 8. As 
300 400 500
e (days)

es. The dark and pale lines denote the solution of the basic model and Model II
ptomatic infections. All parameters are listed in Table 1 and initial conditions are 
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expected, the peak severity of the outbreak is reduced and a delay 
is again observed between the two model solutions. However, the 
duration of the outbreak is extended and, in particular, the delay 
observed between the peak incidence of both models is signifi-
cantly increased. In the case of a symptomatic initial seed, the de- 
lay in symptomati c cases increases from approximat ely 17 days 
(Fig. 4) to 33 days (Fig. 7) when isolation is present. If the initial 
seed is asymptomatic then this delay increases almost fourfold 
from 14 days to 55 days. Therefore, the different partitions of the 
asymptomati c population in the two infection models can produce 
very different results which could potential ly interfere with the de- 
sign and impleme ntation of intervention strategies. More biologi- 
cally realistic models can aid public health systems to effectively 
manage disease outbreaks .

2.4. Long term behaviour 

If we consider the long term behaviour of both models, when 
the repopulation of the susceptible class through births and loss 
of immunity becomes important, we find the basic model ap- 
proaches the endemic equilibrium given by (5)–(7). Model II ap-
proaches the endemic equilibrium PeII

where
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Fig. 9. Long term infected population predicted by the two models. The dark and pale
indicate symptomatic infections and dashed lines indicate asymptomatic infections. All 
ISð0Þ ¼ 0:01.
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for the two models. The dashe

basic model. All parameters are listed in Table 1.
SeII
¼ 1

R0
;

IeII

A ¼
ð1� pÞðcS þ lÞðaþ lÞ

apðcA þ lÞ þ ðcA þ lÞðcS þ lÞ þ að1� pÞðcS þ lÞ 1� 1
R0

� �
;

IeII

S ¼
pðcA þ lÞðaþ lÞ

apðcA þ lÞ þ ðcA þ lÞðcS þ lÞ þ að1� pÞðcS þ lÞ 1� 1
R0

� �
;

which exists when R0 > 1. It can be easily shown that the two ende- 
mic equilibria are equal. Thus, the long-term behaviour of the two 
models is identica l but the short term oscillations are out of phase 
with each other, Fig. 9. The reason for this delay was discussed in 
the previous section. The endemic equilibria as a function of d are
plotte d in Fig. 10 . The equilibria coincide when d ¼ dc ¼ 1. When 
d < 1, and the duration of the preclinical state exceeds 1 day, the 
basic model predicts a larger endemic value for IA and a smaller va- 
lue for IS. The opposit e is true when the preclinical state is shorter 
than 1 day, d > 1. This indicates that, in the long term behavi our 
of influenza, the disease burden could be over or under estima ted 
if the duration of the preclinical state is not accurately known. Bet- 
ter estima tes of this paramete r could yield more reliable 
predict ions.
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Determinist ic models with vital dynamics have been shown to 
exhibit damped oscillations about an endemic disease state for 
childhood diseases [13,15]. Influenza has a relatively short infec- 
tious period and small reproduction number compared with such 
infections (measles, rubella, etc.). As a conseque nce, the disease 
dynamics of influenza are sufficiently rapid that vital dynamics 
are typically neglected as they are inadequate to replenish the pool 
of susceptible individua ls quickly enough for the infection to per- 
sistent in the population. The classic childhoo d diseases also confer 
permanent immunity on those previously infected and conse- 
quently such diseases are largely restricted to the immunolog ically 
naive child population. Conversel y, the waning immunity associ- 
ated with influenza results in individuals of all ages being suscep- 
tible to infection at the beginning of each flu season. This implies 
that the repopulati on of the susceptibl e class through loss of 
immunity may be an important contributing mechanism driving 
damped oscillations in the case of influenza, Fig. 9.

It has been proposed that the long term seasonal variation in 
influenza incidence is the result of small seasonal variations in 
an external stimulus which resonates with the intrinsic period of 
oscillation [38]. This external stimulus was neglected in the previ- 
ous discussion, where the intent was to highlight the intrinsic 
oscillations. The endemic equilibria only exist when either a or l
are nonzero so that the susceptibl e compartme nt can be repopu- 
lated following an outbreak. The period of oscillation of the 
damped oscillations can be approximat ed by 2p=q, where q is
the complex part of the eigenvalues of the Jacobian matrix evalu- 
ated at the endemic equilibria. The approximat e period is plotted 
as a function of duration of acquired immunity in Fig. 11. For ac- 
quired immunity lasting up to 4 years an intrinsic period of less 
than 2.5 years is observed for the basic model, which can clearly 
resonate with an annually forced seasonal transmis sion rate. As 
immunity becomes permane nt (a ! 0) the system exhibits a per- 
iod of approximat ely 10.6 years (Fig. 11 insert) indicating that nat- 
ural birth/death processes alone are not sufficient to produce a
period that will resonate with an annual seasonal stimulus . The 
differing periods observed between the basic model and Model II
explains the out-of-phase oscillation observed in previous simula- 
tions (Fig. 9).
3. The model with treatment 

Various interventions can be adopted to slow the spread and 
lessen the impact of a disease. For a newly emerging virus, vaccines 
are unlikely to be available in the short term and the primary 
pharmac eutical intervention at the disposal of the health authori- 
ties is the use of antiviral drugs. A major concern with the wide- 
spread use of these drugs is the possibility of the emergence of a
drug-resis tant strain which is more virulent than the drug- 
sensitive strain. In this section, we consider the effects of treating 
symptom atically infected individuals with an antiviral drug.
Asympto matic individuals are not treated as there is no way of dis- 
tinguishing them from the susceptible population. However , the 
preclinic al cases, who proceed to the symptomatic state, can be 
treated once symptom s develop and they become visible to 
surveilla nce systems. We extend the basic model of Section 2 to
describe two co-circulating strains, a drug-sens itive and drug- 
resistant strain. Treatment is given to individuals infected with 
either strain but only to clinical cases. An initially susceptibl e indi- 
vidual can get infected with either strain. However, once infected 
with the drug-sens itive strain, the treatment process may result 
in the emergence of the drug-resis tant strain in said individual.
As with the basic model, the subscripts A and S refer to asymptom- 
atic and symptomatic individua ls respectively. We further adopt 
the notation that subscripts r and tr refer to the drug-resistant 
strain and treated individuals respectively . Thus, we denote the 
disease compartme nts as follows:

� IA, infected with drug-sensitive strain and asymptomati c,
� IS, infected with drug-sensitive strain and symptomati c,
� IA;r , infected with drug-resistant strain and asymptomati c,
� IS;r , infected with drug-resis tant strain and symptomatic,
� IS;tr , infected with drug-sensitive strain, symptomatic and 

receiving treatment,
� IS;r;tr , infected with drug-resistant strain, symptomati c and 

receiving treatment.

The transition diagram for the infection pathway is shown in Fig. 12 
and the corresp onding system of equations is 

dS 
dt 
¼ ðlþ aÞð1� SÞ � aRI � ðbAIA þ bSIS þ bA;rIA;r þ bS;rIS;r

þ qbSIS;tr þ bS;rIS;r;trÞS; ð14Þ

dIA

dt
¼ ðbAIA þ bSIS þ qbSIS;trÞS� ðcA þ dþ lÞIA; ð15Þ

dIS

dt
¼ dIA � ðcS þ hþ lÞIS; ð16Þ

dIA;r

dt
¼ ðbA;rIA;r þ bS;rIS;r þ bS;rIS;r;trÞS� ðcA þ dr þ lÞIA;r ; ð17Þ

dIS;r

dt
¼ drIA;r � ðcS þ hþ lÞIS;r ; ð18Þ

dIS;tr

dt
¼ �ðrcS þ qgþ lÞIS;tr þ hIS; ð19Þ

dIS;r;tr

dt
¼ �ðcS þ lÞIS;r;tr þ qgIS;tr þ hIS;r; ð20Þ

where RI ¼ IA þ IS þ IA;r þ IS;r þ IS;tr þ IS;r;tr . Each dependent variable 
represe nts the proportion of the total population that resides in that 
compartm ent. There is also an equation for the recovered compart- 
ment R. However , as before, adopting the constant population 
assumpt ion (K ¼ lN) and noting that R ¼ 1� ðSþ IA þ ISþ
IA;r þ IS;r þ IS;tr þ IS;r;trÞ, we can discard this equation and limit our 
analysis to the above system . Symptom atic individua ls are treated 
after 1=h days and, for the drug-sen sitive strain alone, treatment 
is assumed to reduce the potential infectivi ty of such an individua l
by a factor q and enable a faster recover y determine d by r. We take 



Fig. 12. Transition diagram for the treatment model.
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r > 1 so that individua ls treated for the drug-sen sitive strain re- 
cover faster than those treated for the drug-resist ant strain. Follow- 
ing treatment for the drug-sensiti ve strain, the probability of the 
emerge nce of resistanc e is denoted by q with such resistanc e devel- 
oping after an average of 1=g days. In addition, the transmiss ion 
rates for the resistant strain are related via bS;r ¼ cbA;r with c > 1.
All other paramete rs are defined as before and are listed in Table 1.

3.1. Basic reproduction number and equilibria 

By inspection, it can be seen that the system (14)–(20) pos-
sesses a disease-free equilibrium, which we denote by P0, and this 
can be used to calculate the basic reproduction number. The model 
consists of six diseased compartme nts, and we write the vectors ~F
and ~V as

~F ¼

ðbAIA þ bSIS þ qbSIS;trÞS
0

ðbA;rIA;r þ bS;rIS;r þ bS;rIS;r;trÞS
0
0
0

2666666664

3777777775
;

~V ¼

ðcA þ dþ lÞIA

�dIA þ ðcS þ hþ lÞIS

ðcA þ dr þ lÞIA;r

�drIA;r þ ðcS þ hþ lÞIS;r

ðrcS þ qgþ lÞIS;tr � hIS

ðcS þ lÞIS;r;tr � qgIS;tr � hIS;r

2666666664

3777777775
:

The next generation matrix will then satisfy K ¼ FV�1, where 
F ¼ @~Fi=@xjjP0 and V ¼ @ ~Vi=@xjjP0 , and we find two nonzero eigen- 
values given by 

R1 ¼ RA þ RS þ RT ;

R2 ¼ RA;r þ RS;r þ RT;r ;

where RA and RS are defined as for the basic model and 

RT ¼
qbSdh

ðcA þ dþ lÞðcS þ hþ lÞðrcS þ qgþ lÞ ; RA;r ¼
bA;r

cA þ dr þ l
;

RS;r ¼
bS;rdr

ðcS þ hþ lÞðcA þ dr þ lÞ ;

RT;r ¼
bS;rhdr

ðcS þ hþ lÞðcA þ dr þ lÞðcS þ lÞ :
We essentia lly get two reproduct ion numbers, one for each strain of 
the virus (drug-sensitive R1 and drug-resist ant R2), and the basic 
reproduct ion number for the system will be the largest of these 
eigenv alues, R0 ¼maxfR1;R2g.

Setting the right-han d sides of Eqs. (14)–(20) equal to zero, we 
can determine the remaining equilibrium points. We find that an- 
other steady state bP ¼ ðbS; 0;0; ÎA;r ; ÎS;r; 0; ÎS;r;trÞ occurs where only the
resistant strain is present. We obtain 

bS ¼ 1
R2
; ð21Þ

ÎA;r ¼
X0X2

X2X3 þ aðdr þX2Þ
1� 1

R2

� �
; ð22Þ

ÎS;r ¼
drX0X2

X2X3X5 þ aX5ðdr þX2Þ
1� 1

R2

� �
; ð23Þ

ÎS;r;tr ¼
drhX0

X2X3X5 þ aX5ðdr þX2Þ
1� 1

R2

� �
; ð24Þ

where, for convenience , we have set 

X3 ¼ cA þ dr þ l;
X4 ¼ rcS þ qgþ l;
X5 ¼ cS þ hþ l;

and X0;X1 and X2 are defined as before. Clearly, when R2 ¼ 1 we 
simply get the disease -free equilibrium with bP ¼ P0. When R2 < 1
the infected populations become negative, which is not a biologi- 
cally feasible solution. Hence, bP only exists when R2 > 1. Finally , a
third equilibrium state can also be achieved where both drug-sen -
sitive and drug-resis tant strains coexist. We denote this equilibrium 
by P� and find

S� ¼ 1
R1
; ð25Þ

I�A ¼
X0X2X3X4X5ðR1 � R2Þ
X2X3ðR1 � R2ÞP0 þP1

1� 1
R1

� �
; ð26Þ

I�S ¼
dX0X2X3X4ðR1 � R2Þ

X2X3ðR1 � R2ÞP0 þP1
1� 1

R1

� �
; ð27Þ

I�A;r ¼
bS;rdqghX0X5

X2X3X5ðR1 � R2ÞP0 þX5P1
1� 1

R1

� �
; ð28Þ

I�S;r ¼
drbS;rdqghX0

X2X3X5ðR1 � R2ÞP0 þX5P1
1� 1

R1

� �
; ð29Þ
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I�S;tr ¼
dhX0X2X3ðR1 � R2Þ

X2X3ðR1 � R2ÞP0 þP1
1� 1

R1

� �
; ð30Þ

I�S;r;tr ¼
qgdhX0½X2X3X5ðR1 � R2Þ þ hdrbS;r �

X2
2X3X5ðR1 � R2ÞP0 þX2X5P1

1� 1
R1

� �
; ð31Þ

and where, for convenience , we define

P0 ¼ X1X4X5 þ aðX4X5 þX4dþ hdÞ;

P1 ¼
hqgd
X2
½bS;rðaX2 þX2X3 þ adrÞ þ aX2X3ðR1 � R2Þ�:

When R1 ¼ 1 we simply have the disease- free equilibrium with 
P� ¼ P0. When R1 < 1 we find that S� > 1 which is not biologically 
feasible. So we require R1 > 1. In addition, if we consid er the 
expression for I�A;r we see that the denomin ator must be positive 
to ensure IA;r P 0. Thus we require 

X2X3ðR1 � R2ÞP0 þP1 > 0: ð32Þ

Now, consider ing the expressi on for I�A we see that the numerator 
must also be positive which requires R1 > R2 and thus (32) is auto- 
matically satisfied. The above results on the existence of the equi- 
libria are summaris ed in Theorem 4. The theorem is expressed 
graphically in Fig. 13 , where the existence of P0; bP and P� is shown 
in R1 � R2 param eter space.

Theorem 1. The system (14)–(20) always has a disease-fr ee equilib- 
rium P0. An endemic equilibrium bP, given by (21)–(24) and where 
only the drug-resista nt strain is present in the population, exists when 
R2 > 1. Another endemic equilibrium P�, given by (25)–(31) and
where both drug-sens itive and drug-resistant strains are present,
exists when R1 > 1 and R1 > R2.
3.2. Local stability analysis 

In this section we consider the local stability properties of the 
three equilibria .

Theorem 2. The disease-free equilibrium P0 of the system (14)–(20)
is locally asymptotically stable when R2 < 1 and R1 < 1.
Proof. The characterist ic equation , determined form the Jacobian 
matrix evaluated at P0, is a seventh order polynomial which we 
can write in the form 

ðkþX0ÞGðkÞFðkÞ ¼ ðkþX0Þ
X3

i¼0

gik
i
X3

j¼0

fjk
j;
PP ˆand0

*0 andˆ, PP P

*0 and PP0P

Fig. 13. Existence of equilibria in R1 � R2 parameter space. P0 denotes the disease- 
free state, bP denotes the presence of only the drug-resistant strain and P� denotes 
the coexistence of both drug-sensitive and drug-resistant strains.
where the cubic coefficients are given by 

g2 ¼ X2 þX3 þX5 � bA;r;

g1 ¼ ðX3 � bA;rÞðX2 þX5Þ þX2X5 � drbS;r ;

g0 ¼ X2X3X5ð1� R2Þ;

f2 ¼ X1 þX4 þX5 � bA;

f1 ¼ ðX1 � bAÞðX4 þX5Þ þX4X5 � dbS;

f0 ¼ X1X4X5ð1� R1Þ:

The disease-free equilibrium will be locally asymptotic ally stable 
when all eigenvalues ki have negative real part. The eigenvalue 
k1 ¼ �X0 < 0 is easily obtained . All roots of the polynom ial G ¼ 0
will have negative real part when 

g0 > 0; g2 > 0; g1g2 � g0 > 0:

The first inequality can only be satisfied when R2 < 1. The second 
inequal ity can be written in the form 

R2 < 1þX2X5ðX2 þX5Þ þ cdrðX2 þ hÞðX2 þX3 þX5Þ
X2X3X5

;

which is automatic ally satisfied when R2 < 1. Finally , the third 
inequal ity can be written as 

g1g2 � g0 ¼
1

X2X5

"
X3bS;rdrð1� R2ÞðX2 þX5ÞðX2 þ hÞ þ g2X2bS;rdrðX2 þ hÞ

þg2X5bS;rdrhg2X
2
2X

2
5 þX2X

2
3X5ð1� R2Þ2ðX2 þX5Þ

þX2X3X5ð1� R2ÞðX2
2 þX2X5 þX2

5Þ
#
> 0:

Thus, all roots of the cubic G ¼ 0 will have negative real part when 
R2 < 1. Similarly , the roots of the polynom ial F ¼ 0 will have nega- 
tive real part when 

f0 > 0; f 2 > 0; f 1f2 � f0 > 0:

The first inequal ity is satisfied only when R1 < 1. The second 
inequal ity can be written in the form 

R1 < 1þ cdðX1 þX4 þX5ÞðX4 þ qhÞ þX4X5ðX4 þX5Þ
X1X4X5

;

which is automaticall y satisfied when R1 < 1 and, finally, the third 
inequal ity can be written as 

f1f2 � f0 ¼ X1ð1� R1Þ
�
X1ðX4 þX5Þð1� R1Þ þX2

5 þX4X5 þX2
4

þðX4 þX5Þ
bSd
X5
þ qbSdh

X4X5

� ��
þ f2qbSdh

X4
þ f2bSdX4

X5

þ f2qbSdh
X5

þ f2X4X5 > 0:

Thus, the all roots of cubic F ¼ 0 have negative real part when 
R1 < 1. h

Analytical results for the local stability propertie s of the ende- 
mic equilibria are not easily obtained due to the complicated alge- 
braic nature of the characteri stic equation s. For the drug-resistant 
equilibriu m bP the characteristic equation is 

HðkÞLðkÞ ¼
X3

i¼0

hik
i
X4

j¼0

ljk
j;

with coefficients 

h3 ¼ R2;

h2 ¼ R2ðX1 þX4 þX5Þ � bA;
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h1 ¼ R2ðX1X5 þX1X4 þX4X5Þ � bAðX4 þX5Þ � dbS;

h0 ¼ X1X4X5ðR2 � R1Þ;

l4 ¼ CR2;

l3 ¼ X0X2X3R2ðR2 � 1Þ þ CR2ðX0 þX2 þX3 þX5Þ � CbA;r ;

l2 ¼X0X2X3R2ðR2 � 1ÞðX2 þX3 þX5 þ aÞ þ CR2ðX0X2 þX0X5

þX2X5 þX2X3 þX0X3 þX3X5Þ � CbA;rðX0 þX2 þX5Þ � CbS;rdr ;

l1 ¼X0X2X3R2ðR2 � 1ÞðaþX2X5 þ aX5 þX3X5Þ
þ CR2ðX0X2X5 þX0X2X3 þX2X3X5 þX0X3X5Þ
� CX2X3X5R2 �X0CbA;rðX2 þX5Þ �X0CdrbS;r;

l0 ¼ X0X2X3R2ðR2 � 1ÞðdrhaþX2X3X5 þX2draþ aX2X5Þ:
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Fig. 14. Behaviour of the functions L
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Fig. 15. Stability properties determined from eigenvalues of the Jacobian matrix. Crosse
triangles indicate points where P� is stable. Parameter values are listed in Table 1.
where C ¼ X2X3 þ aðdr þX2Þ.
The condition s for H ¼ 0 to have roots with negative real part 

are

ðiÞ h0 > 0; ðiiÞ h2 > 0; ðiiiÞ h1h2 � h0h3 > 0;

which can be written as 

ðiÞ R2 > R1;

ðiiÞ R2 > UR1;

ðiiiÞ X1ðR2 � R1Þ X1ðX4 þX5ÞðR2 � R1Þ þ R2ðX2
4 þX4X5 þX2

5Þ
h

þbSdðX4 þX5ÞðX4 þ qhÞ
X4X5

�
þX4X5h2R2

þ h2
bSdX4

X5
þ qbSdh

X4
þ qbSdh

X5

� �
> 0;
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1ðR2Þ and L2ðR2Þ for positive R2.

.5 2 2.5 3

1

s indicated points where P0 is stable, circles indicate points where bP is stable and 
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where
U ¼ X1X4X5

ðX1 þX4 þX5Þ½X4X5 þ cdðX4 þ qhÞ� :
Since 0 < U < 1, all inequalities are satisfied when R2 > R1. The con- 
ditions for L ¼ 0 to have roots with negative real part are 
ðiÞ l0 > 0; ðiiÞ l3 > 0; ðiiiÞ L1ðR2Þ ¼ l2l3 � l1l4 > 0;

ðivÞ L2ðR2Þ ¼ l1ðl2l3 � l1l4Þ � l0l2
3 > 0:

It can be easily shown analytically that (i) and (ii) are always 
satisfied when R2 > 1. The other conditions are not so readily ana- 
lysed and we provide a numerical analysis for the specific case of 
an influenza virus. Currently, the most widely used antiviral drugs 
are the neuraminidas e inhibitors oseltamivi r and zanamivir. The 
emergence of resistance to oseltamivir was documented during 
the 2009 H1N1 pandemic, however, little zanamivi r-resistant cases 
were detected [41,43]. All relevant parameter values for influenza
are listed in Table 1. We plot condition s (iii) and (iv) in Fig. 14 and
stableP̂
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I

Fig. 16. Stability of equilibria in R1 � R2 parameter space. P0 denotes the disease- 
free state, bP denotes the presence of only the drug-resistant strain and P� denotes 
the coexistence of both drug-sensitive and drug-resistant strains.
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Fig. 17. Solution of the treatment model with initial conditions Sð0Þ ¼ 0:99, ISð0Þ ¼ 0:01
locations of bP and P� respectively. All parameters are listed in Table 1. (a) R1 ¼ 0:9, R2 ¼
it is clear that both inequalities are satisfied for all R2. Thus, we 
conclude that, for the case of influenza, bP is locally stable when 
R2 > R1.

The characterist ic equation corresponding to the endemic equi- 
librium P� is intractabl e to an analytica l analysis. However , based 
on previous results, we would expect this fixed point to be locally 
stable for all R1 > 1 and R2 < R1. To analyse the stability properties 
we generate a mesh in R1 � R2 parameter space and then at each 
point we numerica lly determine the local stability of each equilib- 
rium through examination of the eigenvalues of the Jacobian ma- 
trix. We indicate stability of P0; bP and P� with a cross, circle and 
triangle respectively and the results are displayed in Figs. 15 and 
16.

It can be seen that there are three distinct regions: region I
where the disease-free equilibrium P0 is stable, region II where bP
is stable and only the drug-resistant strain of the virus is present 
and region III where P� is stable and both the drug-sensitive and 
drug-resis tant strains of the virus coexist. Similar results have been 
documented for models of tuberculosis treatment when the latent 
state is considered [44–46] in place of an asymptomati c infectious 
state, which can account for approximately one third of all influ-
enza infections .

In Fig. 17 (a) we show a solution correspondi ng to region I. Here 
the disease-free equilibriu m is stable and, following a short initial 
increase, the virus dies out rapidly. In Fig. 17 (b) we show a solution 
correspondi ng to region II. The solution initially oscillates around 
the fixed point bP and approach es it as t ! 1. In Fig. 17 (c) we 
show a solution correspondi ng to region III. Again, after some ini- 
tial oscillatory behaviour the solution approaches P�. Finally, for 
complete ness, we also consider the upper portion of region III
where both endemic equilibria exist (see Fig. 13 ). A solution corre- 
sponding to this region is shown in Fig. 17 (d). Both endemic equi- 
libria exist and the solution approaches the stable equilibrium P�.

When a novel influenza virus emerges, the delay in deliverin g a
strain-specific vaccine requires preparednes s plans to reply on 
other containmen t strategies. The sole pharmaceutical measure 
available to public health authoriti es to alleviate the pandemic im- 
pact is the use of antiviral drugs for therapeutic or prophyla ctic 
use. It is possible that health systems would have to reply on these 
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 and IAð0Þ ¼ IA;rð0Þ ¼ IS;rð0Þ ¼ IS;trð0Þ ¼ IS;r;trð0Þ ¼ 0. Circles and triangles indicate the 
0:8, (b) R1 ¼ 1:6, R2 ¼ 1:8, (c) R1 ¼ 1:7, R2 ¼ 0:8, and (d) R1 ¼ 2:1, R2 ¼ 1:1.



176 M. Robinson, N.I. Stilianakis / Mathematical Biosciences 243 (2013) 163–177
drugs for several months while a vaccine is developed and, thus,
their timely availability in sufficient quantities to meet interna- 
tional requirements would be crucial. Such a demand could only 
be met if the drugs were stockpiled in advance of a pandemic 
[47,48]. If a highly virulent drug-resis tant strain were to emerge 
the economic impact of losing valuable stockpile s would further 
devastate already overburdened health systems. Therefore, under- 
standing the dynamics of the emergence of drug resistance is an 
important topic in the preparation for future pandemic outbreaks.
It has been shown that widespread use of antiviral drugs should be 
avoided during a pandemic, except in the case of high reproduction 
number, to prevent a more virulent drug-resis tant strain develop- 
ing [49]. This theory is supported by our findings. The existence 
and stability of the two strains are complete ly determined by 
the valu es of the re pr odu cti on numb er s R1 and R2. Th e gre ate r the
reproduction number of the drug-sensitive strain the greater the 
reproduction number required by the drug-resistant strain to 
become endemic in the population. If the reproduction number 
of the sensitive strain is close to 1 then a lower value of R2 can
allow the drug-resistant strain to become endemic .
4. Discussion 

A mathematical elaborati on of some dynamic features of an epi- 
demiological model that explicitly considers asymptom atic infec- 
tious cases and loss of immunity, together with the associate d
model that accounts for treatment and the development of drug 
resistance was presente d in this paper. It was shown that the 
dynamics of the simple model without intervention are entirely 
determined by the basic reproduction number R0, with the disease 
becoming endemic when R0 > 1 and dying out when R0 < 1. In addi- 
tion, it was demonstrated that the long-term dynamics are charac- 
terised by damped oscillatio ns approaching an endemic state,
whose period of oscillation is greatly influenced by the rate at which 
infection acquired immunity is lost. A comparison was provided be- 
tween this model and another commonly used model in which the 
preclinical infectious state is absent. It was shown that, for the gen- 
eral model, two unique transmis sion rates are obtained. For the spe- 
cific case of influenza the transmission rates are equal, however, the 
models still predict quantitat ively different disease incidence. By 
considering a simple public health intervention, where the easily 
identifiable symptomati c cases are isolated from the general popu- 
lation, it was shown that, under certain conditions, neglecting the 
preclinical state could underestimate the peak incidence and the 
resultant burden on public health systems during an epidemic. Bet- 
ter estimate s for the duration of preclinical viral shedding could help 
to provide more accurate estimates for the impact of pre-symptom- 
atic influenza transmission. We emphasis that the two models con- 
sidered here cannot be directly compared and we merely present the 
two approach es and highlight their similarities and differences.

An interesting result could also be derived from this analysis 
regarding the stability of the model when treatment and the devel- 
opment of drug resistance are considered. In addition to the locally 
stable disease free equilibrium, two other endemic equilibria were 
identified. The first corresponds to the presence of the resistant 
strain when R2 > 1 and, for influenza parameter values, is locally 
stable when R2 > R1. The second correspond s to the co-circulation 
of both the drug-sensitive and resistant strains when R1 > 1 and 
R2 < R1. Elaborati on of the second endemic equilibrium is mathe- 
matically intractable. However, a graphical analysis of the stability 
properties, in the case of influenza, indicates that it is always lo- 
cally stable. We note, however, that the effects of back-mu tation 
from resistant to sensitive strains was neglected. This might possi- 
bly occur when the resistant strain carries a cost and is the reason 
underlying the fact that there is an equilibrium where only the 
resistant strain is present and no equilibrium with only the sensi- 
tive strain.
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