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Abstract
In the last decade, humanity has faced many different pandemics such as SARS, H1N1, and presently novel coronavirus 
(COVID-19). On one side, scientists have developed vaccinations, and on the other side, there is a need to propose models 
that can help in understanding the spread of these pandemics as it can help governmental and other concerned agencies 
to be well prepared, especially for pandemics, which spreads faster like COVID-19. The main reason for some epidemic 
turning into pandemics is the connectivity among different regions of the world, which makes it easier to affect a wider 
geographical area, often worldwide. Also, the population distribution and social coherence in the different regions of the 
world are non-uniform. Thus, once the epidemic enters a region, then the local population distribution plays an important 
role. Inspired by these ideas, we propose two versions of our mobility-based SIR model, (i) fully mixed and (ii) for complex 
networks, which especially takes into account real-life interactions. To the best of our knowledge, this model is the first of 
its kind, which takes into account the population distribution, connectivity of different geographic locations across the globe, 
and individuals’ network connectivity information. In addition to presenting the mathematical proof of our models, we have 
performed extensive simulations using synthetic data to demonstrate the generalization capability of our models. Finally, to 
demonstrate the wider scope of our model, we applied our model to forecast the COVID-19 cases at county level (Estonia) 
and regional level (Rhône-Alpes region in France).

Keywords COVID-19 · Epidemic based modeling · SIR · Mobility · Complex networks · Call data records · Estonia · 
Rhône-Alpes

1 Introduction

In this modern age, pandemics are not a rare phenomenon. 
As in the last decade, we have seen several pandemics such 
as H1N1, SARS, and EBOLA, and presently humanity is 
facing its biggest crisis due to COVID-19. The severity of 

these pandemics can be understood by the death toll claimed 
by them. According to WHO, the pandemic H1N1/09 virus 
resulted in 18,036 deaths (Organization WH et al 2009). On 
the other hand, the Centers for Disease Control and Preven-
tion (CDC) estimate between 151,700 and 575,400 deaths 
due to the pandemic H1N1/09 virus (Centers for Disease 
Control and Prevention 2012). Currently, the coronavirus 
(COVID-19) pandemic, which started in December 2019 
from Wuhan, China, has infected 134,641,198 individuals 
and claimed 2,917,995 (as of April 9 ,2021) deaths world-
wide (CSSE 2020) COVID. Pandemics are different from 
epidemics in terms of their geographic spread. An epidemic 
affects many people at the same time. It spreads from person 
to person and remains local to a specific region. In compari-
son, when an epidemic engulfs an entire country, continent, 
or the whole world, it is termed as pandemic.

In the past, various models have been proposed for under-
standing the epidemics spread. These models can be broadly 
classified into two categories, that is agent-based modeling 
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(Bonabeau 2002; Schelling 1971; Sun 2006) and compart-
mental models (Kermack and McKendrick 1927; Hethcote 
2000; Goel et al. 2019). The agent-based modeling is used 
for simulating the actions and interactions of autonomous 
agents as a whole (Epstein 2009). These agents can be both 
individual or collective entities such as organizations or 
groups. In contrast, differential equations are used in com-
partmental models, where the population is divided into dif-
ferent compartments such as suspected (S), infected (I), and 
recovered (R) (Kermack and McKendrick 1927). Several 
other variants of these models have also been proposed such 
as SI (Hurley et al. 2006), SIS (Nåsell 1996), SIR (Kermack 
and McKendrick 1927), and SIRS (Jin et al. 2007).

Agent-based model researchers often criticize compart-
mental models as these models struggle to capture the con-
nectivity between different regions of the globe, and differ-
ent real-world population characteristics, such as worldwide 
population distribution (Chinazzi et al. 2020; Eubank et al. 
2004). In this study, we propose a mobility-based SIR 
model, an extension to the classical SIR-based epidemic 
model, which considers the real-world population distribu-
tion across different regions of the world. Most importantly, 
the model also takes into account the connectivity factor 
among various regions over the world, which is the key 
cause in accelerating the process of transforming epidemics 
into pandemics. We present two versions of our model, (i) 
fully mixed and (ii) complex networks model, which espe-
cially takes into account real-life interactions. We model the 
regions in a 2-dimensional lattice, where each cell represents 

the mobility parameter (or direct connectivity) from one 
region to another. Along with presenting the mathematical 
proof of our model, we have performed extensive simula-
tions on synthetic data. Moreover, we leverage our model to 
forecast the COVID-19 cases in Estonia1 and in the Rhône-
Alpes region2 (one of the largest regions in France) by infer-
ring the population mobility within the studied areas using 
mobile phone data. These various use cases demonstrate the 
model’s ability to generalize on different types of data.

1.1  Study highlights

In our previous work Goel and Sharma 2020, we proposed 
fully mixed model that is composed of the (local) transmis-
sion rate of the infection � , and to cover the mobility aspect, 
we introduce parameters: (1) ‘ � ’ which is a social connectiv-
ity parameter that signifies how well individuals are socially 
linked with each other, and (2) ‘ c(i,j) ’ that represents individ-
uals mobility from a region j to another region i. Thus, the 
infection can transfer within the region with the transmission 
rate � and can also be introduced from other regions through 
global transmission rate which depends upon � , c(i,j) , Ij (frac-
tion of infected at region j) and � . In this study, we extend 
our work to complex networks model as well. With the help 
of Fig. 1, we illustrate our proposed models (fully mixed and 

Fig. 1  Local And Global Transmission Of Infection In Fully Mixed 
and Complex Networks Model: Each cell represents a separate region 
with some population density (here regions are 1 to 16). Individu-
als in each cell are color-coded: Black (Susceptible), Red (Infected), 
and Green (Recovered). The local transmission rate of infection is 
� for all cells. a shows the fully mixed model and infection in this 
model can transfer as follows: For region 6, its social connectivity 
is � . The mobility of individuals from region 4 to region 6 and frac-
tion of infected individuals at region 4 is represented as c(6, 4) and 

I(4), respectively. Therefore, infection can transfer from region 4 to 6 
via global transmission rate �c(6, 4)I(4)� . Similarly, �c(6, 13)I(13)� 
and �c(6, 16)I(16)� signifies the global transmission rate from region 
13 and 16, respectively, to region 6. On the other hand, b shows the 
complex network model: similar to fully mixed model, infection can 
transfer from region 4 to 6 via global transmission rate �c(6, 4)�(4)� , 
where � takes care of the degree of the individual (see Sect.  3 for 
detail)

1 https:// koroo nakaa rt. ee/ en.
2 https:// covid track er. fr/ dashb oard- depar temen ts/? dep= 71

https://koroonakaart.ee/en
https://covidtracker.fr/dashboard-departements/?dep=71


Social Network Analysis and Mining          (2021) 11:105  

1 3

Page 3 of 18   105 

complex networks) for better understanding. We applied our 
model on a synthetic networks as well as on a new region, 
Rhône-Alpes in France considering the population density 
and the connectivity among different sectors, which is cre-
ated using mobile phone data. Finally, we utilize our model 
to investigate the following questions:

• How social connectivity parameter ‘ � ’ affects the frac-
tion of individuals in different compartments (suscepti-
ble, infected and recovered) for fully mixed and complex 
networks model? We address this question by carefully 
examining the effect of � while keeping all the other 
parameters constant (Sects. 4.2 and 5.2).

• What are the outcomes of restricting mobility from the 
top-X percentile of strongly connected regions in fully 
mixed and complex networks model? We explore the out-
comes of mobility restriction with the model and found 
that restricting the mobility of the top-10 percentile of 
strongly connected regions can reduce the number of 
infected individuals between 18 and 27% (Sects. 4.2 and 
5.2). Here, strongly connected regions are defined as the 
regions from which there is a higher number of regular 
commuters.

• What is the relationship between social connectivity 
parameter ‘ � ’ and mobility restriction (of top-X percen-
tile) from strongly connected regions? To address this 
question, we performed numerical simulation on the 
proposed mean-field equations for fully mixed model 
(Sect. 4.2, Fig. 4).

• How efficiently this model can perform in real scenar-
ios? We answer this question by projecting the expected 
COVID-19 cases in Estonia and Rhône-Alpes region in 
France using the fully mixed model and compared the 
results with the real cases (Sects. 4.2.3 and 4.2.4).

The limitation of traditional compartmental epidemiological 
models is that they do not account for the role of reducing 
social connectivity (or isolation) and mobility restrictions 
during the outbreak of a pandemic such as COVID-19. The 
proposed model overcomes this constraint. We discovered 
that the reproduction number R0 for a pandemic is influ-
enced by social connectivity and mobility. We also discov-
ered that restricting movement during a pandemic decreases 
the fraction of individuals in an infected compartment, and 
restricting social interaction (or isolation) slows the peak 
and reduces the number of infected individuals from the 
pandemic. We believe that these models can help to adopt a 
balanced strategy to address a pandemic crisis.

1.2  Contributions

The contribution of our work is twofold: 

1. Previous mobility-based SIR model is proposed for fully 
mixed model (Goel and Sharma 2020). The main limita-
tion of fully mixed model is that it assumes that every 
person at every location is linked to everyone else at 
that location. However, in reality, people interact with 
a limited number of people to form a complex network 
with non-trivial topological features that do not occur 
in simple networks such as lattices or random graphs 
but often occur in networks representing real systems 
(Albert and Barabási 2002). Therefore, this paper pro-
pose mobility-based SIR model for complex networks 
that is more realistic than fully mixed models.

2. Next, we show that our model perform well on real sce-
narios by projecting the expected COVID-19 cases at 
county scale (Estonia) and regional scale (Rhône-Alpes 
region in France).

1.3  Paper organization

The rest of the paper is organized as follows. Next, we dis-
cuss related works with respect to epidemic modeling. We 
then describe the model preliminaries and derivations in 
Sect. 3. Sections 4 and 5 present the evaluation results of our 
fully mixed and complex networks model, respectively. We 
conclude with a discussion of future directions in Sect. 6.

2  Related work

In this section, we discuss relevant literature with respect 
to epidemic modeling which involves two different lines of 
work. The first involves agent-based modeling, while the 
second is related to compartmental based modeling. In the 
agent-based modeling, authors model epidemics by simu-
lating the actions and interactions of autonomous agents 
(both individual or collective entities such as organizations 
or groups) with a view of assessing their effects on the sys-
tem as a whole (Epstein 2009) by using transportation sys-
tems such as road networks (Eubank et al. 2004), airways 
(Chinazzi et al. 2020) etc. These models have been used for 
understanding various epidemics such as smallpox (Burke 
et al. 2006), influenza (Khalil et al. 2012), cholera (Crooks 
and Hailegiorgis 2014), and very recently COVID-19 (Chi-
nazzi et al. 2020; Tuomisto et al. 2020).

In contrast to agent-based modeling, differential equa-
tion-based compartmental models have also been used 
for understanding epidemics, which is the basis of this 
work. This line of literature is mainly based on the clas-
sical SIR model proposed by Kermack and McKendrick 
(Kermack and McKendrick 1927) followed by Anderson 
and May (1979); Anderson et al. (1992). In Anderson and 
May (1979), the authors considered the host population as 
a dynamic variable rather than constant, as conventionally 
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assumed, which provides a broader understanding of the 
population behavior during infectious disease. In their 
work in Anderson et al. (1992), authors discuss the idea 
of the basic reproductive rate, threshold about host densi-
ties, and modes of transmission.

Different variations of the SIR model have also been 
proposed to capture various real-world scenarios. For 
example, introducing a delay in the model to capture the 
incubation period during the spreading (Zhang et al. 2010; 
Xia et al. 2012; Liu 2015; Arquam et al. 2018) or the intro-
duction of interventions such as antiviral drugs (Towers 
et al. 2011). In a different work to represent the nonlinear 
nature of epidemic spread, a SIR rumor spreading model 
was proposed in which tie strengths were dependent on 
nodes’ degree (Singh and Singh 2012). Apart from SIR-
based models, there exist several flavors of compartmen-
tal models, which represent different scenarios such as 
SIS (Nåsell 1996), where individuals do not recover and 
can become susceptible again. This model has also been 
studied using varying types of underlying topologies (Shi 
et al. 2008).

A set of works have also focused on exhibiting the epi-
demic spreading by using varying types of underlying 
network structures. For example, authors in Moreno et al. 
(2002); Barthélemy et al. (2005), and Vespignani (2012) 
used a scale-free network and in Li and Wang (2006) a 
small-world evolving networks for evaluating their epide-
miological framework. In their work in Kiskowski  (2014), 
researchers combine a discrete, stochastic SEIR (E stands 
for exposed) model with a three-scale community network 
model to demonstrate that the different regional trends 
may be explained by different community mixing rates. A 
detailed study concerning various epidemic models on vary-
ing topologies has been done in Pastor-Satorras et al. (2015).

In another line of work, the authors proposed models to 
understand epidemics based on the speed of growth. For 
example, in Viboud et al. (2016), authors applied their gen-
eralized-growth model to characterize the ascending phase 
of an outbreak on 20 different epidemics. Their findings 
revealed that sub-exponential growth is a common phe-
nomenon, especially for pathogens that are not airborne. In 
another work Huang et al. 2016, researchers explained the 
rapid spread of H1N1 in 2009 around the world by using a 
flexible Bayesian, space-time, susceptible–infected–recov-
ered (SIR) modeling approach. Gojovic et al. (2009) devel-
oped a simulation model of a pandemic (H1N1) 2009 out-
break in a structured population using demographic data 
from a medium-sized city in Ontario and epidemiologic 
influenza pandemic data. A set of work have also focused on 
mobility aspect during COVID-19 Goel and Sharma 2020; 
Arenas et al. 2020. In comparison to previous works, the 

proposed model introduces mobility and social connectiv-
ity parameters in both fully mixed and complex networks 
models, the key characteristics for turning epidemics into 
pandemics.

3  Model preliminaries and derivations

In this section, we first explain the classical SIR model 
and then discuss its limitations with respect to the absence 
of mobility and social connectivity parameters. Next, we 
describe our proposed model to understand the spreading 
of an infection during a pandemic.

In 1926, Kermack and McKendrick (1927) proposed the 
classical SIR model as follows:

where s(t), i(t), r(t) are, respectively, the fraction of suscep-
tible, infected and recovered population at time t. However, 
the classical SIR epidemic model proposed by Kermack 
and McKendrick (1927) does not consider the heterogene-
ity and topology of the real-world network. To overcome this 
limitation, we introduce the mobility and social connectivity 
parameters in our proposed model.

Let ‘l’ represent the total number of locations, and ‘c’ 
denote the connection (or individuals’ mobility) between 
locations. The propagation of infection at each location is 
explained as follows: each healthy individual can get the 
infection either from an infected individual located in the 
same location (local transmission) or from an individual 
visiting from other connected locations (global transmis-
sion). The local transmission rate of infection is repre-
sented by � and the recovery rate as � , with � and � ∈ 
[0,1].

3.1  Nonlinear dynamical system for fully mixed 
model

Next, we discuss the local transmission of infection 
(Sect. 3.1.1), the global transmission (Sect. 3.1.2), and 
then the dynamical behavior of the nonlinear system of 
infection for fully mixed model (Sect. 3.1.3).

(1)
ds(t)

dt
= − �s(t)i(t)

(2)
di(t)

dt
= �s(t)i(t) − �i(t)

(3)
dr(t)

dt
=�i(t)
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3.1.1  Local transmission

Let Ni be the population at location i, where i ∈ l , and the 
total population is divided into three compartments. The 
compartments for location i at time t are as follows: 

1. Si(t) : the number of individuals susceptible or not yet 
infected. This compartment is referred as susceptible 
compartment.

2. Ii(t) : the number of infected individuals which can fur-
ther spread the disease to the individuals present in the 
susceptible compartment. This compartment is referred 
to as infected compartment.

3. Ri(t) : the number of individuals who have been recov-
ered from the infected compartment. This compartment 
is referred as recovered compartment.

Our assumptions regarding the transmission of an indi-
vidual from one compartment to another compartment are 
as follows: 

1. A healthy individual after becoming infected moves 
from susceptible to the infected compartment.

2. An individual can recover spontaneously at any time 
with recovery rate � . The recovery of an individual is 
independent of healthy and infected compartments’ indi-
viduals.

3. Once the individual gets recovered, it will become 
immune to the disease and, thus, will not transmit the 
infection to individuals in the susceptible compartment.

4. In addition, this model ignores the demography that is 
birth or death of individuals. In other words, the popula-
tion remains constant.

3.1.2  Global transmission

Let j (j ⊂ l) represent a set of locations, which are con-
nected to location i. Therefore, 

∑
j Nj is the maximum pos-

sible number of individuals connected to location i, from 
all the locations j. The parameter ci,j reflects the mobility 
of individuals from locations j to location i. Global trans-
mission depends upon this mobility parameter of individu-
als from one location to another. Similar to local transmis-
sion, Ij is the number of individuals in the infected 
compartment in location j. Hence, total mobility of 
infected individuals from all the other connected locations 
to location i is 

∑
j ci,j

Ij

Nj

.

Considering the above description, the chances of trans-
mission of infection from all the connected locations to loca-
tion i are 

∑
j ci,j

Ij

Nj

� . This transmission further depends upon 

the social connectivity ( � ) of all the individuals at location 
i. Therefore, the proportion of healthy individuals at location 
i which can get infected from infected individuals from loca-

tion j is 
�
∑

j ci,j
Ij

Nj
�

Ni+
∑

j ci,j
 . Thus, the mean-field equations for the 

dynamics of the pandemic, based on the above discussed 
interactions are the following:

where Eq. 4 describes the rate of change of susceptible indi-
viduals at location i, Eq. 5 refers to rate of change of infected 
individuals, and Eq. 6 explains the rate of change of recov-
ered individuals at location i. The reader can refer to Table 1 
for notations and their meaning.

3.1.3  Dynamical behavior of the linear system

Equations (4–6) represent a nonlinear dynamical system of 
pandemic spreading, where, at any time t,

In order to solve mean-field Eqs. (4–6), following assump-
tions are made (please note that these assumptions are not 
considered during our experiments): 

(4)dSi(t)

dt
= −

�Si(t)Ii(t)

Ni(t)
−

�Si(t)
∑

j ci,j
Ij(t)

Nj(t)
�

Ni(t) +
∑

j ci,j

(5)

dIi(t)

dt
=
�Si(t)Ii(t)

Ni(t)
+

�Si(t)
∑

j ci,j
Ij(t)

Nj(t)
�

Ni(t) +
∑

j ci,j

−
�Ii(t)

Ni(t)

(6)
dRi(t)

dt
=
�Ii(t)

Ni(t)

(7)Si(t) + Ii(t) + Ri(t) = Ni(t)

Table 1  Parameters description for nonlinear dynamical system

Notations Meaning

l Number of locations
c Connection between locations
Si(t) Number of susceptible individual at location i at time t
Ii(t) Number of infected individual at location i at time t
Ri(t) Number of recovered individual at location i at time t
Ni(t) Population at location i at time t
� Social connectivity parameter
� Infection rate
� Recovery rate
ci,j Individuals mobility from location j to i



 Social Network Analysis and Mining          (2021) 11:105 

1 3

  105  Page 6 of 18

1. Initially, the population at all locations is equal to N(t) 
at time t.

2. Individuals in infected compartments are equal to I(t) at 
all locations at time t and 

∑
j Ij = �j� ⋅ Ij = kIj , where k is 

the number of locations connected to location i, that is, 
k = |j|.

3. The mobility of individuals from one location to another 
location is a fraction of total population N. Let n be the 
sum of fraction of population mobility from |k| locations. 
Then, the total individuals mobility from set of locations 
j to i is n ∗ N . Therefore, 

∑
j ci,j = nN.

By considering the above assumptions, Eqs. 4 and 6 can 
be written as

From Eqs. 8 and 9

For simplicity, Eq. 12 can be written as:

Equation 13 can be rewritten as

Solving Eq. 15, we get

As pandemic arrives at steady state when t ⟶ ∞ hence dR
dt

 
= 0 and R∞ = C, where C is a constant:

(8)dSi(t)

dt
= −

�Si(t)I(t)

N(t)
−

�Si(t)nN(t)k
I(t)

N(t)
�

N(t) + nN(t)

(9)
dRi(t)

dt
=
�I(t)

N(t)

(10)
dSi(t)

dRi(t)
= −

�Si(t)

�
−

�Si(t)nk�

�(1 + n)

(11)= −
�Si(t)

�

[
1 +

�nk

1 + n

]

(12)= −
�Si(t)

�

[
1 + (1 + �k)n

1 + n

]

(13)
dS(t)

dR(t)
= −

�S(t)

�

[
1 + (1 + �k)n

1 + n

]

(14)S =S0e
−

�

�
R
[
1+(1+�k)n

1+n

]

(15)dR

dt
=�(N − R − S0e

−
�

�
R
[
1+(1+�k)n

1+n

]
)

(16)t =
1

� ∫
R

0

dR

N − R − S0e
−

�

�
R
[
1+(1+�k)n

1+n

]

Let the initial conditions be: R(0) = 0 , I(0) = I and 
S(0) = N − I ≈ N . Therefore, Eq. 17 can be written as:

Normalizing Eq. 18 by dividing by total population N gives:

Therefore, the reproduction number R0 is

In case there is no social connectivity to other locations 
( � = 0 or k = 0 or n = 0 ), then the mobility SIR model will 
become the standard SIR model and the reproduction num-
ber is R0 =

�

�
 . Therefore, the reproduction number is directly 

proportional to social connectivity parameter � , number of 
connected locations k, and depends upon individuals’ mobil-
ity during a pandemic.

The fully mixed model that we presented in this section 
has one key limitation, i.e., it assumes that every person at 
every location is linked to everyone else at that location. 
However, in reality, people interact with a limited number 
of people to form a complex network with non-trivial topo-
logical features that do not occur in simple networks such as 
lattices or random graphs but often occur in networks repre-
senting real systems Albert and Barabási 2002. Therefore, 
in the next section, we propose mobility-based SIR model 
for complex networks.

3.2  Nonlinear dynamical system for complex 
networks

In this section, we discuss the local transmission of infection 
(Sect. 3.2.1), the global transmission (Sect. 3.2.2), and then 
the dynamical behavior of the nonlinear system of infection 
by considering complex networks interactions at each loca-
tion (Sect. 3.2.3).

3.2.1  Local transmission

Let Ni be the population at location i, where i ∈ l, and k is the 
degree of each individual, where k ∈ � (whole numbers). 
The total population is divided into three compartments. The 
compartments for location i at time t are as follows: 

(17)N − R∞ = S0e
−

�

�
R∞

[
1+(1+�k)n

1+n

]

(18)R∞ =N − Ne
−

�

�
R∞

[
1+(1+�k)n

1+n

]

(19)r∞ =1 − 1e−R0r∞

(20)R0 =
�

�

[
1 + (1 + �k)n

1 + n

]
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1. Si(k, t) : the number of individuals susceptible or not yet 
infected at time t having degree k. This compartment is 
referred as susceptible compartment.

2. Ii(k, t) : the number of infected individuals at time t hav-
ing degree k, which can further spread the disease to the 
individuals present in the susceptible compartment. This 
compartment is referred to as infected compartment.

3. Ri(k, t) : the number of individuals at time t having degree 
k, who have been recovered from infected compartment. 
This compartment is referred as recovered compartment.

Our assumptions regarding the transmission of an individual 
from one compartment to another compartment are same as 
discussed in Sect. 3.1.1.

3.2.2  Global transmission

Let j (j ⊂ l) represent a set of locations, which are connected to 
location i. Therefore, 

∑
j Nj(k) is the maximum possible num-

ber of individuals of degree k connected to location i, from all 
the locations j. The parameter ci,j,k reflects the mobility of indi-
viduals of degree k from locations j to location i. Global trans-
mission depends upon this mobility parameter of individuals 
from one location to another. Similar to local transmission, Ij 
is the number of individuals in the infected compartment in all 
the locations j. Hence, total mobility of infected individuals of 
degree k from all the other connected locations to location i is ∑

j ci,j,k
Ij(k)

Nj(k)
.

Considering the above description, the chances of transmis-
sion of infection from all the connected locations to location i 
are 

∑
j ci,j,k

Ij(k)

Nj(k)
� . This transmission further depends upon the 

social connectivity ( � ) of all the individuals at location i. 
Therefore, the proportion of healthy individuals at location i 
which can get infected from infected individuals from location 

j is 
�
∑

j ci,j,k
Ij (k)

Nj (k)
�

Ni(k)+
∑

j ci,j,k
 . Thus, the mean-field equations for the nonlin-

ear dynamics of the pandemic, based on the above discussed 
interactions are the following:

where

where Eq. 21 describes the rate of change of susceptible 
individuals of degree k at location i, and Eq. 22 refers to rate 
of change of infected individuals of degree k, and Eq. 23 
explains the rate of change of recovered individuals of 
degree k at location i. Please refer Table 2 for notations and 
their meaning.

(21)

dSi(k, t)

dt
= −

�Si(k, t)�i(t)

Ni(k, t)

−

�Si(k, t)
∑

j ci,j,k
�j(t)

Nj(k,t)
�

Ni(k, t) +
∑

j ci,j,k

(22)

dIi(k, t)

dt
=
�Si(k, t)�i(t)

Ni(k, t)

+

�Si(k, t)
∑

j ci,j,k
�j(t)

Nj(k,t)
�

Ni(k, t) +
∑

j ci,j,k

−
�Ii(k, t)

Ni(k, t)

(23)
dRi(k, t)

dt
=
�Ii(k, t)

Ni(k, t)

(24)�i(t) =

k∑
k�=1

Ψ(k�)P
(

k�

k

)
Ii(k

�, t)

k�

(25)P

(
k�

k

)
=
k�P(k�)

< k >

Table 2  Parameters description 
for nonlinear dynamical system 
for complex network

Notations Meaning

l Number of locations
c Connection between locations
Si(k, t) Number of susceptible individual of degree k at location i at time t
Ii(k, t) Number of infected individual of degree k at location i at time t
Ri(k, t) Number of recovered individual of degree k at location i at time t
Ni(k, t) Population of degree k at location i at time t
� Social connectivity parameter
� Infection rate
� Recovery rate
ci,j,k Mobility of individuals of degree k from location j to i
Ψ(k�) Infectivity of a node with degree k′
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3.2.3  Dynamical behavior of the nonlinear system 
for complex networks

Equations (21–23) represents nonlinear dynamical system 
of pandemic spreading for complex networks, where, at any 
time t:

where

In order to solve mean-field Eqs. (21–23) similar assump-
tions as in Sect.  3.1.3 are made. By considering such 
assumptions, Eqs. 21, 22 and 23 can be written as

From Eqs. 28 and 30

For simplicity, Eq. 33 can be written as:

(26)Si(t) + Ii(t) + Ri(t) = Ni(t)

(27)X(t) =
∑
k

X(k, t); X ∈ {S, I,R,N}

(28)

dSi(k, t)

dt
= −

�Si(k, t)�(t)

N(k, t)

−
�Si(k, t)nN(k, t)m

�(t)

N(k,t)
�

N(k, t) + nN(k, t)

(29)

dIi(k, t)

dt
=
�Si(k, t)�(t)

N(k, t)

+
�Si(k, t)nN(k, t)m

�(t)

N(k,t)
�

N(k, t) + nN(k, t)

−
�I(k, t)

N(k, t)

(30)
dRi(k, t)

dt
=
�I(k, t)

N(k, t)

(31)
dSi(k, t)

dRi(k, t)
= −

�Si(k, t)�(t)

�I(k, t)
−

�Si(k, t)nm�(t)�

�(1 + n)I(k, t)

(32)= −
�Si(k, t)�(t)

�I(k, t)

[
1 +

�nm

1 + n

]

(33)= −
�Si(k, t)�(t)

�I(k, t)

[
1 + (1 + �m)n

1 + n

]

(34)dS(k, t)

dR(k, t)
= −

�S(k, t)
⟨k2⟩
⟨k⟩ I(k, t)

�I(k, t)

�
1 + (1 + �m)n

1 + n

�

Equation 35 can be rewritten as

Solving Eq. 37, we get

As pandemic arrives at steady state, when t ⟶ ∞ , hence dR
dt

 
= 0 and R∞ = C, where C is a constant.

Let initial conditions are R(0) = 0 , I(0) = I and 
S(0) = N − I ≈ N . Therefore, Eq. 39 can be written as

Normalizing Eq. 40 by dividing by total population N gives:

Therefore, the reproduction number R0 is

The R0 is called basic reproduction number which deter-
mines the spread of infection. When R0 > 1 , the propagation 
occurs at a fast rate. When R0 = 1 , the propagation happens 
at a slow rate. When R0 < 1 , the propagation finishes. In case 
there is no social connectivity to other locations ( � = 0 or 
m = 0 or n = 0 ), then the mobility SIR model for complex 

networks gives the reproduction number as R0 =
�

⟨k2⟩
⟨k⟩
�

 . 
Therefore, the basic reproduction number is directly propor-
tional to social connectivity parameter � , number of con-
nected locations m, depends upon individuals’ mobility dur-
ing a pandemic, and degree of an individual in a complex 
network.

(35)dS(k, t)

dR(k, t)
= −

�S(k, t)
⟨k2⟩
⟨k⟩

�

�
1 + (1 + �m)n

1 + n

�

(36)
S =S0e

−
�
⟨k2⟩
⟨k⟩
�

R
�
1+(1+�m)n

1+n

�

(37)
dR

dt
= �

⎛
⎜⎜⎝
N − R − S0e

−
�
⟨k2⟩
⟨k⟩
�

R
�
1+(1+�m)n

1+n

�⎞
⎟⎟⎠

(38)
t =

1

� ∫
R

0

dR

N − R − S0e
−

�
⟨k2⟩
⟨k⟩
�

R
�
1+(1+�m)n

1+n

�

(39)
N − R∞ = S0e

−
�
⟨k2⟩
⟨k⟩
�

R∞

�
1+(1+�m)n

1+n

�

(40)
R∞ =N − Ne

−
�
⟨k2⟩
⟨k⟩
�

R∞

�
1+(1+�m)n

1+n

�

(41)r∞ =1 − 1e−R0r∞

(42)R0 =

�
⟨k2⟩
⟨k⟩
�

�
1 + (1 + �m)n

1 + n

�
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4  Evaluation of fully mixed model

In this section, we first explain our experimental setup, and 
next, we discuss the results of our simulation conducted 
using the proposed model for non-complex network on syn-
thetic data. In addition, we also show results of our model 
when applied for predicting the number of COVID-19 cases 
at country level (Estonia) and regional level (Rhône-Alpes 
region in France).

4.1  Experimental setup

For the analysis, we created an aggregated flow matrix 
whose cells represent the number of trips of individuals 
per day from origins to destinations. We call this matrix 
Origin-Destination (OD) matrix. The synthetic OD matrix 
considered for our experiment follows a random distribution. 
Furthermore, three different techniques are considered for 
selecting the seed infection location: 

1. Pandemics origin from a random location: In this, a 
random location is selected as seed infection location, 
and a small fraction of individuals were infected at that 
location.

2. Pandemics origin from a weakly connected location: 
Here, the seed location is selected strategically, i.e., in a 

location which is weakly connected to other locations. 
This implies the least mobility of individuals from this 
location to other locations.

3. Pandemics origin from a strongly connected location: 
In this also, the seed location is selected strategically, 
i.e., in a location which is strongly connected to other 
locations. This signifies that the highest mobility of indi-
viduals from a location is considered for the selection of 
the infection seed.

Our simulation is oriented toward addressing the following 
questions:

• How social connectivity parameter ‘ � ’ affects the frac-
tion of individuals in different compartments (suscepti-
ble, infected and recovered) during a pandemic?

• What are the outcomes of restricting the mobility (for 
top-X percentile) of strongly connected locations?

• What is the relationship between social connectivity 
parameter ‘ � ’ and the mobility restriction (top-X per-
centile of strongly connected locations)?

• How efficiently this model can perform in real scenar-
ios? We answer this question by projecting the expected 
COVID-19 cases for Estonia and Rhône-Alpes region in 
France.

(a) α = 1 (b) α = 0.8 (c) α = 0.6

(d) α = 0.4 (e) α = 0.2 (f) α = 0.1

Fig. 2  Pandemic origin from random location: effect of Social connectivity parameter ‘ �’
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4.2  Results

We perform various simulation experiments to explain the 
proposed model on OD matrix by using previously discussed 
techniques for selecting the seed infection location. It is to 

be noted that the model will behave as a standard SIR model 
in two cases, (i) if � = 0 , (ii) if the mobility is reduced to 
100 percentile (that is no mobility allowed) from connected 
locations.

(a) 0% Locations Quarantine (b) 10% Locations Quarantine

(c) 20% Locations Quarantine (d) 30% Locations Quarantine

Fig. 3  Pandemic origin from random location: effect of quarantine strongly connected locations

(a) Susceptible Compartment (b) Infected Compartment (c) Recovered Compartment

Fig. 4  Pandemic origin from random location: numerical simulation of relationship between � and quarantine 
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Fig. 5  For different combinations of � and quarantine percentile, 
number of days required to reach peak of infected compartment

(a) α = 1 (b) α = 0.8 (c) α = 0.5

(d) α = 0.4 (e) α = 0.2 (f) α = 0.1

Fig. 6  Pandemic origin from weakly connected location: effect of social connectivity parameter ‘ �’

The effect of restricting the mobility from the top-X per-
centile of highly connected locations with other locations is 
shown in Fig. 3. Figure 3a, d displays the pandemic dynam-
ics with different percentile of mobility restrictions of highly 
connected locations starting with 0–30% (keeping � = 0.5 ). 
We observe that in the case of a pandemic, restricting the 
mobility from the top-10 percentile of highly connected 
locations can reduce the number of individuals who can get 
infected to 27%. Therefore, quarantine plays a vital role dur-
ing pandemics.

In order to understand the relationship between � and 
mobility restriction from strongly connected locations, 
we performed the numerical simulation of the proposed 
mean-field equations (see Fig. 4). It shows the fraction 
of population in various compartments at time t → ∞ for 
various value combinations of � and mobility restriction. 
From Fig. 4, we can infer that the social connectivity 
parameter ‘ � ’ and mobility plays both a fundamental role 
in determining the dynamics of the pandemics. Therefore, 
it is advisable to follow a dual strategy approach during 
a pandemic outbreak as controlling mobility reduces the 
fraction of infected individuals, and � delays the peak. 
Furthermore, we analyzed the number of days required 
to reach the point where the highest fraction of individu-
als get infected (see Fig. 5). This indicates that mobility 
restrictions and minimal social contact will postpone the 
pandemic’s peak and will give sufficient time for prepara-
tions, especially for the health sector.

4.2.1  Pandemic origins from random location

Figure 2 displays the influence of the social connectivity 
parameter ‘ � ’ while keeping the other parameters constant. 
Figure 2a, f shows the pandemic dynamics with different 
values of � starting with � = 1 to � = 0.1 . We observe that 
the peak of the infected compartment decreases significantly, 
as the � decreases, and it also takes longer to reach its peak. 
This indicates that there is a positive impact of lockdown in 
controlling a pandemic.
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4.2.2  Pandemic origins from weakly and strongly 
connected locations

Figures 6, and 7 display the influence of the social com-
munication parameter ‘ � ’ while keeping the other param-
eters constant for weakly and strongly connected locations, 
respectively. Figure 6a, f shows the pandemic dynamics 
with different values of � starting with � = 1 to � = 0.1 for 
weakly connected locations. Similarly, Fig. 7a, f shows the 
pandemic dynamics with different values of � starting with 
� = 1 to � = 0.1 for strongly connected locations.

It can be noted that when a pandemic originates from 
a weakly connected location, it takes longer to reach its 
peak compared to when it starts from a strongly connected 
location. This shows that the location of origin also plays 
an important role during a pandemic. Similar to a ran-
dom location, reducing mobility from the highly con-
nected locations by 10 percentile can reduce the number of infected individuals between 18 and 27% for weakly and 

strongly connected locations, respectively.

Fig. 8  COVID-19 cases in Estonia

(a) α = 1 (b) α = 0.8 (c) α = 0.5

(d) α = 0.4 (e) α = 0.2 (f) α = 0.1

Fig. 7  Pandemic origin from strongly connected location: effect of social connectivity parameter ‘ �’
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4.2.3  Case study of Estonia

To demonstrate the usability of the model, we applied it to 
real-time data of Estonia’s COVID-19 cases. Figure 8 shows 
the actual number of cases and the cases forecast by the 
model using different values for � and mobility percentile. 
For example, � = 0.95 indicates that the social connectivity 
of individuals is reduced by 5% and also top-5 percentile 
of strongly connected locations are restricted from mobil-
ity. Similarly, � = 0.7 implies that the social connectivity of 
individuals is reduced by 30%, and also the top-30 percentile 
of strongly connected locations have introduced restricted 
mobility.

For simulation, we created the OD matrix between coun-
ties of Estonia using call data records Goel et al. 2021; 
Hiir et al. 2019. Furthermore, these call interactions are 
converted into population mobility between counties using 
Estonian population data from census Estonia 2018. For 
the local transmission of the virus (within the county), we 
consider the reproduction number R0 = 2.5 (Organization 
W.H.et al. 2020).

Cases reported until March 11, 2020 are considered as an 
initial condition for the model. The reason behind selecting 
March 11, 2020 as initial condition is that, till this date no local 
transmission of the virus was reported3. Till the day of initial 
condition, the Estonian Health Board confirmed 13 cases in 
Harju and two cases in Tartumaa and Saaremaa each4. Dur-
ing the simulation, the number of cases in all other counties 
are initialized to zero. The infection rate � and recovery rate � 

are adjusted according to the value of R0 for COVID-19. The 
reported cases in Estonia as well as the forecast cases using the 
model are shown in Fig. 8 until April 9, 2020. It can be noticed 
that the model predicted much higher cases of COVID-19 if no 
restrictions are introduced ( � = 1). However, as the restrictions 
were introduced by the Government,5 the number of cases got 
damped (Actual). Thus, the applicability of this model is to 
forecast a range of predicted number of cases which can help 
the government and health agencies to understand the impact 
and introduce proportional interventions to restrict the spread 
of the epidemic.

Fig. 9  COVID-19 cases in Rhône-Alpes region In France

(a) Degree distribution of nodes. (b) Log-log degree distribution.

Fig. 10  The degree distribution of our synthetically generated network shows that it follows power law distribution

3 https:// www. err. ee/ 10632 04/ tervi seamet- eestis- on- kinni tatud- 27- 
koroo najuh tu- ja- kohal ik- levik.
4 https:// www. tervi seamet. ee/ et/ uusko roona viirus.
5 https:// www. valit sus. ee/ en/ news

https://www.err.ee/1063204/terviseamet-eestis-on-kinnitatud-27-koroonajuhtu-ja-kohalik-levik
https://www.err.ee/1063204/terviseamet-eestis-on-kinnitatud-27-koroonajuhtu-ja-kohalik-levik
https://www.terviseamet.ee/et/uuskoroonaviirus
https://www.valitsus.ee/en/news
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4.2.4  Case study of Rhône‑Alpes region in France

We also applied our model to real-time data of Rhône-Alpes 
region’s COVID-19 cases. Figure 9 shows the actual number 
of cases and the cases forecast by the model using different 
values for � and mobility percentile. The region is divided 
into 14 sectors. For simulation purpose, we again considered 
the OD matrix between the sectors of the region obtained 
via network signaling data of Orange (the largest telecom-
munications provider in France) and census data.6 This OD 
matrix has been built using the approach proposed by Fekih 
et al. in Fekih et al. (2020). The latter uses a heuristic-based 
approach to extract trips between sectors at individual level 
from mobile phone passive traces. As the signaling data col-
lected by the telecommuting operator covers around 30% 
of the whole population of the region, the resulting trips 
have been re-scaled using the census data. Finally, after an 
aggregation step, we obtain the regional OD matrix used in 
this study.

For privacy matters, the number of COVID-19 cases is 
not reported in France at a fine spatiotemporal resolution 
in publicly available data.7 Instead, the dataset only reports 
cumulative values of COVID-19 cases on a 7-day rolling 
window for each area of the administrative segmentation 
of the French territory. In addition, the number of cases 
is reported discretely, i.e., as a range of values between a 
lower and upper bound containing the real value. There-
fore, in order to obtain a daily estimation of the number of 
COVID-19 cases per each sector of the analyzed Rhone-
Alpes region, two main assumptions have been made. On the 
one hand, we consider the number of cases as the mid value 
between the lower and upper bound of the reported range 
for the given area on a specific day. On the other hand, we 
replaced the 7-day rolling time window by the median day 
(i.e., the 4th day of the time window). As a result, to obtain 
the daily estimation of the number of cases, the cumulative 
reported estimation provided on a 7-day rolling time win-
dow is divided by 7. After summing this estimation for all 
the administrative areas belonging to a given sector of the 
OD matrix, we finally obtain an estimation of the number 
of COVID-19 cases per sector and per day. COVID-19 data 
cover the period from November 2, 2020 toMarch 19, 2021.

For our simulation, the number of cases in all sectors is 
initialized as on November 2, 2020. For the local transmis-
sion of the virus (within the sector), we consider the repro-
duction number R0 = 2.5 Organization W.H.et al. 2020. The 
infection rate � and recovery rate � are adjusted according to 
the value of R0 . The reported cases in Rhône-Alpes region 

in France as well as the forecast cases using the model are 
shown in Fig. 9 until March 22, 2021. It can be noticed that 
the model predicted much higher cases of COVID-19 if no 
restrictions are introduced ( � = 1), while we can observe 
that, for � = 0.5, the number of actual cases and forecast 
ones are quite close to each other. To explain this result, it 
is worth to remind that strong mobility restrictions were re-
introduced in France by the end of October 2020,8 after the 
first lockdown ended during summer. The new restrictions 
contributed to keep low the number of COVID-19 infections 
(Actual). Moreover, it is reasonable to assume that mobility 
and social interactions were already significantly reduced at 
the beginning of this second lockdown, with respect to pre-
pandemic behaviors, as a consequence of the first COVID-19 
wave and previously imposed restrictive measures. In con-
clusion, this second case study confirms the applicability of 
the model to forecast a range of predicted number of cases. 
The latter can thus help the government and health agencies 
to understand the impact and introduce proportional inter-
ventions to restrict the spread of the epidemic.

5  Evaluation of complex networks model

In this section, we first explain our experimental setup, 
and next, we discuss the results of our simulation con-
ducted using the proposed model for complex networks 
on synthetic network.

5.1  Experimental setup

For the analysis, we created a synthetic network using 
configuration model Newman 2003, which follows the 
power law distribution (see Fig.  10) with scale-free 
exponent (gamma) as 3. In particular, we utilize the 

Table 3  Network statistics

Network Properties Value

Nodes 10,000
Edges 9960
Average degree 1.992
Edge density 0.0002
Number of triangles 390
Average clustering coefficient 0.0038
Number of components 1117
Reciprocity 0

8 https:// www. vie- publi que. fr/ en- bref/ 276947- covid- 19- un- 2e- confi 
nement- natio nal- compt er- du- 29- octob re- minuit.

7 https:// www. data. gouv. fr/ fr/ datas ets/ donne es- de- labor atoir es- infra- 
depar temen tales- durant- lepid emie- covid- 19/.

6 https:// www. insee. fr/ fr/ stati stiqu es/ 42284 34.

https://www.vie-publique.fr/en-bref/276947-covid-19-un-2e-confinement-national-compter-du-29-octobre-minuit
https://www.vie-publique.fr/en-bref/276947-covid-19-un-2e-confinement-national-compter-du-29-octobre-minuit
https://www.data.gouv.fr/fr/datasets/donnees-de-laboratoires-infra-departementales-durant-lepidemie-covid-19/
https://www.data.gouv.fr/fr/datasets/donnees-de-laboratoires-infra-departementales-durant-lepidemie-covid-19/
https://www.insee.fr/fr/statistiques/4228434
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random_powerlaw_tree_sequence and configuration_
model function of networkxHagberg et al. 2008. The con-
figuration model produces a random pseudograph (graph 
with parallel edges and self-loops) by randomly assigning 
edges to fit the given degree sequence. We removed all 

parallel edges and self-loops from our network. Table 3 
provides the statistics of our synthetic network. Based on 
the definition of configuration model and various prop-
erties of our synthetic network, we can infer that this 
network reflects the real-world contact network Voitalov 

(a) α = 1 (b) α = 0.9 (c) α = 0.8

(d) α = 0.7 (e) α = 0.6 (f) α = 0.5

(g) α = 0.4 (h) α = 0.3 (i) α = 0.2

Fig. 11  Pandemic origin from random location in complex network: effect of social connectivity parameter ‘ �’

(a) 10% Locations Quarantine (b) 20% Locations Quarantine (c) 30% Locations Quarantine

Fig. 12  Pandemic origin from random location in complex network: effect of quarantine strongly connected locations
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et al. 2020. For the rest of this work, we refer to this net-
work as ConNet.

Our simulation is oriented toward addressing the fol-
lowing questions:

• How social connectivity parameter ‘ � ’ affects the frac-
tion of individuals in different compartments (suscep-
tible, infected and recovered) for a complex network?

• What are the outcomes of restricting the mobility (for 
top-X percentile) of strongly connected locations in a 
complex network?

5.2  Results

We perform various simulation experiments to explain the 
proposed model for complex network on ConNet by select-
ing the seed infection location randomly. It is to be noted that 
the model will behave as a standard SIR model in two cases, 
(i) if � = 0 , (ii) if the mobility is reduced to 100 percentile 
(that is no mobility allowed) from connected locations.

Pandemic Origins From a Random Location. Fig-
ure 11 displays the influence of the social connectivity 
parameter ‘ � ’ while keeping the other parameters constant. 
Figure 11a to 11i shows the pandemic dynamics with dif-
ferent values of � starting with � = 1 to � = 0.2 . We observe 
that the peak of the infected compartment decreases signifi-
cantly, as the � decreases, and it also takes longer to reach 
its peak. This indicates that there is a positive impact of 
lockdown in controlling a pandemic.

The effect of restricting the mobility from the top-X per-
centile of highly connected locations with other locations 
is shown in Fig. 12. Figure 12a, f displays the pandemic 
dynamics with different percentile of mobility restrictions 
of highly connected locations starting with 10–30% (keep-
ing � = 0.5 ). We observe that in the case of a pandemic, 
restricting the mobility from the top-10 percentile of highly 
connected locations can reduce the number of individuals 
who can get infected to 15–21%. Therefore, quarantine plays 
a vital role during pandemics.

In order to understand the relationship between � and mobil-
ity restriction from strongly connected locations, we performed 
the numerical simulation of the proposed mean-field equations 
for complex network. The results are similar to the mean-field 
equations for non-complex network (see Fig. 4). Therefore, we 
can infer that the social connectivity parameter ‘ � ’ and mobil-
ity both plays an important role during pandemics.

6  Conclusion

Classical compartmental epidemic models are unable 
to describe the spreading pattern of pandemics such as 
COVID-19 as they do not take into account the effect of 

social connectivity and mobility in the spreading of the 
virus. Our proposed mobility-based SIR models for fully 
mixed and complex networks shows the significance of 
social connectivity and mobility during pandemics by tak-
ing into consideration the local and the global transmission 
rate of the infection. We have simulated the fully mixed 
model by considering three different origins of the infec-
tion, namely random location, weakly connected location, 
and strongly connected location. Our simulation shows that 
limiting the social connectivity reduces and delays the peak 
of the infected compartment. Our analysis also shows that 
restricting the mobility from the top-10 percentile of con-
nected locations can reduce the number of infected indi-
viduals between 18 and 27%. From the mathematical proof 
for our proposed models, we obtained that the reproduc-
tion number R0 directly depends upon social connectivity of 
individuals, number of connected locations and individuals 
mobility between locations (and degree of the individual in 
complex networks model) which is in line with our simula-
tion’s results. This indicates that introducing isolation and 
quarantine is effective in fighting a pandemic crisis. Using 
the proposed model, we also simulated the real-world sce-
nario by considering the COVID-19 cases in Estonia and 
Rhône-Alpes region in France. Simulation reveals that the 
mobility-based SIR model can be helpful to forecast the 
expected number of cases after some proportion of isola-
tion and quarantine is introduced in the society.

We plan to include various future directions for this work 
such as by simulating the model using additional tempo-
ral networks. Another direction would be to use additional 
mobility data such as transportation networks for better 
understanding the pandemic behavior. Importantly, we plan 
to introduce infection delay and recovery delay simultane-
ously in our future studies.
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providers who collected the data. However, in this work, we proposed 
mobility-based models with mathematical derivations that can be 
applied to any mobility dataset.
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