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Abstract
In March 2020, severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2)-based infections were declared ‘COVID-19
pandemic’ by the World Health Organization. Pandemic raised
the necessity to design and develop genuine and sensitive
tests for precise specific SARS-CoV-2 infections detection.
Nanotechnological methods offer new ways to fight COVID-19.
Nanomaterials are ideal for unique sensor platforms because
of their chemically versatile properties and they are easy to
manufacture. In this context, selected examples for integrating
nanomaterials and distinct biosensor platforms are given to
detect SARS-CoV-2 biological materials and COVID-19 bio-
markers, giving researchers and scientists more goals and a
better forecast to design more relevant and novel sensor
arrays for COVID-19 diagnosis.
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Introduction
Coronaviruses (CoVs) are large enveloped nonseg-
mented single-stranded RNA viruses responsible for
causing respiratory tract disorders in humans. A new

coronavirus (severe acute respiratory syndrome corona-
virus 2 [SARS-CoV-2]) named (COVID-19) emerged in
Wuhan, China, in 2019 [1]. SARS-CoV-2 is a beta-CoV
family member and causes mild upper respiratory dis-
eases together with four ubiquitous family members,
namely 229E, OC43, NL63, and HKU1 [2]. SARS-CoV-
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2 pathogenic strain is a combination of SARS-CoV and
Middle East respiratory syndrome coronavirus (MERS-
CoV) viruses. The metagenomic analysis revealed that
the SARS-CoV-2 has approximately 80% similarity with
SARS-CoV and two other SARS-like CoVs recognized in

bats (bat-SL-CoVZC45 and bat-SL-CoVZXC21) [2].
The appearance of new CoVs in humans depends on
primary factors for the frequent emergence of the CoVs
related to the wide distribution, high prevalence, high
genetic diversity, frequent genome recombination, and
humaneanimal interface activities [3].

Although COVID-19 showed a low fatality rate in
humans, it was highly infectious, with raw reproduction
number (R0) ranging from 1.4 to 6.47 [4]. The primary
clinical symptoms in these studies are fever, cough,

shortness of breath, and myalgia [5]. Soon after infec-
tion, acute respiratory distress syndrome was observed
in patients, followed by a severe cytokine storm, which
frequently accounted for COVID-19-related deaths [3].
Owing to the severity of the infection as a pandemic,
highly sensitive, precise, distinctive, and specific
biosensor platforms should be developed by the
researchers.

Nanotechnology offers various in vitro and in vivo solu-
tions to combat SARs-CoV-2-based infections. Nano-

materials are a critical component in these technologies
and crucial in detecting or transforming biochemical
interactions [6]. In this review, various nanomaterial-
based particular biosensor arrays are given in a select
platform.
Biological materials and indicators of
COVID-19 diagnosis
Biological materials for SARS-CoV-2 testing
The whole SARS-CoV-2 itself, as well as its structural
proteins, such as spike (S) glycoprotein, nucleocapsid
(N), matrix (M), and a small envelope (E), are used as
antigens in several testing methods. According to pre-
vious reports, S-protein is crucial for the adhesion to
host cells, in which the S-protein mediates the inter-
action of the angiotensin-converting enzyme-2 (ACE2)

with its receptor-binding domain. S and N proteins are
invaluable antigen biomarkers for serological testing in
the detection of COVID-19. The produced IgM, IgG,
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and IgA against S and N proteins are mostly used to
develop various serological assay methods [7].

Typically, preferred targets for SARS-CoV-2 genetic
assays are spike glycoprotein S gene, envelope protein E
gene, nucleocapsid protein N genes, nonstructural
RNA-dependent RNA polymerase gene, and open
reading frame of the 1a/bc ORF1a/b gene. E and ORF1a/

b genes are most frequently used in molecular tests to
detect SARS-CoV-2 infections [8].

Indicators of COVID-19
According to Ponti and his coworkers (2020), many
biochemical, hematological, and inflammatory indicators
are found to be accompanying COVID-19 infections [9].
The leading hematological indicators in COVID-19 in-
fections are counts of lymphocytes and neutrophils and
their ratios [9]. Several studies reported lymphopenia in
COVID-19 patients in severe cases [10,11]. As other
biomarkers, several biochemical indicators such as
troponin, creatine kinase, and D-dimer are present. Ac-
cording to Yao and coworkers (2020) and Tersalvi and

coworkers (2020), the disease severity is directly related
to theD-dimer levels [12,13].Garg and coworkers (2021)
postulated that elevated levels of inflammatory bio-
markers such as procalcitonin (PCT), C-reactive protein
(CRP), ferritin (FT), and interleukin-6 (IL-6) are in-
dicators of the severity of COVID-19 infections [14].
Standard test methods for SARS-CoV-2
Detection of the virus is a crucial weapon in combating
the COVID-19 pandemic and plays a decisive role in
isolating infected individuals early to avoid the risk of
transmission. Early, affordable, and accurate diagnosis of
SARS-CoV-2 is an urgent need to ease the early inter-
vention efforts and slowing down the transmission of
this pandemic disease. The standard test for COVID-19
is quantitative reverse transcription-polymerase chain

reaction (qRT-PCR) [15] as a gold standard. Also,
nanoparticles (NPs) get their importance in nucleic
acidebased methods with their usage in RNA purifica-
tion techniques. With this in mind, a simple and modern
magnetic NP (MNP) protocol is proposed for assisted
SARS-CoV-2 RNA extraction by using zinc ferrite MNPs
with carboxyl-containing polymers functionalized sur-
face [16]. In another approach, a simplified three-step
method for the production of large quantities of
MNPs for RNA extraction in response to developing
countries’ needs was used. Poly-NH2-MNPs are opti-

mized and scaled for high-quality SARS-CoV-2 RNA
extraction [17]. Owing to the simple and inexpensive
nature of MNP-based extraction methods, these can be
a suitable substitute for traditional techniques.

The neutralizing antibody (IgM and IgG) detection
based on enzyme-linked immunosorbent assay, which
depends on their interactions with antigenic compounds
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of virus ligand, is another traditional technique for the
detection of COVID-19 neutralizing antibody testing.
However, unwanted false-negative results, long
response time, and low sensitivity are their main draw-
backs. The development of serological tests to accu-
rately show the previous infection and the following
immunity to SARS-CoV-2 will be critical for epidemio-
logical research and monitoring tests [18].

Owing to the need for fast, sensitive, and low-con-
sumption diagnosis of COVID-19, nanotechnology can
play a crucial role in detecting SARS-CoV-2. Mechanical,
electronic, and magnetic properties of NPs are funda-
mental in diagnostics endeavors [19].
Nanoparticle-based detection strategies of
COVID-19
Diagnostic methods are essential strategies that could
be used to tackle COVID-19, isolating the infected
patients, and prevent dissemination [20]. Several
techniques are available to detect SARS-CoV-2, such as
enzyme-linked immunosorbent assay or RT-PCR from
nasopharyngeal swabs obtained from noses and throats
of patients [7]. These techniques rely on their inter-

action with the detection of ligand complementary
strands. The main disadvantage of these methods is
their false-negative results and low sensitivity [21].

Nanomaterials are the most current components in
SARS-CoV-2 testing because they have distinct prop-
erties, such as their large surface-to-volume ratios.
Owing to the extensive surface interactions of the
nanomaterials and the sensor and the analyte, these
materials allow rapid and reliable detections with high
sensitivity [19].

SARS-CoV-2 virus infection triggers many inflammatory,
biochemical, and hematological biomarkers. Various
inflammation markers, such as PCT, CRP, FT, and IL-
6 have been intricately linked to this infection. Detec-
tion of these markers can also help to understand the
level of disease. By monitoring these biomarkers, in-
fections with low SARS-CoV-2 RNA are also predicted
in cases where traditional tests miss. In this area, NPs
are also used to develop several COVID-19 diagnosis
methods [14]. Several types of NPs used in SARS-CoV-2
detection methods are shown in Figure 1.

Gold nanoparticles
Within NPs, gold NPs are universally used in testing
strategies because of their unique features. Their ad-
vantages include easy to synthesize, stability in time,
size variability, biocompatibility, enhancement of cata-
lytic size by silver deposition, conductivity, electro-
chemical properties, and ability to quench fluorescence.
Therefore, NPs become highly effective materials for
developing fluorescent sensors [30]. Gold NPs have
www.sciencedirect.com
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Figure 1

Distinctive colloids and nanoparticles used in SARS-CoV-2 detection and COVID-19 diagnosis. (a) Transmission electron micrographs of gold nanospike;
reprinted with permission from [22]. (b) Scanning electron microscopy (SEM) images for CuWO4@rGO hybrids; reprinted with permission from [23]. (c)
Transmission electron microscopy (TEM) of the superparamagnetic beads; reprinted with permission from [24]. (d) TEM image of single-crystalline
graphene quantum dots; reprinted with permission from [25]. (e) TEM image of size distributed gold nanoparticles (AuNPs); reprinted with permission
from [26]. (f) SEM image of aggregated cellulose nanoparticles with an average diameter of 80 nm; reprinted with permission from [27]. (g) TEM image of
lanthanide nanoparticles with lanthanide complexes doped in the silica shell; reprinted with permission from [28]. (h) Field emission-scanning electron
microscopy (FE-SEM) image of a single-walled carbon nanotubes (SWCNTs) forest; reprinted with permission from [29].
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peculiar optical properties, which is named localized
surface plasmon resonance (LSPR). LSPR is used in
biosensors because of its light adjustability and scat-
tering of wavelengths in the visible spectrum. LSPR
spectra of gold NPs change as a function of the refractive

index of their surrounding media. Thus, NP aggregation
degree is considered a decisive factor for their applica-
bility in biological detection [31]. Alafeef and his co-
workers (2020) reported a fast, inexpensive, easy-to-
apply, and quantitative paper-based electrochemical
sensor chip that enables digital detection of SARS-CoV-
2 genetic material by using gold NPs coated with highly
specific antisense oligonucleotides that target the viral
nucleocapsid phosphoprotein gene with a limit of 6.9
copies/ml [32]. Sensor probes are immobilized on a
paper-based electrochemical platform to provide a

nucleic acid tester with a screen that can be registered
with a simple handheld reader [32].

Broughton and coworkers (2020) used the powerful
genome editing techniques of CRISPR/CAS9 for
detecting viral RNA of SARS-CoV-2 from nasopharyngeal
swabs in a lateral flow assay (LFA) using gold
www.sciencedirect.com
nanoparticles (AuNPs) as a label [33]. Ventura and co-
workers (2020) recently developed a colorimetric
biosensor for the mass testing of COVID-19 with a
sensitivity and specificity higher than 95% for more than
90 samples [34]. In another application, conjugated

colloidal gold NPs with streptavidin are used for an
reverse transcription loop-mediated isothermal amplifi-
cation (RT-LAMP) combined with a flow-through assay
for CoV detection [35]. Biotin/FITC-labeled amplicons
bind to streptavidin-functionalized gold NPs, and by
using an antibody-coated strip, the color formation can be
detected. The assay takes 35 min to detect limit of
detection (LOD) 10 copies/ml of MERS-CoV RNA. Also,
this approach produced high specificity without cross-
reactivity for other CoVs [35]. In another research, gold
NPs were conjugated with thiol-modified antisense oli-

gonucleotides todetect theRNAcoding for theN-protein
of the SARS-CoV-2, calorimetrically. Results were seen
within 10 min with an LOD less than 0.18 ng/ml [36].

One of the most frequently used techniques to detect
neutralizing antibodies of SARS-CoV-2 is the lateral flow
immunoassay technique. The technique is used in
Current Opinion in Colloid & Interface Science 2021, 55:101469
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several tests developed for COVID-19 antibodies, virus
antigens, and nucleic acidebased methods [37]. Roda
and his coworkers (2021) developed a dual optical/
chemiluminescent type of an lateral flow immunoassay
(LFIA) immunosensor for IgA in serum and saliva,
which depends on capturing SARS-CoV-2 antibodies
with a recombinant nucleocapsid antigen [38]. A simple
device using a smartphone camera measures the color

signal provided by anti-human IgA labeled nanogold
particles. For ultrasensitive chemiluminescence trans-
duction, they used a portable contact imaging device
based on cooled charged-coupled device (CCD) and
measured the light signal that resulted from the
Horseradish peroxidase-labeled anti-human IgA reac-
tion with an H2O2/luminol/enhancer substrate [38].

Gold nano-spikes are a promising class of molded NPs
because these multibranched NPs with sharp tips have
exciting plasmonic properties with a broad plasmon

band in the near-infrared region [22]. Funari and co-
workers (2020) used the LSPR to design an opto-
microfluidic sensor with gold nano-spikes for detecting
SARS-CoV-2 spike protein in human plasma in less than
30 min. This label-free method achieves the LOD of
~0.08 ng mL�1 [39].

Gold NPs are also used in the detection of COVID-19
biomarkers several times. For this purpose, an ultra-
sensitive sandwich electrochemical immunosensor was
developed for PCT detection [40]. The immunosensor

is formed using delaminated-sulfur doped MXene (dS-
Ti3C2TX MXene)-modified carbon electrode contain-
ing the PCT antibody-conjugated AuNPs used as an
immunosensor array. Carboxylated graphitic carbon
nitride was then conjugated with PCT Ab2 as a signal
amplifier. Electrochemical impedance spectroscopy and
cyclic voltammetry (CV) are performed to detect
carboxylated graphitic carbon nitride catalytic activity
against H2O2 and are used directly as a redox probe. The
linearity range and LOD results were calculated as
0.01e1.0 pg ml�1 and 2.0 fg ml�1, respectively [40].

An optical assayebased aggregation of AuNPs coated
with two complementary aptamers for different IL-6
target fragments in a sandwich type was developed for
IL-6 detection. Recognition and binding of the com-
plementary pair of aptamers caused the corresponding
functionalized NPs to be aggregate. The aggregation of
AuNPs gives a visible color, which is changed from red to
pink with a difference in absorbance 520e540 nm. The
test works in a concentration range from 3.3 to
125 mg ml�1 IL-6, and the detection limit is
1.95 mg ml�1 [41].

An origami paperebased electrochemical immunoassay
for detecting CRP was developed with multiple elec-
trode modification steps onto a graphene-modified
screen-printed carbon electrode (G/SPCE). Gold NPs
Current Opinion in Colloid & Interface Science 2021, 55:101469
electrodeposited a self-assembled monolayer of L-
cysteine modifying G/SPCE. A capture anti-CRP does
CRP measurement on the modified electrode by using
hexacyanoferrate as a redox probe. The increase in
impedance is found as a concentration range of 0.05e
100 mg ml�1 CRP with 15 ng ml�1 LOD [42].

Magnetic nanoparticles
MNPs are indispensable tools for the development of
several diagnosis and analysis methods. MNPs have
been used in several methods in COVID-19 diagnosis
and development of detection tests against SARS-
CoV-2. The prominent use of a MNP is to separate
the viral RNA for diagnostic purposes, of which iron
oxide NPs are mostly used because of their high
magnetic capability and easy manufacturing procedure
[43]. It was recently demonstrated that a carboxyl
groupeattached polyaminoester-coated MNP could
detect SARS-CoV-2 RNA with high purity perfor-

mance within 30 min. The polyaminoester-coated
MNP proved high binding capacity with viral RNA,
and the pcMNP�RNA complexes were amplified by
real time PCR [44].

Direct virus detections are also shown recently [45].
The study shows the detection of SARS-CoV-2 by
measuring the magnetic particle spectroscopy (MPS)
signal of MNPs functionalized with the SARS-CoV-2
spike protein-antibody with a detection limit of
0.084 nM (5.9 fmol). An MPS system was used to

measure the MPS signal from functionalized MNPs.
Also, AC sensitivity spectra were measured with a
rotating magnetic field system to evaluate the Brownian
relaxation time [45].

A carbon-based screen-printed electrode (SPE) as a
sensor combined with an MB-based electrochemical
test with a 19-ng mL�1 detection limit was reported for
SARS-CoV-2 in saliva. SARS-CoV-2 proteins, S and N,
were used as the target analyte to develop a sandwich
experiment with antibodies immobilized on MBs for S
or N protein from nasopharyngeal swab samples [46].

On the other hand, magnetic beadebased methods are
developed for detecting COVID-19 biomarkers. A new
electrochemical lab-on-chip magnetoimmunoassay was
proposed for the determination of PCT. The method
depends on the online presence of the biorecognition
event and detection on a microfluidic thin-film gold
electrode chamber operating at E = �0.20 V, compared
to Au in less than 15 min with a detection limit and
quantification at 0.02 ng ml�1 and 0.05 ng ml�1,
respectively [47]. The same group, this time, developed

an electrochemical immunoassay based on magnetic
beads in a sandwich format with two different ap-
proaches: The first approach consisted of disposable
SPCE and microfluidic chips (EMC-Au) with integrated
Au electrodes. This approach offers good sensitivity with
www.sciencedirect.com
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LOD of 0.1 and 0.04 ng mL�1 for SPE-C and EMC-Au,
respectively, with a total test time less than 20 min [48].

Quantum dots
Quantum dots (QDs) possess unique optical and elec-
trical properties, so they have been used to detect
several viruses [49]. As the QDs also have an excellent
plasmonic property, a star-shaped chiroplasmonic gold
NP is conjugated with it to develop an optical biosensor
to detect the influenza virus [50]. For this anti-HA and
anti-NA, the influenza virus antibodies are immobilized

on the gold NP on QDs’ surfaces. The recombinant
protein of the respective virus is mixed to form a
nanohybrid complex with the gold NP and QDs, and
after that, a plasmon-excitation interaction is created on
the nanohybrids, which enhances the chiral optical
response of the solution. In this way, the viral recom-
binant protein is detected with the measured circular
dichroism response of the solution. By these techniques,
a group of researchers achieved an LOD of less than 1 pg
ml�1 for influenza virus and CoV [50]. A similar method
was developed to aid a magnetoplasmonic fluorescent

biosensor depending on the zirconium QDs and Fe3O4e
Au core�shell magnetoplasmonic NPs. Once the virus is
added to the mixture, the conjugated zirconium QDs
and magnetoplasmonic NPs formed
magnetoplasmonic�fluorescent nanohybrid structures.
The virus presence is showed by the nanohybrids com-
plexes’ photoluminescence properties in which LOD
was 79.15 EID/50 ml in blood samples [51]. The possi-
bility of QDs ability to increase the sensitivity of surface
plasmon resonance (SPR)-based fluoroimmunoassay for
the detection of norovirus was established [52]. Such

types of novel fluorescent-based QDs can be used to
develop a practical method of COVID-19 detection
[53].

A spike recombinant receptor-binding domain conju-
gated with fluorescent QDs was used to develop an
imaging probe. Energy transfer quenching with ACE2-
conjugated gold NPs in solution is used to monitor the
interaction. Neutralizing antibodies and recombinant
human ACE2 block quenching with a specific binding
interaction within nanomolar potency. The QD probe

can then be used to study the inhibitors of SARS-CoV-2
spike and ACE2 receptor binding proteins in human
cells [54].

In a novel study, QDs from biosurfactant stabilized/
functionalized tungsten disulfide (WS2eB) and their
effect on a FT immune sensor were described [55].
Extensive characterization is performed using analytical
techniques to investigate further possible SPEs appli-
cations, functionalized with WS2eB-QDs. CV and dif-
ferential pulse voltammetry techniques are combined

for electrochemical immunosensing of FT with detec-
tion limits of 3800 ng ml�1 in differential pulse
www.sciencedirect.com
voltammetry and 6048 ng ml�1 in CV [55]. The same
group also tested FT detection by hexagonal boron
nitride QDs. Electrochemical impedance spectroscopy
is used in a platform where hexagonal boron nitride QDs
are a functionalized detection platform for screen-
printed electrodes. The developed immune sensor has
a linear range from 10 to 2000 ng/ml�1 FTconcentration
with a detection limit of 1.306 ng/ml�1 [56].

Wu and his coworkers (2018) report an LFIA for quan-
titative and rapid detection of CRP based on CdSe/ZnS
QDs by measuring the fluorescence intensity immedi-
ately afterward with a fluorescence immunoassay
analyzer. QDs are synthesized using the ‘green’
phosphine-free method with a wide detection range
between 0.5 ng ml�1 and 1 mg ml�1, and the analytical
detection limit is 0.3 ng ml�1 [57].

Graphene nanoparticles
The two-dimensional hexagonally arranged carbon has a
promising future because of its high ultrasensitive
characteristic of surface area and electrical and ionic

mobility [58]. A field-effect transistor (FET) sensor to
detect SARS-CoV-2 in human nasopharyngeal swabs was
reported recently [59]. In this wet transfer method,
graphene is placed onto the SiO2/Si substrate using the
photolithographic method. The graphene surface is
coated with SARS-CoV-2 spike protein antibody to
prepare the FET-based analytical system. The clinical
samples of COVID-19 patients are applied on the FET-
based biosensing device, and LOD is reported as 1 fg/
mL [59].

Carbon nanotubes
In a new approach, reactive oxygen species (ROS),

harmful to many viruses, including CoVs, are used to
detect COVID-19 diagnosis [46]. Recently, metal-
decorated SWCNTs adsorbed with hydrogen peroxide
(H2O2) were investigated for their possible use in the
design of inactivation of viruses on surfaces [60]. Pt, Pd,
Ni, Cu, Rh, or Ru decorated SWCNTs are tested for
detecting SARS-CoV-2. The detection of separate H2O2

molecule adsorption on bare and metal-functionalized
SWCNTs is based on the density functional theory
[60]. Based on H2O2 production and adsorption on the
CNTs, an electrochemical sensor to detect the ROS

concentration in the sputum sample was developed
[61]. The accuracy and sensitivity of the sensor are
found at 97% and 95%, respectively. The COVID-19
ROS detection approach contains an electrochemical
ROS/H2O2 system. It consists of a portable automatic
electrochemical reader and a single-use sensor for
detection. The sensor is made by growing multiwalled
carbon nanotubes on the tip of steel needles [61].

An optical nanosensor based on noncovalently func-
tionalized SWCNTs with ACE2 proteins was developed
Current Opinion in Colloid & Interface Science 2021, 55:101469
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recently [62]. The nanosensor principle depends on the
SARS-CoV-2 spike protein presence, which leads to an
increase in nanosensor fluorescence within 90 min of
exposure to the spike protein. Sensor responded in the
salivary samples and virus transport environments. It is
shown that ACE2-SWCNT nanosensors retain detec-
tion capability in a modified surface with a 73% fluo-
rescence turn-on response within 5 s of exposure to

35 mg/L SARS-CoV-2 virus-like particles [62].
Specialized nanoparticles
Lanthanide complexes and NPs are excellent fluores-
cent probes in a wide variety of biomedical research
because of their unique fluorescence emission peaks,
bright and monochromatic emissions, high quantum
efficiency, large Stokes drift, and long fluorescence
lifetimes [63]. Immense research has been conducted to
improve the credibility and sensitivity of point-of-care

tests for SARS-CoV-2 by using lanthanide NPs. A recent
study reported the utilization of lanthanide-doped
polystyrene NPs and detection with a portable fluores-
cence reader obtained from RT-PCR [64].

Wang and coworkers (2020) offered an LFA test kit
based on SARS-CoV-2 nucleoprotein modified with se-
lenium NPs to detect anti-SARS-CoV-2 IgM and IgG in
human serum [65]. The results were visible to naked
eyes within 10 min. Selenium NPs are synthesized by L-
ascorbic acid reduction of selenic acid and conjugated
with the nucleoprotein. The IgM and IgG detection

limits are 20 ng mL�1 and 5 ng mL�1, respectively. No
cross-reaction with other antinuclear antibodies and
influenza viruses is observed using the designed test kit
[65].

A specific LFIA-based biosensor for COVID-19 was
developed using a cellulose nanosphere platform. SARS-
CoV-2 nucleocapsid proteinespecific single-chain vari-
able fragment crystallizable fragment fusion antibodies
are generated by phage display technology. Single-chain
variable fragment crystallizable fragment antibodies are

specific to SARS-CoV-2-NP antigen with high affinity,
and three specific antibody pairs are used on the cellu-
lose nanosphereebased LFIA kit. The detection limits
for the best pair are found as 2 ng of antigen protein and
2.5 � 104 pfu of the cultured virus [66].

Individual NPs are also used in COVID-19 biomarker
detections. A conductive nano-hybrid material consist-
ing of Au-NPs and molybdenum disulfide, functional-
ized with an ionic liquid (Au-NPs/IL-MoS2), was
produced and used to immobilize primary CRP anti-

bodies. Later, 1,5-diaminonaphthalene was adsorbed via
p-p stacking on graphene oxide, which is modified with
iridium NPs as a label for labeling secondary CRP anti-
bodies. Immunosensor shows a linear detection ranging
from 0.01 to 100 ng ml�1 and LOD of 3.3 pg ml�1 [67].
Current Opinion in Colloid & Interface Science 2021, 55:101469
A photoelectrochemical PCT immunosensor platform
based on photoactive CuWO4 nanospheres, grown on
reduced graphene oxide layers (CuWO4 @ rGO), was
constructed [23]. The immunosensor is used for PCT
detection based on an electrocatalytic mechanism. The
recorded reduction of the photocatalytic oxidation signal
was observed within the concentration range varying
from 10 pg mL�1 to 50 ng mL�1 [23].

A label-free electrochemical immunosensor was devel-
oped to detect PCTusing toluidine blue-functionalized-
NiFe-Prussian blue analog nanocubes (NiFe PBA-
nanocubes @ TB) as signal amplifiers. NiFe PBA
nanocubes were synthesized with a selective method.
The electrochemical performance of nanocubes is
increased by functionalization with TB. The developed
immune sensor showed a linear detection range of
0.001e25 ng ml�1 and a LOD of 3 � 10�4 ng ml�1 [68].

A quantitative EueNp combined LFIA method for the
detection of IL-6 is created by Huang and his coworkers
(2020) in serum [69]. To develop the quantitative IL-6
detection kit, a double antibody sandwich immunoflu-
orescence assay is tested on LFIA with a wide linear
range (2e500 pg/ml and good sensitivity (0.37 pg/ml)
[69].
Recently developed exclusive interfaces-
based biosensors for SARS-CoV-2 testing
and COVID-19 diagnosis
Nanobiosensors are a valuable alternative to conven-
tional laboratory devices for clinical and environmental
analysis. They can combine the unique electrical and
optical properties of nanomaterials with biological or
synthetic molecules that are used as receptors for the
selective detection of all types of analytes [70]. In

Figure 2, distinct nanobiosensor platforms are given in
the detection of SARS-CoV-2.

Breath analyzers
Two recent reports showed that the potential volatile
organic compounds (VOCs) marker contain higher ethyl
butyrate levels than healthy control [76,77]. The
markers used by breath analyzers are reported to be
related to COVID-19 disruption of respiratory
biochemistry resulting from ketosis, inflammatory pro-
cesses, and gastrointestinal effects [78]. A multiplex
sensor was designed based on nanomaterials linked with
organic ligands, which created a versatile sensor layer

that can change its structural properties when exposed
to VOCs and cause electrical resistance changes [79].
Inorganic nanomaterials were responsible for electrical
conductivity within the sensor, and the organic film
element provided sites for VOC adsorption. When
exposed, VOCs spread to the sensor layer and reacted
with functional groups covering organic segments or
inorganic nanomaterials. The interactions caused a
www.sciencedirect.com
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Figure 2

Fascinating nanobiosensor platforms in the detection of SARS-CoV-2. (a) Lateral flow test platform; reprinted with permission from [71]. (b) Paper-based
electrochemical impedance spectroscopy nanobiosensor; reprinted with permission from [72]. (c) Nanoplasmonic sensor in generic microplate reader
and point-of-care device; reprinted with permission from [73]. (d) Real-time optomagnetic detection of SARS-CoV-2; reprinted with permission from [74].
(e) Field-effect transistor-based biosensor for SARS-CoV-2 detection; reprinted with permission from [59]. (f) Exhaled breath sampling and analysis
procedure; reprinted with permission from [75]. (g) The COVID-19 ROS diagnosis system with three electrodes coated by functionalized multiwall carbon
nanotubes; reprinted with permission from [61].
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change in volume via swelling or shrinkage in the
nanomaterial film. The nanomaterial layer’s exposure to
VOCs caused a rapid charge transfer to/from the inor-
ganic nanomaterial, resulting in fluctuations in the
measured conductivity even if no structural changes
occurred in the sensor layer. The presence of geonosis
was used for distinguishing COVID-19 surgery patients
from noninfected participants based on VOC patterns in

two exhaled samples [80].

Plasmonic nanosensors
Nanoplasmonic biosensor technologies based on
SPR and LSPR are now available and commercialized in
different areas [81]. Also, the acquisition of real nano-
plasmonic point-of-care biosensors includes and en-
hances microfluidic systems that minimize or automate
sample processing and easy-to-use readings SARS-CoV-
2 detections [81].

Recently, a fast and online nanoplasmonic resonance
sensor for detecting SARS-CoV-2 without sample prep-
aration was developed in a single step. Within 15 min,

only 370 vp/ml is detected, and the linearity is ranging
from 0 to 107 vp/ml. The measurements obtained from a
generic microplate reader and a handset combined with a
smartphone showed that cheap and fast detection
methods could be applied quickly in normal clinical
conditions and resource-constrained settings [73].

As an alternative to RT-PCR, a plasmonic biosensor
combined with a plasmonic photothermal effect and
SPR was recently developed [71]. Gold nanomaterials
linked with complementary DNA sequences to detect

hybridized cDNAs of SARS-CoV-2 are used. This device
can detect cells using a cell surface protein reaction with
specific antibodies conjugated to AuNPs [82].

A multilayer grid-linked fluorescent plasmonic biosensor
platform is being developed to measure antibodies
against COVID-19 in human blood serum and dried
bloodstain samples [83]. The array gives antibody-
antigen binding interactions by showing 100% selec-
tivity and 86.7% sensitivity in serum IgG levels against
Spike S1, Spike S1S2, and N protein COVID-19 anti-

gens. The test was repeated on other sample matrices,
such as dried bloodstain samples, to demonstrate the
effectiveness of the test. The test also successfully de-
tects IgM, IgG, and IgA antibody-antigen interactions
and multiple immunoglobulin isotypes [83].

Novel plasmonic biosensor platforms are also developed
to detect COVID-19 biomarkers. A novel plasmonic
biosensor platform was developed [84]. The study
presented a label-free method for the quantitative
detection of IL-6. Cobalt ferrite and magnetite NPs are

combined in a hydrogel matrix by applying an external
Current Opinion in Colloid & Interface Science 2021, 55:101469
magnetic field, and detected antibodies are conjugated
on their surfaces. The interaction of IL-6 with the anti-
body created a blue shift in the resonance wavelength
after cobalt ferrite addition and magnetite-based MPC at
a 50 pg/ml concentration, and the reflection intensity
increased up to 50% and 44%, respectively [84].

PCT detection is achieved with an uncoated segment of

glass fiber conjugated with an anti-PCT captured anti-
body to obtain a fiber sensor, and then the anti-PCT
detection antibody is conjugated to AuNPs to provide
nanoplasmonic probes. A comprehensive linear response
range is achieved from 1 pg/ml to 100 ng/ml and LOD of
7.3 fM for PCTwithin 15 min [85].

Electrochemical sensors
Various non-SARS-CoV-2 electrochemical biosensors
were developed using potentiometric or amperometric
readings. An SPCE biosensor device (eCovSens) using
screen printing and compared to a commercial fluorine-
doped tin oxide electrode consisted of a potentiostat
[86]. Researchers tested their new device for sensitivity,

specificity, detection time, sample volume, portability,
and COVID-19 antigen detection. The ECovSens
device consists of a biosensor element (nCovid-19 Ab), a
transducer (carbon electrode), and an internal device to
detect voltage changes. Conjugated gold NPs recognize
virus particles and catalyze the electrochemical signal by
improving the electrical conductivity. COVID-19 parti-
cles trapped on the modified electrode caused current
changes proportional to the interested analyte concen-
tration. Virus particles were successfully captured and
detected at 90 fM (LOD) using prickly saliva samples

and found within 10e30 s [86].

A fast and sensitive method for detecting and measuring
D-dimer, a COVID-19 biomarker, present in high con-
centrations in patients, was developed [87]. The
method relies on an immunosensor, based on a single-
chain antibody immobilized on the transducer surface.
The redox activity of an N-alpha-bis (carboxymethyl)-1-
lysine/Cu2þ complex bound to a polypyrrole skeleton is
taken as the signal. D-dimer presence is monitored with
a linear ranging from 0.1 ng mL�1 to 500 ng mL�1. An

LOD of 100 pg mL�1 in PBS is measured by electro-
chemical impedance spectroscopy [87].

A simple, inexpensive, and label-free electrochemical
immunoassay was developed to measure serum
CRP concentrations with an immunosensor strip put on
an anti-CRP functionalized AuNPs modified SPCE.
The measurement is based on the reduction in the
redox indicator Fe3þ/Fe2þ oxidation current, resulting
from the immune reaction between CRP and anti-CRP
with a linear range of 0.4e200 with a detection limit of

0.15 nM [88].
www.sciencedirect.com
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An entropy-based enhanced electrochemiluminescence
method was developed by Fan and coworkers (2021) to
detect the RNA-dependent RNA polymerase gene of
SARS-CoV-2 [89]. DNA tetrahedron on the surface of
the electrode is modified for the design of the biosensor.
Biosensor shows an ‘electrochemiluminescence on’ state
with LOD up to 2.67 fM [89].

Field-effect transistors
FET biosensors show high sensitivity and selectivity
through biorecognition on the conducting channel. An

FET device is functionalized with an anti-SARS-CoV-2
spike protein antibody to detect the SARS-CoV-2
where graphene sheets were used, with a detection
limit of 1 fg/mL in phosphate-buffered saline and 100 fg/
mL in clinical transport medium. Changes in surface
charge upon binding lead to transducable differences in
source-drain current measurements [59].

A label-free immunosensor, based on a SWCNT FET
device, was developed to detect CRP. The immune re-
action principle relied on direct adsorption of CRP-

specific antibodies (anti-CRP) onto SWCNT networks
with a linear range of 10�4-102 mg/ml [90].
Conclusion
Unlike the traditional sensing platforms, nanomaterial-

based biosensors offer much-required selectivity, sensi-
tivity, reliability, reproducibility, and robustness while
being cost-effective in sample measurements. Biosensor
platforms based on nanomaterials are becoming more
critical to a clinical diagnostic approach. Extensive
studies are dedicated to displaying the applicability of
various nanomaterial-based sensors against a wide vari-
ety of RNA viruses. Based on these findings, it is safe to
say that nanotechnology will play an efficient and
particular role in the effective surveillance of COVID-19
in the future. Therefore, it is clear that nanomaterials

can be used more effectively in the management of
SARS-CoV-2, which can be achieved by developing
various nanomaterial-based sensor arrays such as
plasmonic-based, paper-based, FET-based, and
electrochemical-based, LFA-based methods. Also, sig-
nificant challenges are not given for the usage of QDs
and VOC biosensors. This can be a real future
perspective of the nanomaterial and distinct interface-
based nanotechnological methods for the detection of
SARS-CoV-2 and COVID-19 diagnosis. In future, reli-
able and cost-effective biomedical devices are expected

to provide affordable, practical, and easy-to-use prod-
ucts accessible to all countries. The internet of tele-
phone and smart technologies are outstanding tools that
must be used to monitor, control, and predict the evo-
lution of COVID-19 pandemics.
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