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Abstract

In robotic assisted beating heart surgery, the control architecture for heart motion tracking has stringent requirements in
terms of bandwidth of the motion that needs to be tracked. In order to achieve sufficient tracking accuracy, feed-forward
control algorithms, which rely on estimations of upcoming heart motion, have been proposed in the literature. However,
performance of these feed-forward motion control algorithms under heart rhythm variations is an important concern. In
their past work, the authors have demonstrated the effectiveness of a receding horizon model predictive control-based
algorithm, which used generalized adaptive predictors, under constant and slowly varying heart rate conditions. This paper
extends these studies to the case when the heart motion statistics change abruptly and significantly, such as during
arrhythmias. A feasibility study is carried out to assess the motion tracking capabilities of the adaptive algorithms in the
occurrence of arrhythmia during beating heart surgery. Specifically, the tracking performance of the algorithms is evaluated
on prerecorded motion data, which is collected in vivo and includes heart rhythm irregularities. The algorithms are tested
using both simulations and bench experiments on a three degree-of-freedom robotic test bed. They are also compared with
a position-plus-derivative controller as well as a receding horizon model predictive controller that employs an extended
Kalman filter algorithm for predicting future heart motion.
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Introduction

The present work is focused on a previously unexplored aspect

of robotic-assisted beating heart surgery; namely, evaluating

performance of robotic active relative motion cancellation

(ARMC) control algorithms for heart motion tracking under atrial

fibrillation (AF) induced arrhythmia conditions. The occurrence of

arrhythmia during cardiac procedures cannot be ruled out, hence

robots must be able to handle this case to be clinically useful. This

paper is the first to acknowledge this essential problem of tracking

heart motion in the presence of heart rhythm irregularities during

arrhythmia.

There is substantial amount of literature in heart motion

tracking studies for robotic-assisted beating heart surgery [1–14]

(see Background for further details). However, the studies under

slow heart rate variations are limited [4,14] and none of the heart

motion tracking algorithms are evaluated under arrhythmia

conditions.

The purpose of this study is to evaluate the feasibility of the

ARMC control algorithms introduced previously in [11–14] under

arrhythmia conditions. Specifically, a novel set of in-vivo heart

motion data is acquired from a bovine model, where the data

includes artificially induced atrial fibrillation rhythm irregularities.

Then, the ARMC control algorithms are tested on this data using

simulations and bench-top experiments on a hardware test-bed.

The algotihms are further compared with an extended Kalman

filter (EKF) based control algorithm and a position-plus-derivative

(PD) control algorithm. Although the control algorithms are

formerly described in [11–14] and the proposed approach for

inducing arrhythmia might be a limited model for the clinical

situation, the presented results provide novel contribution to the

literature of heart motion tracking for robotic assisted beating

heart surgery.

Background
Coronary artery bypass graft (CABG) surgery requires surgeons

to operate on blood vessels that move with high bandwidth. This

rapid motion of heart makes it difficult to track these arteries by

hand effectively [15]. Contemporary techniques either stop the

heart and use a cardio-pulmonary bypass machine, on-pump, or

passively restrain the beating heart with mechanical stabilizers, off-
pump, in order to cancel the biological motion of the heart during

CABG surgery. However, using on-pump CABG surgery might

cause significant complications that might occur during or after
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surgery, which includes long-term cognitive loss [16]. Off-pump

CABG surgery is mostly limited to the front surface of the heart

and significant residual motion is observed during stabilization

[17].

Robotic-assisted beating heart surgery has been proposed to

enable high dexterity surgical manipulations to be performed on a

beating heart without mechanical stabilization. In robotic-assisted

beating heart surgery conventional surgical tools are replaced with

robotic instruments, which are directly controlled by the surgeon

through teleoperation. In this system, the surgeon views the

surgical site through a camera mounted on a robotic arm, which

follows the heart motion, giving a stabilized view. The robotic

surgical instruments also track the heart motion, canceling the

relative motion between the surgical site and the instruments. As a

result, the surgeon operates on the heart as if it was motionless,

while the robotic system actively compensates the relative motion

of the heart [18].

Due to the high bandwidth of the heart motion, it is necessary to

employ model predictive feed-forward control algorithms, which

rely on estimation of the future motion of the point-of-interest

(POI) to achieve sufficient tracking accuracy [1,4,11]. However,

the performance of these algorithms under changes in heart

rhythm is a valid and important concern.

Several approaches have been proposed in the literature for

modeling and predicting the motion of a POI on the heart,

including algorithms using harmonics models [1], extended

Kalman filters [2–4], coupled breathing and heartbeat motion

models [5,6], surface deformation models [7–9], ECG synchro-

nized periodic models [10,11], and generalized adaptive filters

[12–14]. However, heart motion tracking performance using these

algorithms under heart rhythm irregularities has not been

addressed in the literature.

In our previous work two least-squares-based prediction

algorithms, namely one-step and generalized, using an adaptive

filter to generate future position estimates, were introduced [14].

These algorithms were studied by using a range of prerecorded in
vivo constant and slowly varying heart rate motion data. Our

previous report showed that the tracking of POI motion is no

longer the bottleneck since the necessary amount of root-mean-

square (RMS) tracking error on the order of 100–250 mm is

achieved. Furthermore, if the heart behavior slowly changes, then

adaptive predictors are able to adjust to these changes quickly

enough and yield good tracking results.

This paper extends our previous efforts on active tracking of the

beating heart to the case of arrhythmia presence, where heart

behavior changes significantly and abruptly. Here, a feasibility

study is performed to determine motion tracking capabilities of

these algorithms in the occurrence of arrhythmia. We evaluate the

tracking performance of one-step and generalized predictors

presented in [14] used in conjunction with the receding horizon

model predictive control algorithm (RHMPC) presented in [11]

with a range of prerecorded in vivo arrhythmia data by

simulations and on a three degree-of-freedom (3-DOF) robotic

test bed. Additionally, tracking results of RHMPC with an EKF

(adapted from the implementation presented in [4]) and of a PD

controller are given for comparison purposes.

The rest of this paper is organized as follows. First, experimental

setup and analysis of the arrhythmia data is described. Then, the

adaptive prediction methods are briefly revisited, and the results

and the comparison of the algorithms are presented. Finally,

conclusions and possible extensions are given. The adaptive

prediction algorithms are proposed in [14]; the applications of

these algorithms to arrhythmia tracking is the original contribution

and has not been published previously.

Materials and Methods

Analysis of Heart Data
The heart motion data were collected in vivo from three calves

using a sonomicrometer and all of the bench-top experiments were

performed with these prerecorded data. The size of the hearts

were approximately 16+2 cm in length and 12+1 cm in width.

In the experimental set-up for measurement of heart motion, two

sonomicrometry crystals were placed on the epicardial surface.

One crystal was sutured to the left side of the left anterior

descending artery (LAD), whose location is referred to as

‘‘Anterior’’ in the rest of the paper. The second crystal was

sutured on the right side of the LAD, whose location is referred as

‘‘Lateral’’ in the paper. Eight other crystals were asymmetrically

mounted upon a rigid plastic base of diameter 60 mm, on a circle

of diameter 50 mm, forming a reference coordinate frame. This

rigid plastic sensor base was placed in a rubber latex balloon,

which was filled with a 9.5% glycerine solution. The reason of

using such a set-up was to ensure a continuous line of sight

between the base crystals and the crystal on the heart surface

through a liquid medium for proper operation of the sonomicro-

metry sensor system.

Two pacemaker electrodes were sutured to the right atrium and

connected to a pacemaker to set a desired cardiac rhythm and

induce arrhythmias. The method of inducing atrial fibrillation (AF)

by electrically stimulating right atrium has been used in the

literature for easy and reliable modeling of AF [19–21]. The AF

was induced by stimulating the right atrium via two electrodes

connected to an Electric Transformer with 2.5V AC @60 Hz.

The ECG pattern of the AF (i.e. the absence of P waves,

disorganized electrical activity in their place, and irregular R-R

intervals due to irregular conduction iimparted to the ventricles)

induced intraoperatively in our experimental setting was similar to

that found clinically in patients [19–21]. This set-up for

arrhythmia generation was chosen for motion control and tracking

purposes only and not for the functional aspect of rhythm

disturbances. The formulation of the biochemical and the

pathophysiological aspects of the cardiac muscle motion, and the

related neurostimulation are beyond the scope of the present

study.

Data were processed offline and only filtering performed on the

data (using the proprietary software provided with the system) was

very limited removal of the outliers, which occasionally occur as a

result of ultrasound echoing effects. Description of the sonomic-

rometer crystal locations on heart with respect to the left anterior

descending artery (LAD) are given in Table 1. Fig. 1 shows the

experimental setup for data collection. The sonomicrometer

crystals, the sonomicrometer base, and the pacemaker leads are

visible. A Fourier transform (Fig. 2) of the 183 s heart signal data

from animal 1 reveals the inherently non-periodic nature of heart

motion during arrhythmia. The abundance of intermittent

frequencies in the power spectral density (PSD) with the absence

of tall, narrow peaks indicates this point.

Ethics Statement
The in vivo study protocol was approved by the Cleveland

Clinics Institutional Animal Care and Use Committee, and all

animals received humane care in compliance with the Guide for

the Care and Use of Laboratory Animals (Institute of Laboratory

Animal Resources, Commission on Life Sciences, National

Research Council, National Academy Press, Washington, DC,

2011) and institutional guidelines.
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Adaptive Motion Estimation Algorithms
The most important aspects of robotic surgical instruments in

robotic assisted CABG surgery are accurately measuring and

predicting the heart motion as they are instrumental in tracking

and canceling the relative motion between the heart surface and

surgical tools attached to the robotic manipulators. The rapid

motion of the heartbeat component possesses demanding require-

ments on the control architecture of the robotic system in terms of

the bandwidth of the motion that needs to be tracked. Feed-

forward control algorithms, which rely on estimations of upcoming

heart motion, need to be utilized to achieve sufficient tracking

accuracy [1,4,11].

Two adaptive filter-based predictors used in this study provide

an estimate of the immediate future of the POI motion over a

prediction horizon to the feed-forward control algorithm. The best

estimate is defined to be the one that minimizes the square of the

estimation error, where the estimation error is the difference

between the prediction and the observed value at that time. Once

a method is established to predict the next observations, a

sequence of future observations can be estimated. Fig. 3 provides a

graphical schematic of the prediction problem.

The implementations of the predictors parameterize a linear

system to predict POI motion and rely on recursive least-squares

(RLS) adaptive filter algorithms. The one-step predictor assumes a

linear system relation between the consecutive samples in the

prediction horizon, whereas the generalized method performs the

parametrization of the linear system independently for each point

throughout the horizon.

The estimated trajectory of the POI on the heart is used as a

feed-forward control signal in a model predictive controller [22–

25]. The RHMPC algorithm combines linear quadratic optimal

control strategy with prediction. The robot model and the

estimated trajectory of the POI, which extends into the future,

provide the prediction. At each time step, the control action is

calculated by solving a finite horizon linear quadratic optimal

control problem, which compares the predicted plant signals with

the provided desired trajectory and the control objectives for the

given time horizon.

The details of the RHMPC algorithm can be found in [11]. The

motion estimation problem and adaptive estimation algorithms are

comprehensively explained in [14]. They have been omitted here

due to space constraints.

In the authors’ previous work [14] the effectiveness of the

RHMPC algorithm, which employs adaptive predictors to

estimate upcoming heart motion, was studied during regular and

slowly-changing heart rate conditions. Building on this work, this

study focuses on the problem of heart motion tracking in the

presence of highly irregular heart rhythm conditions. Specifically,

the tracking performance of the algorithms is evaluated with

arrhythmia data. To the best of the authors’ knowledge, there are

no previous studies in the literature to address this problem.

Results

It is necessary to evaluate algorithms on some type of hardware

testbeds. The algorithms were tested on a PHANToM Premium

Figure 1. Experimental setup for the measurement of the heart
motion. Two sonomicrometer crystals that are sutured on the anterior
and posterior surfaces of the heart are used for data collection.
Pacemaker leads and sonomicrometer base are also visible in the
image.
doi:10.1371/journal.pone.0102877.g001

Table 1. Arrhythmia Data.

DataSet (Body weight) Animal 1 (75.8 kg) Animal 2 (68.7 kg) Animal 3 (70.2 kg)

Location of crystal on cardiac surface Anterior Lateral Anterior Lateral Anterior Lateral

Position relative to LAD 2 cm left 0.5 cm right 1 cm left 5 cm right 1 cm left 5 cm right

Data from animal 1 have a sampling rate of 180 Hz with durations 85 s and 183 s respectively for ‘‘Anterior’’ and ‘‘Lateral’’ locations. Data from animal 2 have a sampling
rate of 404 Hz with a duration of 85 s for both locations. Data from animal 3 have a sampling rate of 404 Hz with durations respectively 215 s and 105 s for ‘‘Anterior’’
and ‘‘Lateral’’ locations.
doi:10.1371/journal.pone.0102877.t001

Figure 2. Power spectral density of the heart motion in the z-
direction. Heart motion modes are inseparable. The frequency axis is
set to 12 Hz to clearly show inseparability around fundamental heart
beating frequency, i.e. 2 Hz, and its harmonics. The spectrum for the
whole 183-s arrhythmia data from animal 1 is shown. The spectrum
corresponds to motion of the POI located at 0.5 cm on the right side of
LAD.
doi:10.1371/journal.pone.0102877.g002
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1.5A haptic device, which is a 3-DOF robotic system. The

PHANToM provides insight into the effectiveness of the

algorithms on a desired system. Its lightweight frame and drive

system allow for sufficient motion and speed to attempt to track the

heartbeat signal. With its high bandwidth and low inertia features,

the PHANToM robot possesses characteristics similar to those

desired in a surgical robot that would be capable of heart motion

compensation. Such a surgical robot would need to have

lightweight links, low inertia design, and low-friction actuation

system for tracking the heart with sufficient motion and speed.

Such a prototype is currently being developed [26].

In the experimental setup, control algorithms were executed in

xPC Target and run in a real-time kernel with a sampling time of

0.5 ms on a Intel Xeon 2.33 GHz Core PC. The nonlinearities of

the test-bed system (i.e., gravitational effects, joint frictions, and

Coriolis and centrifugal forces) were canceled independently from

the controller (more details can be found in [27]). The robot was

commanded to follow the combined motion of heartbeat and

breathing. The system used online streaming position data in place

of real-time measurements.

The robot model was controlled using RHMPC. The encoder

positions on the PHANToM were recorded and these positions

were transformed into end effector positions. The reported RMS

errors, which represent the tracking performance of the algo-

rithms, were calculated from the difference between the prere-

corded target point and the actual end effector position calculated

from joint angles.

In both simulations and experiments, the same control methods

and reference data were used. During the trials, a 16th order

correlated signal one-step estimator and a 10th order generalized

estimator were used. The predictors were downsampled by a

factor of 15, processing observations that were 7.5 ms apart [14]

and used to predict a 25 ms horizon. The 25 ms horizon

corresponds to 50 control samples into the future. The length of

the control horizon and estimator orders were chosen for the

optimum error/performance under real-time computation re-

quirements [11,14].

As sonomicrometer was employed to acquire heart motion data

used in this study, the sensor measurement delays were not

considered, while determining the 25 ms prediction horizon. The

sonomicrtometry sensor operates at high update rates (w125 Hz)

and has a high spatial resolution (24mm) [28]. The primary sources

of measurement error include sonomicrometry crystal geometry,

ultrasound echoes, and either weak or missing signals [29]. In this

sense, sonomicrometry system architecture does not cause

significant data acquisition and processing delays, unlike the

vision-based and the ultrasound-based sensory systems, where

there are inherent to image acquisition and processing delays

[14,30]. When such image-based sensor modalities are employed

as in [4], the non-negligible delays introduced due to image

acquisition and processing must be compensated. Thus, 25 ms

estimation horizon is almost exclusively used for feed-forward

compensation of the robot dynamics for improved control

performance in this study.

For each case, experiments on the PHANToM robot were run

10 times with the estimation algorithms and again with the actual

heart motion data as future signal reference for the prediction

horizon. The latter case represents a ‘perfect’ estimation,

providing a performance base of the robotic system’s capability.

It was noted that the deviation between the trials had been very

small. Among these results, the maximum values for the End-
effector RMS and Maximum Position Errors in millimeters in 3D

and RMS Control Effort in millinewton meters are summarized

Table 2. Simulation Results for End-Effector Tracking: RMS End-Effector Error and MAX Position Error for the Control Algorithms.

End-effector Tracking Results RMS Position Error [mm]

(Maximum Position Error [mm])

DataSet Animal 1 Animal 2 Animal 3

Crystal Location Anterior Lateral Anterior Lateral Anterior Lateral

P-P amp of POI motion [mm] 11.811 20.946 7.619 10.399 13.796 18.676

RMS mag of POI motion [mm] 4.488 4.419 3.238 3.063 4.819 4.058

RHMPC with Exact Reference Information 0.201 0.283 0.188 0.224 0.392 0.310

(1.066) (1.689) (1.132) (1.062) (1.934) (4.479)

RHMPC with One-Step Adaptive Filter Estimation 0.204 0.300 0.193 0.239 0.388 0.334

(1.603) (2.431) (1.325) (1.554) (1.970) (6.223)

RHMPC with Generalized Adaptive Filter Estimation 0.192 0.262 0.185 0.221 0.380 0.299

(1.402) (1.751) (1.054) (1.012) (1.792) (3.671)

doi:10.1371/journal.pone.0102877.t002

Figure 3. A schematic of the heart motion prediction problem.
The circles represent past observations, now in memory, the 0 ? ’ is the
current observation, and the short curve originating from there is the
horizon estimate. The predictor takes the past observations and
produces the horizon estimate from past observations.
doi:10.1371/journal.pone.0102877.g003
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respectively in Table 2 and Table 3 for the simulations and

respectively in Table 4 and Table 5 for experiments to project the

worst cases. The RMS magnitude and peak-to-peak amplitude of

the heart motion for each data set are also stated to highlight the

importance of using motion prediction for decreasing the tracking

error.

Tracking results of 183-s arrhythmia data from animal 1 for the

generalized predictor are shown in Fig. 4 for each PHANToM

axis. Experimental results of the RHMPC with EKF predictor and

PD controller are also given in Table 4 and Table 5 for

comparison purposes (EKF predictor was implemented as

described in [4] with the experimental parameters presented in

[14]. More details on the PD controller can be found in [31].

Implementation details are omitted here due to space constraints).

Tracking result for Axis 1 of PD controller is shown in Fig. 5.

The weighting parameters of the optimal index in RHMPC

algorithms and the position and derivative constants in PD control

were tuned to minimize RMS tracking error in both simulations

and experiments. The tuning was performed individually for

simulations and experiments. In experiments, additional tuning

was performed to avoid the high frequency resonances so that no

high frequency vibrations would be reflected to the structure.

In simulations, the generalized adaptive estimator gave better

results than the exact heart signal in terms of RMS end-effector

error (Table 2). This is likely due to the combination of two factors.

First, the simulation model is a linearized and reduced order

model of the actual hardware, hence does not completely reflect

the influence of the nonlinearities of the hardware on the tracking

performance. Second, the adaptive estimator has a robustness

characteristic that makes its output (i.e. predicted trajectory) less

susceptible to the noise existent in the raw motion data [12–14].

Accordingly, RHMPC with generalized estimator yields better

results in the linear case. However, when the experiment is

performed on the hardware, the effects of the nonlinearities have

become apparent and the performance of the estimator-driven

controller decreases (Table 4). It should be noted that although the

simulation provides valuable insight about the effectiveness of the

controller, the experimental trials are the best indicator of

performance.

The experimental results reveal that adaptive predictors provide

satisfactory tracking performance for the arrhythmia trajectories

considered (Table 4). When the tracking results of the adaptive

predictors are compared with each other, the generalized

predictor gave better results than the one-step predictor in all

experiments and yields close results to the the controller with exact

heart signal reference. The RHMPC with adaptive estimation

algorithms also outperformed RHMPC with EKF algorithm and

PD controller.

Table 3. Simulation Results for End-Effector Tracking: RMS Control Effort for the Control Algorithms.

End-effector Tracking Results Control Effort [mNm]

DataSet Animal 1 Animal 2 Animal 3

Crystal Location Anterior Lateral Anterior Lateral Anterior Lateral

RHMPC with Exact Reference Information 12.965 15.649 10.943 13.894 17.425 15.761

RHMPC with One-Step Adaptive Filter Estimation 19.827 34.248 16.723 22.823 33.500 27.034

RHMPC with Generalized Adaptive Filter Estimation 15.294 21.475 11.861 15.095 23.003 20.195

doi:10.1371/journal.pone.0102877.t003

Table 4. Experimental Results for End-Effector Tracking: RMS End-Effector Error and MAX Position Error for the Control Algorithms.

End-effector Tracking Results RMS Position Error [mm]

(Maximum Position Error [mm])

DataSet Animal 1 Animal 2 Animal 3

Crystal Location Anterior Lateral Anterior Lateral Anterior Lateral

P-P amp of POI motion [mm] 11.811 20.946 7.619 10.399 13.796 18.676

RMS mag of POI motion [mm] 4.488 4.419 3.238 3.063 4.819 4.058

RHMPC with Exact Reference Information 0.260 0.301 0.274 0.248 0.303 0.309

(0.809) (1.933) (1.412) (0.779) (1.276) (9.191)

RHMPC with One-Step Adaptive Filter Estimation 0.293 0.403 0.278 0.263 0.405 0.388

(1.459) (5.911) (1.643) (1.513) (3.383) (8.289)

RHMPC with Generalized Adaptive Filter Estimation 0.282 0.340 0.276 0.247 0.319 0.330

(1.038) (2.703) (1.405) (1.174) (1.442) (8.620)

RHMPC with Extended Kalman Filter Estimation 0.570 0.839 0.546 0.561 1.179 0.913

(5.033) (6.702) (2.630) (3.342) (6.499) (12.430)

PD Controller 0.465 0.775 0.419 0.484 1.130 0.886

(3.674) (6.026) (2.207) (4.610) (7.227) (12.231)

doi:10.1371/journal.pone.0102877.t004
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In [4], Yuen et al. used an EKF algorithm with a quasi-periodic

motion model to predict the path of mitral valve motion in order

to compensate the time delay resulting from the 3-D ultrasound

(3DUS) measurements. They concluded that since the EKF

explicitly models the quasi-periodic motion of the heart, it can

adjust to normal variations in heart rhythm. In [32], they noted

that this does not extend to cases of arrhythmia, in which the

motion of the heart is inherently non-periodic. Tracking results of

RHMPC with EKF algorithm in Table 4 agree with this remark.

It is important to note that, RHMPC heavily relies on the

estimate of the immediate future of the POI motion and the

tracking problem is reduced to predicting the estimated reference

heartbeat signal, when RHMPC has high enough precision to

perform the necessary tracking [11]. Since EKF yielded poor

predictions of the future POI position due to the unpredictable

nature of heart during arrhythmia, the RHMPC with EKF

algorithm was not able to track heart motion accurately. As a

result, the PD controller yielded better performance than

RHMPC with EKF algorithm.

The means of the RMS position errors and the standard

deviations for RHMPC with generalized predictor, RHMPC with

EKF, and PD controller are respectively computed as:

0.299 mm+0.036 mm, 0.768 mm+0.255 mm, 0.693 mm+
0.285 mm. These results further emphasize the better perfor-

mance and robustness of RHMPC with generalized predictor on

heart motion tracking during irregular beating. The effects of

using RHMPC with generalized predictor on the arrhythmia

Table 5. Experimental Results for End-Effector Tracking: RMS Control Effort for the Control Algorithms.

End-effector Tracking Results Control Effort [mNm]

DataSet Animal 1 Animal 2 Animal 3

Crystal Location Anterior Lateral Anterior Lateral Anterior Lateral

RHMPC with Exact Reference Information 29.284 38.286 28.734 32.217 48.327 43.298

RHMPC with One-Step Adaptive Filter Estimation 34.416 51.048 29.813 31.574 54.779 43.241

RHMPC with Generalized Adaptive Filter Estimation 32.289 43.109 29.358 35.092 50.758 45.348

RHMPC with Extended Kalman Filter Estimation 35.092 48.341 32.947 32.657 67.176 55.756

PD Controller 49.938 83.809 42.894 57.258 140.301 99.273

doi:10.1371/journal.pone.0102877.t005

Figure 4. Tracking results of 183-s arrhythmia data (only a part
of the data is presented) from animal 1 for the generalized
predictor. Reference and PHANToM positions, RMS position error and
MPC control effort are shown (A) Axis 1 results. (B) Axis 2 results. (C) Axis
3 results.
doi:10.1371/journal.pone.0102877.g004

Figure 5. Tracking results of 183-s arrhythmia data (only a part
of the data is presented) from animal 1 for the PD Controller.
Axis 1 results are shown only.
doi:10.1371/journal.pone.0102877.g005

Robotic Tracking of Heart Motion during Arrhythmia

PLOS ONE | www.plosone.org 6 July 2014 | Volume 9 | Issue 7 | e102877



tracking were also tested for statistical significance by paired

t-test. For the results presented in Table 4, RHMPC with

generalized predictor has led to improvements in tracking when

compared to RHMPC with EKF (Pv0.004) and PD controller

(Pv0.009).

We conjecture that the maximum error values are affected from

the noise in the sensor data. In particular, the sonomicrometer

measurements are susceptible to non-Gaussian noise resulting

form echo effects and interruptions in ultrasound transmission

paths that appear as large spikes or jump discontinuities. It is

unlikely that the POI on the heart is capable of moving as much as

12 mm in a few milliseconds as it can occasionally be observed in

the experimental data. More aggressive filtering can be performed

to eliminate such high frequency motions (e.g. [33–35]), but the

data has been kept as-is without applying any filtering to eliminate

these jumps, as currently we do not have an independent set of

sensor measurements (such as from a vision sensor) that would

validate this conjecture. Though, it should be noted that such

noise occurs only occasionally, as it can be observed through the

significantly lower RMS error values, relative to maximum error

values. At these high jumps, RHMPC algorithms with adaptive

predictors outperformed PD controller, because with the PD

controller these jumps initiated system oscillations (Fig. 5). Also,

when the RMS control efforts are compared, the PD controller

performed poorly (Table 5).

Discussions

In this paper, heart motion tracking with adaptive estimation

algorithms in the presence of arrhythmia is presented. Perfor-

mance of the algorithms are evaluated with a range of data. These

algorithms were previously explored under slowly varying heart

rate conditions in [14]. To the best of our knowledge, no previous

POI motion tracking work (see Introduction) has presented results

in the presence of arrhythmia. The experimental RMS errors on

the order of 0.250–0.340 mm obtained using the generalized

estimator (in comparison to the RMS tracking errors on the order

of 0.170–0.350 mm in constant heart rate and 0.160–0.180 mm in

slowly varying heart rate conditions, as reported in [14]) represent

satisfactory tracking performance during arrhythmia. Results show

that if the behavior of the heart changes abruptly, the predictors

are able to adapt the new heart behavior and can track the ideal

time-varying solution. Although the resulting tracking errors are

above the desired specification for effectively performing anasto-

mosis, the system still achieved sufficient tracking accuracy to

maintain safe tracking, until the system can potentially switch to a

safe mode of operation. The results of the study should also be

validated in vivo. An in vivo validation study would be valuable to

verify that the proposed scheme will be effective under practical

constraints of an operating room setting.

It is important to note that a certain level of consistency was

necessary during the experimental setting of this study. For this

reason, atrial fibrillation and its electrocardiographic pattern have

been chosen as an arrhythmic scenario to provide a comparable

and repeatable type of cardiac rhythm disturbance. The validity of

the presented approach on other types of the peri-operative

rhythm disturbance like tachycardia or sinus bradycardia will be

explored in future studies. In addition, atrial fibrillation is a

complex type of arrhythmia with high ventricular rates. Accord-

ingly, the baseline heart rate (HR) is an important variable that

was continuously monitored throughout the study. Yet, since the

HR values may vary in each and every given setting, the high

variability of the baseline heart rate was not considered to be a

drawback of the experimental approach in choosing a bovine

model. Similar to humans, the HR may vary per baseline and

intra-operative hemodynamic conditions, but no interference and/

or vagal tone dominance was observed during the studies.

However, if the native cardiac pacing is altered, then the vagal

tone and correlated effects may become more significant in heart

failure model.

We also note that the presented study is not intended to evaluate

the tracking performance of the algorithms on each and every type

of atrio-ventricular arrhythmia. Rather, by simulating one

particular type of arrhythmia from a wide variety of patterns, we

aim to show feasibility of employing adaptive estimation

algorithms for heart motion tracking in the occurrence of

arrhythmia during beating heart surgery. The underlying

electro-physiological mechanisms of arrhythmia are very complex.

Atrio-ventricular contraction is affected by multitude of factors,

such as, changes in the function of ion channels in atrial cells. The

complex pattern of electrical impulse propagation within atrio-

ventricular tissues is also determined by the frequency of

stimulation and summation of waveforms. As such, constructing

in vivo models of arbitrary arrhythmia types is not practical, if not

impossible. A more broad in vivo study would overcome the

limitations of the employed method of artificially inducing

arrhythmias, and would cover more diverse situations in CABG

surgeries and so will evaluate the performance and robustness of

the proposed method in a wide range of conditions. Additionally,

the applicability of the proposed system to specific arrhythmia

patterns would be considered in further studies as a part of the

development and safety control evaluation.

One way to improve tracking quality is to incorporate other

types of data into the estimation scheme. One such possibility is to

include the electrocardiogram (ECG) signal into the observations.

In this way, the predictor is able to use the electrical signals that

activate heart contraction in order to improve the prediction as in

[11]. The ECG signal is very suitable for period-to-period

synchronization with sufficient lead time for the feed-forward

control, and identification of arrhythmias. If an arrhythmia is

detected, feed-forward component of the controller can be turned

off and switched to a further fail-safe mode if necessary, which in

turn may improve performance during heart rhythm abnormal-

ities.

Future works will also include multi sensor fusion where

complementary and redundant sensors will be used for superior

performance and safety, e.g., a vision based sensor system could be

used as a secondary sensor for the in vivo validation of the

proposed concept. Merging the sensor data from multiple position

sources would increase accuracy of the motion estimation and

improve tracking results. Adding more mechanical sensors that

measure heart motion would improve the measurement precision

and help to resolve calibration problems of the sonomicrometry

system.
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