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Abstract: Combined treatment is a promising anticancer strategy for improving antiproliferation
compared with a single treatment but is limited by adverse side effects on normal cells. Fucoidan
(FN), a brown-algae-derived polysaccharide safe food ingredient, exhibits preferential function for
antiproliferation to oral cancer but not normal cells. Utilizing the preferential antiproliferation,
the impacts of FN in regulating ultraviolet C (UVC) irradiation were assessed in oral cancer cells.
A combined treatment (UVC/FN) reduced cell viability of oral cancer cells (Ca9-22 and CAL 27)
more than single treatments (FN or UVC), i.e., 53.7%/54.6% vs. 71.2%/91.6%, and 89.2%/79.4%,
respectively, while the cell viability of UVC/EN treating on non-malignant oral (5-G) was higher than
oral cancer cells, ranging from 106.0 to 108.5%. Mechanistically, UVC/FN preferentially generated
higher subG1 accumulation and apoptosis-related inductions (annexin V, caspases 3, 8, and 9) in oral
cancer cells than single treatments. UVC/EN preferentially generated higher oxidative stress than
single treatments, as evidenced by flow cytometry-detecting reactive oxygen species, mitochondrial
superoxide, and glutathione. Moreover, UVC/FN preferentially caused more DNA damage (YH2AX
and 8-hydroxy-2’-deoxyguanosine) in oral cancer cells than in single treatments. N-acetylcysteine
pretreatment validated the oxidative stress effects in these UVC/FN-induced changes. Taken together,
FN effectively enhances UVC-triggered antiproliferation to oral cancer cells. UVC/FN provides a
promising potential for preferential and synergistic antiproliferation in antioral cancer therapy.

Keywords: fucoidan; ultraviolet C; oral cancer; combined treatment; oxidative stress

1. Introduction

Oral cancer is a typical head and neck malignancy with high morbidity and mortal-
ity [1-3] for both genders [4]. In addition to surgery, chemical and radiation therapies are
applied to oral cancer patients in a single or combined treatment manner. However, these
chemo- or radiotherapies are frequently associated with severe adverse effects [5].
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Combined treatment with chemical drugs and natural products was utilized to im-
prove antiproliferation effects of radiation against cancer cells [6-8]. Taking the example of
ascorbate, it improves the ionizing radiation-induced DNA damage against glioblastoma
cells [6]. Afatinib and berberine can synergistically promote radiosensitivity to lung [7] and
liver cancer cells [8].

Alternatively, ultraviolet C (UVC), non-ionizing radiation also shows anticancer po-
tential for combined treatment applications such as oral [9], colon [10], breast [11], and
bladder [12] cancer cells. Cisplatin, for example, synergistically improved the antiprolifera-
tion effects of UVC on colon cancer cells [10]. However, cisplatin occasionally causes side
effects of nephrotoxicity in clinical treatments [13]. Accordingly, the choice of anticancer
drugs for enhancing UVC-inducing antiproliferation of cancer cells needs to consider the
benefits of medications with low side effects.

Marine algae provide non-cytotoxic dietary food supplements [14]. Fucoidan (FN),
a fucose-rich polysaccharide isolated from several brown algae, is a safe food ingredient,
classified as GRAS by the United States Food and Drug Administration (FDA) [15]. FN
exhibits diverse functions for inhibiting inflammation [16], bacterial growth [17], and cancer
proliferation [18,19]. The antiproliferation effects of FN have been reported for oral [20],
breast [21], and bladder [22] cancer cells. Notably, FN shows preferential killing to oral
cancer cells but not to non-malignant cells. Accordingly, there are no side effects of FN to
be expected.

Recently, the combined treatment of anticancer agents with FN was reported using
cisplatin [23], gefitinib [24], and vitamin C [25] for lung, breast, and colon cancer cells,
respectively, while the combined treatment of anticancer therapy with FN in oral cancer
was rarely applied, particularly together with UVC irradiation.

This study assesses the antiproliferation effects and mechanisms of UVC/FN in oral
cancer cells. To clarify the detailed mechanism, both oral cancer and non-malignant oral
cells were chosen to assess the status of oxidative stress, apoptosis, and DNA damage of
UVC/EN treatment.

2. Materials and Methods
2.1. Reagents and UVC Irradiation

Fucus vesiculosus-derived FN was acquired from Carbosynth (Compton, Berkshire,
UK). Oxidative stress scavenger, 10 mM N-acetylcysteine (NAC) [26-28] (Sigma-Aldrich;
St. Louis, MO, USA), was pretreated for 1 h and co-treated with EN for 24 h. Both FN and
NAC were prepared in 1 x PBS solution.

After medium aspiration, cells were irradiated with a germicidal UVC lamp (254 nm)
(10 or 15 J/m?) for 10 or 15 s at a rate of 1J/m? /s in a laminar flow hood. This energy rate
was detected by a UV radiometer (UVP, San Gabriel, CA, USA) before UVC irradiation [9].
Control cells followed the same protocol without UVC irradiation. After UVC irradiation,
cells were treated with FN.

2.2. Cell Culture and MTS Viability

Oral cancer (Ca9-22 and CAL 27) cell lines were acquired from the HSRRB Cell Bank
(Osaka, Japan) and ATCC (Manassas, VA, USA). A non-malignant gingival epithelial
Smulow-Glickman (S-G) cell line [29,30], generally applied for assessing the drug safety
of oral cells [31], was included. They were maintained in DMEM /F-12 (3:2) with P/S
antibiotics and 10% fetal bovine serum (Gibco; Grand Island, NY, USA). Cell viability at
24 h was determined by Promega’s MTS assay (Madison, WI, USA) and read by a multiplate
reader at 490 nm [20].

The synergy («) of a combined UVC/EN treatment was determined as previously
described [32], i.e., & = the viability fraction (UVC) x the viability fraction (FN)/the
viability fraction (UVC/EN). The relationship of additive, synergistic, or antagonistic
antiproliferation was « = 1, > 1 and < 1, respectively.
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2.3. Cell Cycle

Cellular DNA was stained with 7-aminoactinomycin D (7AAD, 1 ug/mL) (Biotium
Inc., Hayward, CA, USA) and incubated at 37 °C for 30 min. The intensity of DNA levels
was inspected by a Guava easyCyte flow cytometer (Luminex, TX, USA), and data were
processed by Flow Jo 10 software (Becton-Dickinson, Franklin Lakes, NJ, USA) [20].

2.4. Apoptosis

Annexin V/7AAD [33] analytical method was used to monitor apoptosis by the
commercial kit (Strong Biotech Corp, Taipei, Taiwan). The intensities of annexin V/7AAD
were measured by Guava easyCyte flow cytometer.

Caspase (Cas) 3, Cas 8, and Cas 9 flow cytometry analyses were designed to detect
their activation degrees for the executor, extrinsic, and intrinsic caspases [34]. Peptide-based
kits (Oncolmmunin; Gaithersburg, MD, USA) were conducted to measure Cas 3, Cas 8§,
and Cas 9 activities by flow cytometry [35]. A 10 uM peptide solution was diluted in 1:1000
for incubation at 37 °C for 1 h. Activated Cas 3, Cas 8, and Cas 9 can digest their specific
substrates (PhiPhiLux-G1D2, CaspaLux8-L1D2, and CaspaLux9-M1D2). Subsequently, the
digested substrates could generate fluorescence and be analyzed by flow cytometry.

2.5. Oxidative Stress

Reactive oxygen species (ROS) [36] and mitochondrial superoxide (MitoSOX) [20] were
chosen to detect the status of oxidative stress after drug treatment. A total of 100 nM 2/,7'-
dichlorodihydrofluorescein diacetate (HDCF-DA) (Sigma-Aldrich) and 50 nM MitoSOX™
Red (Thermo Fisher Scientific, Carlsbad, CA, USA) were used to detect ROS and MitoSOX
at 37 °C for 30 min, respectively. The intensities of these oxidative stresses were measured
by a Guava easyCyte flow cytometer.

2.6. Glutathione (GSH)

GSH was chosen to detect the status of cellular antioxidant levels after drug treatment.
5-chloromethylfluorescein diacetate (CMF-DA) (Thermo Fisher Scientific, Carlsbad, CA,
USA) (5 uM, 20 min) [20] was used at 37 °C for 30 min to detect GSH levels. The intensities
of GSH were measured by a Guava easyCyte flow cytometer.

2.7. DNA Damages

Cell fixation was required before antibody reaction in detecting DNA damage. Mono-
clonal antibodies for mouse p-Histone H2A X (Ser 139) (Santa Cruz Biotechnology, Santa
Cruz, CA, USA) (1:500) [37] and Alexa 488-secondary antibody were chosen for the detec-
tion of DNA double-strand breaks in the presence of 5 ug/mL 7AAD. Finally, the YH2AX
and 7AAD intensities were monitored by flow cytometry. To investigate oxidative DNA
damage, the monoclonal antibody against mouse 8-hydroxy-2'-deoxyguanosine (8-OHdG)-
FITC (Santa Cruz Biotechnology) (1:10,000) [20] was incubated with the fixed cells. Finally,
the 8-OHdAG-FITC intensities were inspected by flow cytometry.

2.8. Statistics

In multiple comparisons, the significance of the difference was determined by ANOVA
analysis combined with the Tukey HSD Post Hoc Test (JMP 14 software, SAS Institute
Inc., Cary, NC, USA) [20]. Data were shown as means £ SD (n = 3). Lower-case letters
were assigned by JMP software to determine the significance of results where data with
non-overlapping letters represent a significant result.

3. Results
3.1. UVC/EN versus Single Treatment on Antiproliferation

Antiproliferation effects were compared between combined and single treatment (UVC
and/or FEN) by 24 h MTS assays. In oral cancer cells (Ca9-22), UVC/FN demonstrated lower
viability than a single treatment (300 pg/mL FN or 10 J/m? UVCQ), i.e., 53.7% vs. 71.2% and
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89.2%, respectively (Figure 1). In oral cancer cells (CAL 27), UVC/FN demonstrated lower
viability than a single treatment (300 pg/mL FN or 15 J/m? UVC), i.e., 54.6% vs. 91.6%
and 79.4%, respectively. In non-malignant oral cells (S-G), UVC/FN demonstrated similar
viability to a single treatment (300 ug/mL FN or 15 J/m? UVC), i.e., 106.0% vs. 107.6% and
108.5%, respectively. The synergy («x-values) of UVC/FN in Ca9-22 and CAL 27 cells were
1.20 and 1.33 (Figure 1), indicating that UVC/FN exhibited synergistic antiproliferation on
oral cancer cells. Moreover, the viability of S-G cells was higher than that of oral cancer
cells in the UVC/EN treatment. These results indicate that UVC/FN preferentially inhibits
the proliferation of oral cancer cells but shows little change on non-malignant cells.

Ca9-22 CAL 27 S-G
mm Ctrl s Ctrl mmm Ctrl
== NAC —~ 140 1 == NAC ~ 10 1=anac 4 a ¢ b
o
a & 120 aa a S 120 b ba (.
bb b b - bb g dd
c =" 100 C d £ 100 e
d 3 80 d 8 8o
< 5
e S 60 e S 60
) © 40
(&) 20 © 20
0 0
Ctrl FN UVC UVC/FN Ctrl FN UvVC UVC/FN Ctrl FN UVC UVC/FN

Figure 1. Cell viability determination. There are four kinds of treatment for oral cancer (Ca9-22 and
CAL 27) and non-malignant oral (S-G) cells: control, FN (300 ug/mL), UVC (10 ]/ m? for Ca9-22;
15J/m? for CAL 27 and S-G), and UVC/FN (10 J/m? /300 pg/mL for Ca9-22; 15]/m? /300 pug/mL
for CAL 27 and S-G). NAC indicates that cells were pretreated with 10 mM NAC. Their viabilities
were determined by MTS assay after 24 h treatment. Data are provided as means + SD (1 = 3). The
low-case letters were assigned by JMP software to determine significant differences. Significant
differences were indicated by non-overlapping, low-case letters (p < 0.05). For the example of Ca9-22
cells, the low-case letters for control, FN, UVC, and UVC/FN, showing “b, d, ¢, and e” significantly
differ from each other because the letters are not overlapping. Moreover, UVC/FEN for control and
NAC showing “e and a” indicates significant differences. In contrast, the controls for non-treatment
and NAC only showing the same letter “b” indicate non-significant results.

Utilizing N-acetylcysteine (NAC) pretreatment, the impact of oxidative stress in syn-
ergistic antiproliferation effects of UVC/FN was assessed. NAC effectively increased the
viabilities of UVC and/or EN treatments acting on oral cancer and non-malignant cells
(Figure 1). Therefore, UVC/FN demonstrates the synergistic antiproliferation of oral cancer
cells relying on oxidative stress.

3.2. UVC/EN wversus Single Treatment on SubG1 Increment

The cell-cycle-modulating effects were compared between combined and single treat-
ment (UVC and/or FN) through 24 h 7AAD assays. In oral cancer cells (Ca9-22 and
CAL 27), UVC/EN demonstrated higher subG1% than single treatments (FN or UVC)
(Figure 2). In contrast, minor subG1% changes occurred in non-malignant cells (5-G) irre-
spective of whether in combined or single treatments. These results indicate that UVC/FN
preferentially induces subG1 increment to oral cancer cells but shows little change on
non-malignant cells.
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Figure 2. Cell cycle determination. There are four kinds of treatments for oral cancer (Ca9-22 and CAL
27) and non-malignant oral (S-G) cells: control, FN (300 ug/mL), UVC (10 ]/ m? for Ca9-22; 15 ] /m?
for CAL 27 and S-G), and UVC/FN (10 J/m?2 /300 ug/mL for Ca9-22; 15 J/m2/300 ug/mL for CAL
27 and S-G). NAC indicates that cells were pretreated with 10 mM NAC. Their cell cycle changes
were evaluated by flow cytometry after a 24 h treatment. Data are indicated as means + SD (n = 3).
The low-case letters were assigned by JMP software to determine their significance. It significantly
differs when the low-case letters are not overlapping (p < 0.05).

Utilizing NAC pretreatment, the impact of oxidative stress on the synergistic subG1
increasing effects of UVC/FN was assessed. NAC effectively decreased the subG1% of UVC
and/or FN treatments in oral cancer cells (Figure 2). Therefore, UVC/FN demonstrates the
synergistic subG1 increment of oral cancer cells relying on oxidative stress.

3.3. UVC/EN wversus Single Treatment on Annexin V Increment

The apoptosis-modulating effects were compared between combined and single treat-
ment (UVC and/or FN) by a 24 h annexin V/7AZD assays. In oral cancer cells, UVC/FN
demonstrated higher annexin V (+)% than single treatment (FN or UVC) (Figure 3). In
contrast, annexin V (+)% showed minor changes in non-malignant oral cells in combined
or single treatments. These results indicate that UVC/FN preferentially induced apoptosis
in oral cancer cells but showed little change on non-malignant cells.
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Figure 3. Annexin V/7AAD determination. There are four kinds of treatments for oral cancer (Ca9-22
and CAL 27) and non-malignant oral (S-G) cells: Control, FN (300 pg/mL), UVC (10 J/m? for Ca9-22;
15J/m? for CAL 27 and S-G), and UVC/EN (10 J/m? /300 ug/mL for Ca9-22; 15]/m? /300 ug/mL
for CAL 27 and S-G). NAC indicates that cells were pretreated with 10 mM NAC. Their intensity
changes were evaluated by flow cytometry after a 24 h treatment. Annexin V (+)/7AAD (—) and (+)
populations were defined as apoptosis (+). Data indicated as means £ SD (1 = 3). The low-case letters
were assigned by JMP software to determine their significance. Significant differences are indicated
by non-overlapping, lower-case letters (p < 0.05).

Utilizing NAC pretreatment, the impact of oxidative stress in synergistic annexin
V (+)% increasing effects of UVC/FN was assessed. NAC effectively decreased the annexin
V (+)% of UVC and/or FN treatments acting on oral cancer cells (Figure 3). Therefore,
UVC/EN demonstrates synergistic apoptosis of oral cancer cells relying on oxidative stress.

3.4. UVC/FN wversus Single Treatment on Caspase 3 Activation

The apoptosis activation effects were compared between combined and single treat-
ment (UVC and/or FN) with 24 h caspase 3 assays. In oral cancer cells, UVC/FN demon-
strated higher caspase 3 (+)% than single treatment (FN or UVC) (Figure 4). In contrast,
caspase 3 (+)% showed minor changes in non-malignant oral cells in combined or single
treatments. The results indicate that UVC/EN preferentially induces apoptosis in oral
cancer cells but shows little effect on non-malignant cells.
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Figure 4. Caspase 3 activity determination. There are four kinds of treatments for oral cancer (Ca9-22
and CAL 27) and non-malignant oral (5-G) cells: control, FN (300 pg/mL), UVC (10 ]/ m? for Ca9-22;
15]/m? for CAL 27 and S-G), and UVC/EN (10 J/m? /300 pg/mL for Ca9-22; 15]/m? /300 pug/mL
for CAL 27 and S-G). NAC indicates that cells were pretreated with 10 mM NAC. Their intensity
changes were evaluated by flow cytometry after 24 h treatment. Caspase 3 (+) populations are
indicated with (+). Data are provided as means =+ SD (n = 3). Significant differences are indicated
when lower-case letters are not overlapping (p < 0.05).

Utilizing a NAC pretreatment, the impact of oxidative stress in synergistic caspase
3 (+)% increasing effects of UVC/FN was assessed. NAC effectively decreased the caspase
3 (+)% of UVC and/or EN treatments acting on oral cancer cells (Figure 4). Therefore,
UVC/FN demonstrate synergistic activation of apoptosis signaling of oral cancer cells
relying on oxidative stress.

3.5. UVC/EN wversus Single Treatment on Extrinsic and Intrinsic Caspase Activations

The activation effects of extrinsic (caspase 8) and intrinsic (caspase 9) apoptosis sig-
naling were compared between combined and single treatment (UVC and/or FN) at 24 h
caspase 8/9 assays. In oral cancer cells, UVC/FN demonstrated higher caspases 8 and
9 (+)% than single treatment (FN or UVC) (Figure 5A,B). In contrast, caspases 8 and
9 (+)% showed minor changes in non-malignant oral cells in combined or single treatments.
These results indicate that UVC/EN preferentially induces extrinsic and intrinsic apoptosis
signaling to oral cancer cells but shows low change on non-malignant cells.
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Figure 5. Extrinsic and intrinsic signaling determination. (A) Caspase 8. (B) Caspase 9. There are four
kinds of treatments for oral cancer and non-malignant oral (5-G) cells: control, FN (300 pg/mL), UVC
(10 J/m? for Ca9-22; 15 J/m? for CAL 27 and S-G), and UVC/EN (10 J/m? /300 pg/mL for Ca9-22;
15J/m?2 /300 ug/mL for CAL 27 and S-G). NAC indicates that cells were pretreated with 10 mM
NAC. Their intensity changes were evaluated by flow cytometry after 24 h treatment. Caspase 8 (+)
and caspase 9 (+) populations are indicated by (+). Data are given as means + SD (n = 3). Lower-case
letters indicate significant differences when non-overlapping (p < 0.05).
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Utilizing NAC pretreatment, the impact of oxidative stress in synergistic caspases 8
and 9 (+)% increasing the effects of UVC/FN was assessed. NAC effectively decreased
caspases 8 and 9 (+)% of UVC and/or FN treatments acting on oral cancer cells (Figure 5A,B).
Therefore, UVC/FN demonstrates synergistic activation of extrinsic and intrinsic apoptosis
signaling of oral cancer cells relying on oxidative stress.

3.6. UVC/FN wversus Single Treatment on ROS/MitoSOX

Oxidative stress-modulating effects were compared between combined and single
treatment (UVC and/or FN) at 24 h ROS and MitoSOX assays. In oral cancer cells,
UVC/FN demonstrated higher ROS and MitoSOX (+)% than a single treatment (FN or
UVC) (Figures 6 and 7). In contrast, ROS and MitoSOX (+)% showed minor changes in
non-malignant oral cells in combined or single treatments. These results indicate that
UVC/EN preferentially induces oxidative stress on oral cancer cells but shows little change
on non-malignant cells.
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Figure 6. ROS determination. There are four kinds of treatments for oral cancer and non-malignant
oral (S-G) cells: control, FN (300 pg/mL), UVC (10 J/m? for Ca9-22; 15 J/m? for CAL 27 and S-G),
and UVC/FN (10 J/m?2 /300 pg/mL for Ca9-22; 15 J/m?2/300 pg/mL for CAL 27 and S-G). NAC
indicates that cells were pretreated with 10 mM NAC. Their intensity changes were evaluated by
flow cytometry after 24 h treatment. ROS (+) populations are indicated with (+). Data are provided
as means =+ SD (n = 3). Significant differences are indicated by non-overlapping, lower-case letters
(p <0.05).



Antioxidants 2022, 11, 1797

10 0of 18

Counts

Ctrl FN uvc UVC/FN
200 (g-) 2“6) e Hz z(;a (s-;g Hr: 100 (-; 8 2‘6*2)
74 .5/ 77. . 200 X 7.1 734 »
w mmm Ctrl
150 b 150 - ~ 40 | == NAC
60 ey 2
60 o
o O s a
w0
—_
s * s 2 N + 30 a
R o NI -
10° 10" 107 100 10°10° 10”100 107 100 10'10°  10” 10' 102 100 10'10° 10 10" 107 10® 10*10” [)) é
w0f(y @ |0 @ |20{c) ) ) ) (] 20
98.7 134 89.7 103 95.9 414 ['27gs9 141 (SN ] b b
150 % 150 " I8) 3 c c
10
« o " < =
2 dy d
. . . . il A
0
o o o o]
W 100 10 10 000 10 100 10 100 1000 1 100 10 100 1000 10° 10! 12 10 1010 Ctrl FN UvC UVC/FN
) @ |76 ) ©) (+) 1o (+)
#1930 696 778 222 |*717 283 |**7694 306
150 " - 1 = Ctrl
= — 3 NAC
100 100 100 = 2 40 a
(N Y o < a
S0 s0 504 N =
o . o] o ~N X3 bb b
W0 10 0 e 1P 0 100 100 100 100 10 10 100 10 100 10 a0 10° 0'io” - X c
) ) © ) ©) (+ ) (+) < O 20 c
935 653 741 259 807 193 774 226 O w
150 150 150 200 o
Q = d
100 100 100 200 < s 10 d
. —— . . - z |n
LB 0 04 0
0 00 107 10 10000 10 00 12 100 1000 100 10 100 100 i'wr 100 do' 10 10 1o'10° Ctrl FN UVC UVC/FN
1507+ (+) | g0l +) ) +) [1004(-) (+)
99.4 061 94.7 534 (1201994 064 94.5 5.51
w e s Ctrl
© -_— - C—3 NAC
w I = x4
o -t ~
» " o —
+ 30
o 0 0] hd
150 100
- ) ) (+) ) (+)
9 322 996 04z | lo70 298 L 8 20
T — — . g S ay a
* * z cc cc b
20 3 [ o
o o 0 o 0 -
T 0 e Tl a0 ? oo R R R T a0 et oo
100 10 10° 10° 10°10° 100 10 10° 10° 1010 100 10 10° 10° 10710 100 10 10° 10 1010 ctrl FN ch ch/FN
MitoSOX intensity

Figure 7. MitoSOX determination. There are four kinds of treatments for oral cancer and non-
malignant oral (S-G) cells: control, FN (300 pug/mL), UVC (10]/ m? for Ca9-22; 15 J/m?2 for CAL 27
and S-G), and UVC/FN (10 J/m?2 /300 ug/mL for Ca9-22; 15 J/m2/300 ug/mL for CAL 27 and S-G).
NAC indicates that cells were pretreated with 10 mM NAC. Their intensity changes were evaluated
by flow cytometry after a 24 h treatment. MitoSOX (+) populations are indicated with (+). Data are
given as means £ SD (n = 3). They significantly differ when the lower-case letters are not overlapping
(p <0.05).

Utilizing NAC pretreatment, the impact of oxidative stress in synergistic ROS and
MitoSOX (+)% increasing the effects of UVC/FN was assessed. NAC effectively decreased
the ROS and MitoSOX (+)% of UVC and/or FN treatments acting on oral cancer cells
(Figures 6 and 7). Therefore, UVC/FN demonstrates the synergistic oxidative stress gener-
ation of oral cancer cells.

3.7. UVC/FEN wversus Single Treatment on GSH Depletion

The antioxidant modulating effects were compared between combined and single
treatment (UVC and/or FN) at 24 h GSH assays. In oral cancer cells, UVC/FN demon-
strated higher GSH (—)% than single treatments (FN or UVC) (Figure 8). In contrast, GSH
(—)% showed minor changes in non-malignant oral cells in combined or single treatments.
These results indicate that UVC/FN preferentially induces oxidative stress on oral cancer
cells but shows little change on non-malignant cells.
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Figure 8. GSH determination. There are four kinds of treatmentss for oral cancer and non-malignant
oral (S-G) cells: control, FN (300 pg/mL), UVC (10]/ m? for Ca9-22; 15 ] /m? for CAL 27 and S-G),
and UVC/EN (10 J/m?/300 pg/mL for Ca9-22; 15 J/m? /300 ug/mL for CAL 27 and S-G). NAC
indicates that cells were pretreated with 10 mM NAC. Their intensity changes were evaluated by
flow cytometry after 24 h treatment. GSH (—) populations are indicated with (—). Data are given
as means £ SD (n = 3). Lower-case letters indicate significant differences when non-overlapping
(p <0.05).

Utilizing NAC pretreatment, the function of oxidative stress in synergistic GSH (—)%
increasing the effects of UVC/FN was assessed. NAC effectively decreased the GSH (—)%
of UVC and/or FN treatments acting on oral cancer cells (Figure 8). Therefore, UVC/FN
demonstrates the synergistic oxidative stress generation of oral cancer cells.

3.8. UVC/EN wversus Single Treatment on DNA Damage

The DNA damage-modulating effects were compared between combined and single
treatments (UVC and/or FN) at 24 h YH2AX and 8-OHdG assays. In oral cancer cells,
UVC/EN demonstrated higher YH2AX and 8-OHdG (+)% than single treatments (FN or
UVC) (Figures 9 and 10). In contrast, yYH2AX and 8-OHdG (+)% showed more minor
changes in non-malignant oral cells than in combined or single treatments. These results
indicate that UVC/EN preferentially induces oxidative stress on oral cancer cells but shows
little effect in non-malignant cells.
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YH2AX

Utilizing NAC pretreatment, the impact of oxidative stress in synergistic YH2AX and
8-OHdG (+)% increasing the effects of UVC/FN was assessed. NAC effectively decreased
the YH2AX and 8-OHdG (+)% of UVC and/or FN treatments acting on oral cancer cells
(Figures 9 and 10). Therefore, UVC/FN demonstrates synergistic effects by oxidative stress
generation in oral cancer cells.
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Figure 9. YH2AX determination. There are four kinds of treatments for oral cancer and non-malignant
oral (S-G) cells: control, FN (300 pg/mL), UVC (10]/ m? for Ca9-22; 15 ] /m? for CAL 27 and S-G),
and UVC/FN (10 J/m?2 /300 ng/mL for Ca9-22; 15 J/m? /300 pg/mL for CAL 27 and S-G). NAC
indicates that cells were pretreated with 10 mM NAC. Their intensity changes were evaluated by flow
cytometry after a 24 h treatment. YH2AX (+) populations are indicated with (+). Data are provided
as means + SD (n = 3). The lower-case letters indicate significant differences when not overlapping
(p < 0.05).
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Figure 10. 8-OHdG determination. There are four kinds of treatments for oral cancer (Ca9-22 and
CAL 27) and non-malignant oral (5-G) cells: control, FN (300 pg/mL), UVC (10 J/ m? for Ca9-22
and S-G; 15 J/m? for CAL 27), and UVC/EN (10 J/m? for Ca9-22 and S-G; 15 J/m? for CAL 27 and
300 pg/mL for all cell types). NAC indicates that cells were pretreated with 10 mM NAC. Their
intensity changes were evaluated by flow cytometry after 24 h treatment. 8-OHdG (+) populations
are indicated with (+). Data are given as means £ SD (n = 3). Lower-case letters determine their
significance. Significant differences are indicated by non-overlapping, lower-case letters (p < 0.05).

4. Discussion

The antiproliferation-enhancing ability of a combined FN/UVC treatment had not
been reported before this study. Therefore, the present study explored several UVC/FN-
associated mechanisms between oral cancer and non-malignant oral cells.

FN is known as an effective anticancer enhancer. It was applied to combined treatments
with several anticancer drugs. Taking the example of breast cancer cells, FN combined with
cisplatin, tamoxifen, paclitaxel [38], and doxorubicin [23] exhibit synergistic antiprolifera-
tion effects. Combined treatment of FN with tyrosine kinase inhibitor lapatinib suppresses
more proliferation of esophageal cancer cells (OE33) [39]. FN also improves drug sensitivity
to gefitinib, the epidermal growth factor receptor inhibitor acting on lung cancer cells [24].

However, drug-induced adverse effects of these clinical drugs were reported before.
For example, the side effects of cisplatin [40], tamoxifen [41], paclitaxel [42], doxoru-
bicin [43], lapatinib [44], and gefitinib [45] were reported. The drug safety of the above
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drugs treated in combination with other antiproliferation treatments was not investigated
using non-malignant cells.

X-ray and UVC provide alternative radiation therapies to suppress the proliferation of
several cancer types, such as oral [9], colon [10], breast [11], and bladder [12] cancer cells.
UVC has been applied to combined treatment with several anticancer therapies [10,12,46].
For example, cisplatin enhances the UVC-induced antiproliferation of colon cancer cells [10].
However, this study did not consider the treatment safety of non-malignant cells. Re-
cently, a preferential antiproliferation chemical CHW09 combined with UVC irradiation
exhibited synergistic effects on inhibiting the proliferation of oral cancer cells but not on
non-malignant cells [46]. A combined treatment of UVC/FN was performed in the present
study. The design strategy is based on the combination of low-dose UVC and low-dose
FN acting on oral cancer cells and compared all responses with non-malignant oral cells.
In our study, UVC/FN showed no cytotoxicity to non-malignant cells but preferential
antiproliferation to oral cancer cells (Figure 1).

Oxidative stress promotes the antiproliferation of cancer cells [47,48]. Combining dif-
ferent oxidative stress-modulating treatments may evoke synergistic oxidative stress, lead-
ing to synergistic antiproliferation [49-51]. UVC is an oxidative stress inducer [46,50-53]
in cancer cells. Moreover, FN also functions as an ROS and MitoSOX inducer in oral
cancer cells [20]. As expected, the oxidative stress (ROS and MitoSOX) was cooperatively
induced by UVC/EN in oral cancer cells (Figures 6 and 7). Notably, UVC/FN shows higher
oxidative stress in oral cancer cells than in non-malignant ones. Hence, UVC/EN exhibits
preferential and synergistic oxidative stress for oral cancer cells but not non-malignant cells.

Antioxidants and prooxidants govern redox homeostasis. When antioxidants are
downregulated, prooxidants increase to higher levels than antioxidants, generating cellular
oxidative stress. For example, emodin elevated ROS and decreased GSH in gallbladder can-
cer cells [54]. Alantolactone induced ROS and apoptosis by GSH depletion in glioblastoma
cells [55]. FN also elicited ROS generation in oral cancer accompanied by GSH deple-
tion [20]. UV irradiations such as UVB [56] and UVC [57] induced GSH depletion and the
generation of ROS. Accordingly, FN/UVC in oral cancer cells caused more GSH depletion
than a single treatment (UVC or FN), as evidenced by this present study (Figure 8). In
contrast, non-malignant oral cells showed lower GSH depletion more than oral cancer cells.
Therefore, UVC/EN exhibits a preferential and synergistic GSH depletion in oral cancer
cells but not in non-malignant cells. This also contributes to the preferential oxidative stress
of UVC/FN during oral cancer treatment.

In addition to antiproliferation, oxidative stress triggers apoptosis [58,59] and DNA
damage [60,61]. UVC [52,53,62,63] and FN [20] represent the apoptosis inducers in cancer
cells. Moreover, UVC [46] and EN [20] also cause DNA damage, as indicated by YH2AX
and 8-OHdG assays. Consistently, this character of synergistic oxidative stress evoked
by UVC/EN causes several oxidative stress-dependent mechanisms such as extrinsic and
intrinsic apoptosis (Figure 5) as well as DNA double-strand breaks and oxidative DNA
damage, i.e., YH2AX and 8-OHdG (Figures 9 and 10). Additionally, the caspases 3, 8, and
9 activations are higher in oral cancer cells than in non-malignant cells. However, two
oral cancer cell lines showed slightly different responses to UVC/FN acting on caspases 8
and 9 activations. In UVC/EN, CAL 27 cells showed higher annexin V, caspase 8, and 9
activations than Ca9-22 cells (Figures 3 and 5), particularly for caspase 9, although their cell
viabilities were similar (Figure 1). The differential responses to UVC/FN may be derived
from their optimal treatment conditions being different, i.e., UVC/FN (10 ]/ m?2 /300 ng/mL
for Ca9-22; 15 J/m?/300 pug/mL for CAL 27). In this evidence, it is possible that the
apoptosis-inducible effects only partly contribute to the synergistic antiproliferation of
UVC/EN in oral cancer treatments.

Since NAC is a GSH precursor [64], NAC pretreatment may replenish the GSH pool to
drug-induced GSH depletion. Consistently, UVC and/or FN-induced GSH depletion in oral
cancer cells was recovered by NAC (Figure 8). Furthermore, the dependence of oxidative
stress in UVC/FN-induced antiproliferation and mechanism was validated by a NAC
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pretreatment. The NAC pretreatment of oral cancer cells recovered the UVC/FN-induced
synergistic antiproliferation, oxidative stress, apoptosis, and DNA damage.

UVC exhibits low-penetrating but influential sterilization and DNA damage [65].
Hence, UVC irradiation is limited to surface tumors such as squamous cell carcinoma,
accounting for 90% of oral cancer cells [66]. UVC also suppresses tumor growth in ani-
mal studies [67] but needs to test the functional depth layers by diacetylene-based film
dosimeters as UVB phototherapy [67].

5. Conclusions

FN generates greater antiproliferation, oxidative stress, and DNA damage to oral
cancer cells than non-malignant cells [20]. UVC also generates oxidative stress [46,50,51],
apoptosis [62], and DNA damage [46]. However, a combined treatment of UVC/FN had
not been investigated for anticancer, particularly for antioral cancer cells. The present
study shows a more promising effect of a combined UVC/EN treatment to inhibiting
oral cancer cells than a single treatment (UVC or FN). The results validate that UVC/FN
exhibited synergistic functions for generating more antiproliferation, oxidative stress,
GSH depletion, apoptosis, and DNA damage in oral cancer cells than in non-malignant
cells involving oxidative stress-modulating mechanisms. Therefore, UVC/EN offers the
potential for a combined treatment for antioral cancer cells showing no adverse effects on
non-malignant cells.
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