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Growth hormone (GH) is a peptide hormone that can signal directly through its receptor or
indirectly through insulin-like growth factor 1 (IGF-1) stimulation. GH draws its name from
its anabolic effects on muscle and bone but also has distinct metabolic effects in multiple
tissues. In addition to its metabolic and musculoskeletal effects, GH is closely associated
with aging, with levels declining as individuals age but GH action negatively correlating with
lifespan. GH’s effects have been studied in human conditions of GH alteration, such as
acromegaly and Laron syndrome, and GH therapies have been suggested to combat
aging-related musculoskeletal diseases, in part, because of the decline in GH levels with
advanced age. While clinical data are inconclusive, animal models have been
indispensable in understanding the underlying molecular mechanisms of GH action.
This review will provide a brief overview of the musculoskeletal effects of GH, focusing
on clinical and animal models.
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1 INTRODUCTION

Growth hormone (GH) is a peptide hormone commonly known for its role in development and bone
and muscle growth. GH is synthesized by somatotrophs in the anterior pituitary, and its secretion is
regulated mainly by two hypothalamic hormones, growth hormone releasing hormone (GHRH) and
somatostatin, with GHRH increasing and somatostatin decreasing GH secretion, as well as by diet,
exercise, stress, and other factors (Caputo et al., 2021). Once secreted, GH circulates and binds to the
pre-dimerized GH receptor (GHR) (Brooks and Waters, 2010) on target cells. Receptor binding
results in a signaling cascade primarily through Janus Kinase 2 (JAK2) and STAT5. However, other
pathways, such as mitogen-activated protein kinases (MAPK) and phosphoinositide 3-kinase (PI3K)
pathway (Brooks and Waters, 2010), can also be activated by GH. As for function, GH not only
promotes linear postnatal growth and bone growth but also influences metabolism of lipids,
carbohydrates, nitrogen, and minerals. Among many favorable tissue-dependent actions, GH is
well established to increase muscle mass, reduce adipose tissue through lipolysis, and augment
gluconeogenesis in the liver (Olarescu et al., 2000). A notable unwanted action of GH is its ability to
inhibit insulin action also known as its diabetogenic activity (Houssay and Biasiotti, 1931).

Importantly, GHR activation stimulates expression of another potent hormone, insulin-like
growth factor 1 (IGF-1) in target tissues (Hellstrom et al., 2017). Because of this, GH’s effects on
tissues can be either direct, indirect via IGF-1, or both direct and indirect (Kopchick and Andry,
2000). For example, GH has been reported to be responsible for ~14% of longitudinal growth, IGF-1
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is responsible for ~35% (Lupu et al., 2001), and the combined
effect of GH and IGF-1 accounts for 34% of growth (and 17% of
total mouse growth regulated by other factors). Thus, both GH
and IGF-1 have independent and synergistic effects depending on
the tissue (Olarescu et al., 2000). IGF-1 shares many intracellular
signaling pathways with GH, also activating MAPK and PI3k
through insulin receptor substrate 1 (IRS1), and crosstalk
between the two pathways has been reported in beta cells (Ma
et al., 2011), highlighting the complexity of GH action on target
tissues such as muscle and bone.

Although pituitary-derived endocrine GH is a key driver of
the musculoskeletal effects of GH, locally produced autocrine/
paracrine GH, also known as extrapituitary GH, also plays a
major role in the growth and development of muscle and bone
(Harvey, 2010). Evidence for the local production of GH is the
increased (relative to serum) concentration of GH in the
cartilage and synovial fluid of joints (Isaksson et al., 1991;
Denko and Malemud, 2005), as well as in skeletal muscle (Kyle
et al., 1981; Costa et al., 1993). Autocrine/paracrine GH has
also been shown to be associated with muscle cell proliferation
and myotube differentiation (Segard et al., 2003).

Extremes in GH action, both elevated and decreased, result in
dramatic and distinct clinical conditions that have elucidated the role
of this hormone on the musculoskeletal system. Acromegaly is a
condition, usually resulting from a pituitary adenoma, that causes
GH production in excess of normal physiological levels. The excess
GH secretion leads to overproduction of IGF-1 and results in a
multisystem disease characterized by somatic overgrowth and
disfigurement, multiple comorbidities, and increased mortality
(Melmed, 2009). Acromegaly is treated surgically to remove the
tumor and/or pharmacologically with somatostatin analogues or the

GH receptor antagonist, pegvisomant (Melmed, 2009). Decreased
GH action takes two main clinical forms: GH deficiency (GHD),
which has myriad causes, and Laron Syndrome (LS), which arises
from GH receptor mutations (Laron and Werner, 2021). While the
symptoms of GH deficiency vary due to etiology (Aguiar-Oliveira
and Bartke, 2019), LS consistently causes short stature, improved
glucose metabolism (Guevara-Aguirre et al., 2021) with respect to
family members without LS, as well as a reduction in diagnosed
malignancies observed in the control group (Guevara-Aguirre et al.,
2011). Although GHD and LS may share many symptoms, their
treatments differ. GHD is treated using GH replacement therapy
with recombinant GH (Aguiar-Oliveira and Bartke, 2019), but in LS,
GH replacement therapy is ineffective due to GH resistance, so
recombinant IGF-1 is the only option to increase IGF-1 in these
individuals (Guevara-Aguirre et al., 2021). All these conditions can
result in skeletal and muscular changes that will be discussed
briefly below.

Allowing more invasive measurements, various mouse lines have
been developed (Table 1) to study the impact of GH action on the
entire organism, select tissues or at specific timepoints. For example,
bovine GH (bGH) transgenic mice (Knapp et al., 1994) have excess
(superphysiological) GH action throughout their life, serving as a
model for pediatric acromegaly or gigantism. As might be expected
based on the known functions of GH, these mice are giant and lean.
Despite their favorable body composition, bGH mice are insulin
resistant (Dominici et al., 1999) due to the diabetogenic actions of
GH and have a decreased lifespan (Knapp et al., 1994). Likewise,
GHR knockout (GHRKO) mice are a model of LS. GHRKO mice
have decreased body length and weight, increased insulin sensitivity,
and markedly increased lifespan (Coschigano et al., 2003). As for
GHD, mice with congenital GH deficiency (GH knockout or −/−

TABLE 1 | Summary of the musculoskeletal phenotypes of mouse models with altered GH action.

Mouse line Body size Muscle weight Muscle
structure

Muscle
strength

Glucose
metabolism

Bone phenotype

bGH
Transgenic

Increased Increased proportional to
body weight

Shift towards
Type I

No change Insulin resistant —

GHRKO Decreased Decreased proportional to
body weight

Shift towards
Type II or no
change

Increased
relative to
weight

Improved insulin
sensitivity

Decreased trabecular bone volume,
cortical bone thickness, BMD, BMC

Muscle-
specific
GHRKO

Mildly decreased BW in
males, mildly increased
BW in females

Decreased lean mass in
males, mildly increased
lean mass in females

— No change Improved insulin
sensitivity

—

Bone-specific
GHRKO

No change — — — — Decreased bone formation, trabecular
area, cortical area

Liver-specific
GHRKO

Decreased at young
ages, increased BW at
older ages

Decreased lean mass, no
change in muscle mass

— Increased grip
strength

— —

Adult
(6 month)
GHRKO

Decreased BW at older
ages

Decreased lean mass,
Decreased quadriceps
mass in males

— — Improved insulin
sensitivity

Thinning of cortex due to increased
marrow cavity, decreased lacunar
number, increased lacunar volume,
increased bone marrow adiposity

AOiGHD No Change Decreased lean mass — — Improved insulin
sensitivity in males

Increased cartilage degeneration and
osteophyte formation in both sexes,
increased synovium thickness in males
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mice) (List et al., 2019) and mice with adult GHD via GHR
disruption starting at 6 months of age (6mGHRKO) (Duran-
Ortiz et al., 2021b) or induced somatotroph destruction
(Luque et al., 2011; Cordoba-Chacon et al., 2014; Poudel
et al., 2021) have recently been developed. Many other
mouse lines have also been created that provide insight into
GH’s action although they lack clinical correlates. For
example, GH signaling disruption in specific tissues such as
muscle-specific (Mavalli et al., 2010; Vijayakumar et al., 2012;
List et al., 2015), bone-specific (Liu et al., 2016) and liver-
specific GHR knockouts have been characterized. This review
will mainly summarize the musculoskeletal effects in bGH and
GHRKO mice because they have each been more extensively
studied.

Important to the aging field, the levels of both GH and IGF-1
decline with advancing age in most mammalian species, referred
to as somatopause. This age-related decline in both hormones,
along with their potent anabolic effects in the musculoskeletal
system, has sparked interest in the use of recombinant GH as an
anti-aging drug (Lieberman and Hoffman, 1997). However,
longevity data from both humans and mice challenge this
notion. That is, mice with reduction or absence in GH action
have a robust and reproducible increase in lifespan (Duran-Ortiz
et al., 2021a), suggesting an advantage to somatopause on
lifespan. While data from humans is insufficient to draw firm
conclusions, individuals with LS have no decrease in lifespan and
some cohorts of isolated GH deficiency (e.g. Brazilian
Itabaianinha cohort) have attained extreme longevity despite
representing a relative minor proportion of the population,
suggesting that the findings in rodents are relevant to humans
(Junnila et al., 2013). Despite the impact on lifespan, the benefits
of GH supplementation on the agingmusculoskeletal system have
not been fully explored. Thus, this brief review will provide a
summary of the complex effects of GH on the musculoskeletal
system, focusing on extremes in GH action and on age-related
conditions from clinical cohorts as well as in vivo data using
animal models.

2 GH IN MUSCLE

Skeletal muscle is a primary target for GH (and IGF-1) with
growth-promoting effects. GH also has metabolic effects, with a
well-documented ability to influence insulin-stimulated glucose
uptake in skeletal muscle (Moller and Jorgensen, 2009). Below
summarizes the impact of extremes in GH action (acromegaly
and GH deficiency) on body composition and skeletal muscle
structure and function from clinical studies as well as the role of
GH in age-associated changes in skeletal muscle. Data from
animal studies provides additional metabolic and physiological
features of GH in muscle.

2.1 Clinical Data
2.1.1 Extremes in GH Action
2.1.1.1 Acromegaly
Patients with acromegaly have increases in lean mass and total
body water (mainly extracellular water) (Bengtsson et al., 1989;

Freda et al., 2009; Fuchtbauer et al., 2017). Despite the increase in
leanmass, acromegaly is commonly believed to be associated with
myopathy (characterized by muscle weakness and pain) and
reduced muscle endurance (Mastaglia et al., 1970; Lopes et al.,
2016). This acromegaly-associated myopathy can be a debilitating
co-morbidity and is often considered a major contributor to the
reduced quality of life reported for these patients (Miller et al.,
2008). In terms of muscle function, cross-sectional studies have
shown a decrease in hand grip strength, decreased peak torque,
reduced maximal repetition in knee extension and flexion along
with lateral instability (Lopes et al., 2016; Homem et al., 2017).
However, a recent longitudinal study reports contrary results with
a normal to modest increase in strength although confirmed the
presence of reduced grip strength with active acromegaly
(Fuchtbauer et al., 2017). While studies are limited, there are
several structural changes in skeletal muscle with active
acromegaly that are thought to contribute to the muscle
dysfunction. That is, hypertrophy is noted in several studies
but not all (Freda et al., 2009; Ozturk Gokce et al., 2020). As
for muscle fiber type, most studies report hypertrophy of type I
fibers but variable findings for type II fibers (Mastaglia et al., 1970;
Nagulesparen et al., 1976; Khaleeli et al., 1984). An increase in
intramuscular fat content has also been shown with active
acromegaly (Reyes-Vidal et al., 2015). The excess GH
associated with acromegaly is associated with insulin resistance
and impaired insulin-stimulated glucose uptake in skeletal
muscle (Moller et al., 1992; Moller and Jorgensen, 2009).
Disease management improves but does not completely
ameliorate the myopathy. For example, in the longitudinal
study described above (Fuchtbauer et al., 2017), grip strength
improves after disease remission but proximal muscle fatigue
increases. Fat infiltration in the muscle also remains in controlled
acromegaly (Martel-Duguech et al., 2021). Improvement in
insulin resistance in muscle occurs with disease remission but
varies depending on treatment modality (Dal et al., 2016).

2.1.1.2 GH Deficiency
Adults with GH deficiency (GHD) have decreased lean mass
along with reduced isometric muscle strength (Jorgensen et al.,
1989; Cuneo et al., 1991; Johannsson et al., 1997). Muscle
endurance and isokinetic muscle strength are either reduced
or in the lower range of normal (Cuneo et al., 1991;
Johannsson et al., 1997). In general, GH replacement therapy
of GHD increases lean body mass through both increasing
skeletal muscle mass and tissue hydration (Jorgensen et al.,
1989; Salomon et al., 1989; Cuneo et al., 1991; Rutherford
et al., 1995; Elbornsson et al., 2013), as also confirmed in a
comprehensive analysis of 51 clinical trials (Klefter and Feldt-
Rasmussen, 2009). Of note, the increase in hydration of the
muscle with GH therapy complicates the interpretation of
most studies on GH therapy as methods used do not always
differentiate between extracellular water and intracellular mass,
which also confounds data presented above for acromegaly. GH
replacement therapy in GHD for one year is associated with a
5–10% increase in muscle volume as assessed by either computed
tomography or dual-energy X-ray absorptiometry scanning
(Jorgensen et al., 1996). In a study that tracked patients for
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10 years, GH treatment in patients with GHD confirms an
increase muscle strength during the first years of treatment
and partially protects from declines in muscle strength and
neuromuscular function that occurs with aging (Gotherstrom
et al., 2009).

As for other muscle properties, either no change in proportion of
fiber types (Whitehead et al., 1989; Bottinelli et al., 1997) or data
consistent with a larger proportion of type II fibers (Rutherford et al.,
1995) has been reported for GHD, which normalize after GH
therapy. Individuals with GHD may also have reduced capacity
to restore intramyocellular lipids after aerobic exercise (Loher et al.,
2018) although other studies do not show this trend (Christ et al.,
2016). With respect to metabolism, untreated GHD is associated
with reduced glycogen along with decreased insulin-stimulated
glycogen synthase activity in skeletal muscle (Hew et al., 1996;
Christopher et al., 1998). These defects persist after two years of
GH treatment; that is, GH treatment of GHD leads to continued
inhibition of insulin-stimulated glycogen synthase activity,
accompanied by a reduced baseline glycogen content, low-to-
normal glucose 6 phosphate levels, and high total intracellular
glucose concentrations in skeletal muscle (Christopher et al.,
1998), a unique combination to induce insulin resistance.

2.1.2 GH Action and Sarcopenia and Dynapenia
Sarcopenia and dynapenia are the age-associated loss of
muscle mass and strength, respectively (Clark and Manini,
2008). As noted above, secretion of GH and IGF-1 decline
with age such that low levels are detected in individuals over
60 years of age (Clemmons and Van Wyk, 1984; Zadik et al.,
1985; Iranmanesh et al., 1991). These changes have sparked
interest in using these hormones as therapy to combat age-
related changes in muscle. Indeed, patients with sarcopenia
have been reported to have lower GH and IGF-1 levels (Bian
et al., 2020), with the severity of sarcopenia associated with
reduced serum IGF-1 (Jarmusch et al., 2021). GH therapy in
older adults has shown positive effects on body composition,
with an increase in lean mass and a decrease in fat tissue
(Taaffe et al., 1994; Papadakis et al., 1996; Franco et al., 2005).
However, increase in muscle mass is not usually related to an
improved physical ability or muscle strength (Taaffe et al.,
1994; Papadakis et al., 1996; Lange et al., 2002) and has
thrown doubt on its use as a strategy to combat sarcopenia
or dynapenia. As noted before, the increases in lean mass may
reflect increased fluid retention as opposed to lean tissue.
Despite these discouraging results, some studies in elderly
subjects that combine resistance training with GH therapy
show improvements in muscle strength and a change in fiber
types (Hennessey et al., 2001). Further recent studies suggest
that a subset of patients with sarcopenia may be GH resistant
(Ferrari et al., 2021), which may influence response to
hormone therapy. Finally, recent data suggests the low
IGF-1 in sarcopenia may be pathological to the muscle due
to its potent effects on neurons (enhancing neuronal survival,
neurite formation and outgrowth in motoneurons) (Jarmusch
et al., 2021). Despite the integral role of the GH/IGF axis on
muscle metabolism and hypertrophy, the use of GH or IGF-1
for its anti-aging properties remains controversial.

2.2 Mouse Data
2.2.1 Mice With Excess GH Action
GH’s role in muscle has been evaluated using bGH transgenic
mice. bGH mice have increased muscle mass compared to
controls, but muscle mass relative to body mass is unchanged
(Schuenke et al., 2008). Muscle structure is changed, with a
shift towards type I fibers, and an increased cross-sectional
area across fiber types (Schuenke et al., 2008). Despite their
increased muscle size, male bGH mice have similar grip
strength to controls, indicating a less efficient muscle (Wolf
et al., 1995). Increased muscle atrophy signals are also
observed, with 5 month old bGH mice having increased
circulating myostatin as well as increased MuRF1
expression in the gastrocnemius but not the soleus (Consitt
et al., 2017). Skeletal muscle of bGH-transgenic mice has
impaired insulin signaling at several levels, including 1)
reduced insulin receptor abundance, 2) reduced insulin
receptor tyrosine phosphorylation, 3) reduced IRS-1
tyrosine phosphorylation, and 4) defective activation of
PI3K by insulin (that is, the association of IRS-1 with the
p85 subunit is increased more 375% under basal conditions
due to excess GH signaling which prevents its use for insulin
signaling) (Dominici et al., 1999).

In vitro, cultured mouse limb myoblasts from wild type
mice treated with GH show increases in myofiber size by
promoting fusion of satellite-like myoblasts to nascent
myotubes (Sotiropoulos et al., 2006). However, GH
treatment of these limb myoblasts has no effect on size,
proliferation, or differentiation of myoblast precursor cells
indicating that GH plays a role in muscle cell fusion, rather
than stimulating hyperplasia or hypertrophy of myoblast
precursor cells (Sotiropoulos et al., 2006).

To delineate the effects of GH vs. endocrine IGF-1 action,
several mouse lines that have a liver-specific ablation of the
GHR have been generated, as most endocrine IGF-1 is
produced in the liver in response to GH. These mice have
intact GHR in all the tissues of the body, except for the liver; as
a result, they present high GH, but low IGF-1 levels in the
serum, having a form of extrahepatic acromegaly. These liver
specific knockout animals have decreased lean mass but no
change in quadriceps muscle mass and increased grip strength,
indicating that high GH in the absence of high circulating IGF-
1 may have a positive effect on muscle strength (List et al.,
2014).

2.2.2 Mice With Reduced GH Action
Decreased GH action in muscle has been examined using
GHRKO mice. While these mice have normal numbers of
fibrils, myofiber size is reduced, resulting in an overall
decrease in muscle mass (Sotiropoulos et al., 2006; Schuenke
et al., 2008). Muscle fiber type has also been evaluated in these
mice with mixed results. Sotiropoulos et al. (Sotiropoulos et al.,
2006) report that soleus and tibialis anterior muscles from
2 month old GHRKO mice have a higher proportion of type II
vs. type I fiber type compared to control mice. In contrast,
Schuenke et al. (Schuenke et al., 2008) later reports no such
change in fiber types from soleus, plantaris, and gastrocnemius at
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4 months of age. These results suggest that the proportion of fiber
types may depend onmouse age, strain, sex, and perhaps different
muscle groups used. When muscle function is assessed using grip
strength (normalized to body weight), 7 month old GHRKOmice
show improvement compared to controls (Lozier et al., 2018). An
aspect of the sex-specific effects of GH alterations has been
further evaluated using orchidectomized GHRKO and WT
mice and treatment with testosterone during late puberty
(Venken et al., 2007). Testosterone treatment stimulates a
similar increase in muscle mass in both GHRKO and WT
mice indicating that androgens and GH stimulate muscle
growth via distinct mechanisms (Venken et al., 2007). In
terms of insulin metabolism, the muscles of GHRKO mice
have increased insulin receptor expression, increased insulin
stimulated p85 phosphorylation, increased insulin stimulated
phosphorylated AKT1 and AKT2 phosphorylation, and
increased total GLUT4 protein concentration (Bonkowski
et al., 2009). Interestingly, two separate laboratories have
demonstrated that when GHR is disrupted selectively in
muscle, whole body insulin sensitivity is enhanced
(Vijayakumar et al., 2012; List et al., 2015), with no reported
change in muscle strength (List et al., 2015). In accordance with
improved insulin sensitivity seen in muscle-specific GHRKO
mice, these mice have a modest increase in lifespan (List et al.,
2015).

Taken together, studies in humans and in numerous mouse
models of altered GH action indicate that GH signaling is
positively associated with muscle mass, but the increase in
mass seen with GH excess does not confer increased muscle
strength, possibly due to the altered structure of the muscle.
Decreased GH signaling leads to decreased muscle mass, but the
muscles appear to be relatively stronger despite inconsistent
changes to muscle structure.

3 GH IN BONE/JOINTS

GH (and IGF-1) also have robust anabolic effects on bone,
stimulating osteoblast differentiation, linear bone growth, and
increased BMD, among others. Mouse lines with altered GH/
IGF-1 axis have been used to assess the role of GH on bone
acquisition and metabolism. Overall, excess GH action results in
augmented skeletal growth (D’Ercole, 1993), while reduction in
the action of the GH/IGF-1 axis results in mice that, despite
having normal body weight at birth, show a postnatal reduced
skeletal acquisition compared to controls (Duran-Ortiz et al.,
2021a). Below we summarize the skeletal phenotypes of mouse
models with excess or reduced GH action.

3.1 Clinical Data
3.1.1 From Extremes in GH Action
3.1.1.1 Acromegaly
GH excess in acromegaly leads to increased bone turnover, as
evidenced by increases in biochemical markers for both bone
formation and resorption (Aloia et al., 1972; Lepszy et al., 1976;
Halse et al., 1981; Halse and Gordeladze, 1981; de la Piedra et al.,
1988; Ezzat et al., 1993; Kotzmann et al., 1993; Kayath and Vieira,

1997; Bolanowski et al., 2006). However, this increase in bone
turnover does not correlate well with changes of bone mineral
density (BMD) at the local level. Decreased BMD in lumbar spine
and femoral neck has been reported in various studies (Aloia
et al., 1972; Riggs et al., 1972; Halse et al., 1981; Seeman et al.,
1982; Diamond et al., 1989; Kayath and Vieira, 1997; Lesse et al.,
1998; Longobardi et al., 1998; Chiodini et al., 2001; Bolanowski
et al., 2006), suggesting a higher rate of bone resorption versus
formation. Consequently, a higher incidence of radiographical
vertebral deformities and fractures has been reported in
acromegaly (42.0%) compared to control subjects (3.8%)
(Claessen et al., 2013). This suggests that acromegaly is linked
to an increased risk of osteoporotic vertebral fracture. Whereas an
opposite effect–increases in BMD–is observed in the forearm of
patients with acromegaly (Seeman et al., 1982; Diamond et al.,
1989). This can partially be explained by the differential responses
of trabecular (such as in lumbar spine) and cortical bone (such as
in forearm) to excess GH. Despite the strong anabolic effect of
GH on bone, the net BMD gain/loss is likely a result of complex
interactions of sex steroids with GH/IGF-1 axis, as reviewed
elsewhere (Birzniece and Ho, 2017).

Joint manifestations are one of the most common clinical
complications in patients with acromegaly. Either axial or
peripheral arthropathy has been reported in more than 50%
of patients (Layton et al., 1988). Typical radiographic
osteoarthritic changes including joint space narrowing,
osteophytosis, subchondral bony sclerosis, and cysts
formation can be seen in some but not all patients with
acromegaly (Layton et al., 1988; Colao et al., 2005). Some
argue that those pathological changes might not be
indicative of an osteoarthritis (OA) diagnosis as patients
with acromegaly often times also have radiographic signs in
the hand and spine joints unlike those commonly seen in OA
(Tornero et al., 1990). Nevertheless, joint manifestation
associated pain is one of the most common complications
that greatly affects quality of life in long-standing
acromegaly (Miller et al., 2008; Kropf et al., 2013).

3.1.1.2 GH Deficiency (GHD)
Decreased BMD has been consistently reported in patients with
GH deficiency (GHD), either isolated or combined with other
pituitary hormone deficiencies (Kaufman et al., 1992; Ohlsson
et al., 1998; Wuster et al., 2001; Doga et al., 2005). The degree of
bone loss is dependent on the sites, the duration and age of GHD
onset, and the age of patients. Current evidence suggests that
comparing with trabecular bone, cortical bone is more targeted by
GHD (Johansson et al., 1992; Wuster et al., 2001). Consistently,
the risk of nonvertebral fracture is increased approximately 3-fold
in patients with GHD and the fractures are frequently localized to
the radius (Johansson et al., 1992; Rosen et al., 1997; Wuster et al.,
2001), a site rich in cortical bone. Additionally, patients with
childhood-onset GHD are smaller and have a greater decrease of
bone mass than patients with adult-onset GHD (Attanasio et al.,
1997; Lissett and Shalet, 2002). This is thought to be due to
missing effect from GH on reaching the peak bone mass during
puberty (Bonjour et al., 1991). In contrast, the degree of bone loss
in adult-onset GHD correlates with the age of patients and the
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duration and severity of the disease (Rosen et al., 1993; Holmes
et al., 1994; Toogood et al., 1997; Colao et al., 1999; Murray et al.,
2004; Fee and Bu, 2007). Conversely, when long-term
recombinant GH therapy is used to treat patients with GHD,
there is a resulting increase in BMD, with no change observed in
trabecular bone score (Vanuga et al., 2021). Collectively, these
studies demonstrated that GHD can contribute to bone loss and
osteoporosis.

Not much is known about GHD on OA development. One
comparative study has found that the prevalence of radiographic
OA is lower in elderly patients with GHD than a normal
population of elderly people (Bagge et al., 1993). Recently, a
polymorphism of human GH receptor (GHR), the genomic
deletion of exon 3 (d3GHR), was identified to be associated
with increased growth velocity in children with GH deficiency
(Urbanek et al., 1993; Dos Santos et al., 2004). This
polymorphism enhances GH’s growth-promoting effects
although GHR binding is not altered (Urbanek et al., 1993;
Dos Santos et al., 2004). Interestingly, patients with d3GHR
mutation have increased prevalence of OA, especially in hip
joint, while both BMD and rate of (non)vertebral fractures are
not significantly altered (Wassenaar et al., 2009; Claessen et al.,
2014).

3.1.2 GH/IGF-1 Action and Age-Related Osteoporosis
and Osteoarthritis
The level of GH and IGF1 decrease with aging (Clemmons and
Van Wyk, 1984; Zadik et al., 1985; Iranmanesh et al., 1991),
correlating with the increased risk of osteoporosis and fragility
fracture in elderly population. A positive relationship between
BMD and concentration of IGF-1 and IGF binding protein 3
(IGFBP-3) in serum is observed in healthy men (Johansson
et al., 1994), and low serum IGF-1 level is associated with
increased risk of hip and vertebral fractures (Ohlsson et al.,
2011). However, the age-dependent decrease of GH and IGF-1
does not seem to always correlate with the reduction of BMD in
humans. For example, in postmenopausal women with
osteoporosis, serum IGF-1 does not differ from that in
postmenopausal women without osteoporosis (Bennett et al.,
1984). This suggests that aging associated skeletal homeostasis is
likely a multifactorial process mediated by sex hormones, GH/
IGF-1 axis, and others. Not surprisingly, the administration of
GH or IGF-1 for treating osteoporosis in clinical trials has
yielded mixed results. For example, in a randomized placebo-
controlled trial in postmenopausal women with up to three
years of follow-up, GH therapy results in 14% increase of BMD
(Landin-Wilhelmsen et al., 2003), a result that was not
reproduced in earlier trial (Saaf et al., 1999). The role of
aging dependent decline of GH/IGF-1 on OA development
has remained largely unknown, though one study showed
that there was no direct link between either GH or IGF-1
serum level and OA (Lis, 2008).

3.2 Mouse Data
3.2.1 Mice With Excess GH Action
Mouse lines with excess GH, such as mice that overexpress
human GHRH, human GH and bGH, show increased bone

and body size (Wolf et al., 1991; D’Ercole, 1993; Jensen et al.,
2021). Note that human GH binds to the prolactin receptor in
addition to the GH receptor, while bGH only binds to the GH
receptor. Therefore, bGH mice are a better model to study the
specific effects of augmented GHR activation. bGH mice have
increased bone length but compromised bone architecture and
BMD with reduced trabecular bone volume fraction and
thickness (Lim et al., 2015). Also, cortical tissue perimeter is
increased in bGH mice, but cortical thickness is reduced. In
lumbar vertebra, bGH mice show similar trabecular BMD but
reduced trabecular thickness relative to controls while cortical
BMD and thickness are significantly reduced in bGH mice.
Importantly, at 5 months of age, bone turnover is increased in
favor of bone resorption in at least bGH tibia (Lim et al., 2015).
Pathohistological analysis of the knee joints from bGH mice at
6 months of age reveal that themice have loss of articular cartilage
zonal structure, presence of hypertrophic chondrocytes, and
thickening of synovial lining tissue and pannus, suggesting
osteoarthritic degeneration happens at an early age with GH
overproduction (Eckstein et al., 2002; Eckstein et al., 2004).
Similar cartilage degeneration is also seen in the hip joints of
bGH mice (Munoz-Guerra et al., 2004).

The effects of GH action in bone are age- and sex-dependent in
terms of BMD, cortical area, and bone minerals. For example, in
bGH transgenic mice, only males have increased cortical cross-
sectional area, yet females have increased trabecular density,
femoral bone density, and trabecular bone volume fraction.
However, the increased trabecular density in females was
limited to younger ages between 6 and 12 weeks. Both sexes
have decreased cortical density and mineralized tissue matrix
density. It is apparent that in adulthood, excess GH action has a
negative effect on bone structure (Eckstein et al., 2002; Eckstein
et al., 2004). As noted previously, mice with a liver-specific GHR
knockout have high circulating GH and low circulating IGF-1.
Interestingly, different studies have found conflicting results for
the body length of these mice, with two studies showing no
difference (Yakar et al., 1999; Fan et al., 2009) and one study
displaying significant decrease in body length (List et al., 2014) of
the liver-specific GHR knockout mice compared to controls.
These mice have impaired BMD with impaired cortical bone
acquisition, microarchitecture, trabecular bone volume, and
strength. With the exception of trabecular bone volume, these
deficiencies are rescued when hepatic IGF-1 production is
normalized by crossing these mice with hepatic IGF-1
transgenic mice (Liu et al., 2018). These results implicate IGF-
1 as a major contributor to skeletal growth and structure.

As always when studying GH, it is difficult to tease out direct
effects of GH from those mediated through IGF-1. In an in vitro
experiment using osteoblasts from mice with an osteoblast-
specific IGF-1R deletion, GH was shown to activate JAK2 and
STAT5 normally. Other pathways had differing responses, as
ERK activation by GH was normal in the absence of IGF-1R,
while Akt activation was blunted.

3.2.2 Mice With Reduced GH Action
Germline reduction in GH action as seen in GHRKOmice results
in mice with ~50–60% decreased body size (List et al., 2019).
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Besides reduced longitudinal growth, 3 month old GHRKO mice
also show decreased trabecular bone volume, as well as reduced
cortical bone total cross-sectional area, bone area, cortical bone
thickness, periosteal/endosteal circumference and reduced BMD
and bone mineral content (BMC) (Sjogren et al., 2000).
Furthermore, reduced skeletal growth in GHRKO mice has
been associated with premature growth plate closure and
reduced chondrocyte proliferation, bone turnover and
periosteal bone apposition (Sims et al., 2000). To study the
effects of reduced GH action postnatally, a mouse line with
disrupted GHR at 6 months of age (6mGHRKO) was recently
reported (Duran-Ortiz et al., 2021b; Dixit et al., 2021). Disrupting
GHR globally at an adult age results in more slender bones,
expansion of the marrow cavity, reduced osteocyte lacunar
number, and increases in lacunar volume and loss of
canalicular connectivity (Dixit et al., 2021). However, mineral/
matrix ratio is not altered. Collectively, these studies show that
germline and postnatal reduction of GH compromises
morphology and development of the bones.

Moreover, one recent study examining an adult-onset isolated
GH deficiency (AOiGHD) model found that reduction of GH
during adulthood leads to increased cartilage degeneration and
osteophyte formation in both male and female, while synovium
thickening only in male (Poudel et al., 2021). Although not in
mice, chronic GH/IGF-1 deficiency in a dwarf rat model (dw/dw)
causes an increased severity of articular cartilage lesion of OA
without formation of osteophytes and subchondral sclerosis.
Interestingly, the cartilage lesion is ameliorated by a life-long
repletion of GH (Ekenstedt et al., 2006). These results suggest a
beneficial effect of reduced GH action on joint health, which is
inconsistent from the aforementioned, pronounced OA
phenotype in the bGH mice. This discrepancy is likely due to
multiple factors including different genetic modified animal
models, different species, and germline versus inducible
deletion of GH.

To study the effects of GH action specifically on the bone, a
mouse line with the GHR disrupted only in bone was generated,
which results in bones that are resistant to GH but responsive to
IGF-1. These mice, called dentin matrix protein (DMP)-1
GHRKO (DMP-GHRKO) mice (Liu et al., 2016), do not have
any significant change in body weight, composition, and growth,
although they show differences in bone acquisition. That is,
DMP-GHRKO mice have decreased bone formation, mineral
deposition rate, reduced cortical and trabecular areas, and
increased and decreased number of osteoclasts and osteoblasts,
respectively compared to controls (Liu et al., 2016). Altogether,
these results show that germline reduction of GH action results in
impaired skeletal growth and decreased bone mineral density.

4 EXPERIMENTAL VARIANT OF HUMANGH

While this review has focused on “GH”, it is important to remember
that the human GH gene family is made up of five genes that share
similar structure. These five genes include, GH-N (the main focus of
this review), GH-V (also called placental GH), chorionic
somatomammotropin hormone 1 (also called placental lactogen

1), chorionic somatomammotropin hormone 2 (also called
placental lactogen 2), and a pseudogene called chorionic
somatomammotropin-like hormone. While GH-N is produced
mainly in the pituitary, all other members of the GH gene family
are produced in the placenta. GH-V is 93% identical to GH-N at the
amino acid level, and the 22K isoform, which is the most abundant
isoform of GH-V, has been shown to promote growth and mediate
maternal insulin resistance during pregnancy (Miller and Eberhardt,
1983; Solomon et al., 2006). Another isoform, a 20KGH-V isoform, is
expressed at low levels (Boguszewski et al., 1998); however, two
separate laboratories indicate that the 20K GH-V isoform has potent
effects when given at therapeutic levels. Specifically, 20K GH-V
stimulates IGF-1, increases longitudinal bone growth, increases
muscle mass, and reduces fat mass when injected into mice and
rats (Vickers et al., 2009; List et al., 2020). Importantly, while 20K
GH-V appears to have full anabolic activity, it lacks diabetogenic and
lactogenic activities found in human GH-N (Vickers et al., 2009; List
et al., 2020). The clinical implications of a GH that lacks diabetogenic
and lactogenic activities is attractive since both of these activities are
generally associated with negative health consequences. While still
very preliminary and only in rodents, these data suggest that 20K
GH-V may represent improvements to current GH therapies for
bone or muscle-related maladies.

5 CONCLUSION

Growth hormone has its most notable effects on the
musculoskeletal system, as these effects lend GH its name.
Overall, GH acts directly and indirectly through IGF-1 to
increase bone and muscle mass, but the increase in mass does
not necessarily result in increased strength in either tissue. The
lack of increased strength may be explained by changes in fiber
type in muscle and decreased BMD in some types of bone. GH
deficiency causes decreased bone and muscle mass and strength,
and GH treatment of GHD increases bone and muscle mass and
muscle strength. Animal models of increased (bGH mice) and
decreased (GHRKO mice) GH action mirror the results seen in
their respective clinical populations.

Many questions remain unanswered. First, what is the role of GH
versus IGF-1? A key aspect of GH action is the distinction between
its direct and IGF-1 mediated effects, but in clinical populations
(with the exception of rare conditions like LS), high circulating GH is
coupled with high circulating IGF-1 or vice versa. A mouse model
that decouples high GH from high IGF-1 (Liver specific GHR
knockout mice, which have high GH but low IGF-1) shows a
distinct muscle phenotype with increased grip strength. Likewise,
IGF-1 transgenic mice, with high IGF-1 but low GH, have increased
body weight but no increase in skeletal growth (Mathews et al.,
1988). A previous review has summarized the distinct and
overlapping effects of GH and IGF-1 on bone (Yakar and
Isaksson, 2016), highlighting the complexity of this issue.

Second, does GH have potential utility for treating age-related
conditions? GH and IGF-1 have significant anabolic effects in both
skeletal muscle and bone, making them of high interest as an anti-
aging therapy for disorders in these tissues (Bartke, 2019). To date,
data are sparse for the specific benefits of GH therapy for both
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sarcopenia and OA and inconsistent for other conditions, such as
osteoporosis. Further, GH resistance, treatment regimen/duration,
age of treatment and sex are all important variables that have not
been appropriately assessed. However, there are negative metabolic
consequences of using GH in older adults. That is, as GH promotes
insulin resistance, promoting diabetes. Further, both GH and IGF-1
appear to contribute to the development, progression, therapy
resistance and metastases of multiple human cancers expressing
GHRs (Basu andKopchick, 2019). Controlled exposure to GHor the
use of GH variants, which have the anabolic effect on bone and
muscle but lack some of the diabetogenic action (List et al., 2020), are
possible modes of treatment. Thus, the intricate links between GH,
the musculoskeletal system, metabolism, and lifespan have room for
further investigation.
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