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Summary
We report an autosomal recessive, multi-organ tumor predisposition syndrome, caused by bi-allelic loss-of-function germline variants in

the base excision repair (BER) gene MBD4. We identified five individuals with bi-allelic MBD4 variants within four families and these

individuals had a personal and/or family history of adenomatous colorectal polyposis, acute myeloid leukemia, and uveal melanoma.

MBD4 encodes a glycosylase involved in repair of G:T mismatches resulting from deamination of 50-methylcytosine. The colorectal ad-

enomas from MBD4-deficient individuals showed a mutator phenotype attributable to mutational signature SBS1, consistent with the

function of MBD4. MBD4-deficient polyps harbored somatic mutations in similar driver genes to sporadic colorectal tumors, although

AMER1 mutations were more common and KRAS mutations less frequent. Our findings expand the role of BER deficiencies in tumor

predisposition. Inclusion of MBD4 in genetic testing for polyposis and multi-tumor phenotypes is warranted to improve disease

management.
Inherited defects in DNA repair are responsible for a group

of genetic tumor risk syndromes that are characterized by

adenomatous polyposis, colorectal cancer (CRC), and ex-

tracolonic neoplasms. These syndromes include domi-

nantly inherited polymerase proofreading-associated

polyposis (PPAP) caused by pathogenic variants in the po-

lymerase proofreading domains of POLE (MIM: 615083)

and POLD1 (MIM: 612591)1 and recessively inherited con-

ditions caused by variants in genes involved in mismatch

repair (PMS2 [MIM: 614337], MSH6 [MIM: 600678],

MSH2 [MIM: 120435], MLH1 [MIM: 609310])2,3 and
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base-excision repair (BER) (MUTYH [MIM: 608456] and

NTHL1 [MIM: 616415]).4,5 Mechanistically, defective

DNA repair appears to lead to an increase in the somatic

mutation rate and accumulation of somatic mutations in

cancer driver genes such as APC (MIM: 611731), KRAS

(MIM: 190070), and TP53 (MIM: 191170). Previous studies

have linked the specific defects in DNA repair genes to

mutational signatures.6–9

Genetic testing currently fails to identify a cause in a sig-

nificant proportion of individuals who develop multiple

colorectal adenomas. It is important to identify any
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remaining polyposis genes in order to plan appropriate tu-

mor surveillance for affected individuals and their rela-

tives. Here, by applying whole-genome and whole-exome

sequencing (WGS and WES), we identified loss-of-pro-

tein-function (LOF) variants of the BER gene MBD4 as

the cause of an autosomal recessive syndrome of colorectal

polyposis and extracolonic neoplasia.

We performed WGS or WES of constitutional DNA in a

cohort of 309 individuals, from 198 apparently unrelated

families, who were affected by multiple colorectal ade-

nomas or familial CRC. For all individuals included in our

study, routine diagnostic molecular genetic testing failed

to detect pathogenic germline variants in known CRC

and polyposis predisposing genes (detailed cohort descrip-

tions in supplementalmethods). The study received ethical

approval from UK NHS Research Ethics Committees (REC

numbers 06/Q1702/99 and 12/WA/0071), the Human

ResearchEthicsCommittees at theUniversity ofMelbourne

(HREC #1954921) ,and the RadboudumcCMOLocal Ethics

Committee (#2015/2172). All participants providedwritten

informed consent. Following WGS or WES, we prioritized

the identification of coding germline variants predicted to

cause LOF. This approach identified two individuals with

bi-allelic frameshift variants in MBD4. MBD4 encodes a

BER glycosylase that repairs G:T mismatches resulting

fromthedeaminationof 50-methylcytosine (5mC). Simplex

individualD:II-1washomozygous for a4-bpMBD4deletion

(GenBank: NM_003925.2: c.612_615del [p.Ser205Thrfs*9];

Figures S1A and S1E–S1H) and the other (CRDFF-292:II-3)

was homozygous for an adenine duplication (GenBank:

NM_003925.2: c.939dup [p.Glu314Argfs*13]; Figure S1B).

Region of homozygosity analysis did not suggest consan-

guinity in either of the two individuals (data not shown).
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Both variants were exceedingly rare in gnomAD (allele fre-

quencies 0.0000399 and 0.000653, respectively), although

the c.939dup variant is one of the most common LOF vari-

ants in MBD4 in gnomAD and was found across multiple

populations. No individuals with homozygous germline

LOF MBD4 variants were found in gnomAD, the UK

100,000 Genome Project (100KGP), or the whole-

genome-sequenced individuals in UK Biobank.

Next, we undertook targeted sequencing of MBD4 in

replication cohorts comprising a total of 1,611 individuals

with at least ten colorectal adenomas, familial or early

onset CRC, or CRC in combination with other tumors.

This identified one additional, unrelated individual

(CRDFF-336-1:II-1) who was homozygous for the same

adenine duplication (GenBank: NM_003925.2: c.939dup;

Figure S1C) and four heterozygous carriers of LOF variants

inMBD4. While the frequency of heterozygous carriers was

significantly higher than in gnomAD (4/1,611 versus 48/

64,600; p ¼ 0.0381, Fisher’s exact), we did not confirm

this enrichment in the 100KGP and UK Biobank datasets

(all comparisons p > 0.05, Fisher’s exact; Table S3).

The pedigrees of the three individuals with homozygous

MBD4 germline variants are shown in Figure 1. After geno-

typing of available additional family members, all were

compatible with an autosomal recessive trait. Most indi-

viduals with bi-allelic LOF variants in MBD4 developed

multiple colorectal adenomas and an extracolonic

neoplasm (Table 1). Simplex individual D:II-1 (Figure 1A)

was found to have approximately 60 colorectal adenomas

at initial colonoscopy at 36 years of age and at least 70 ad-

enomas were identified at panproctocolectomy at 47 years

of age (Figure S1H). 7 months after surgery, he was

diagnosed with myelodysplastic syndrome (MDS) that
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Figure 1. Pedigrees of individuals with
MBD4 deficiency
(A) Pedigree of simplex individual D:II-1
with a homozygous MBD4 loss-of-func-
tion (c.612_615del) variant. For colorectal
adenomas, we show the cumulative tumor
numbers from age at first presentation and
screening colonoscopy to age at last con-
tact (see also Figures S1A and S1E–S1H).
(B) Pedigree of Family CRDFF-292 with
a homozygous MBD4 loss-of-function
(c.939dup) variant. For colorectal ade-
nomas, we show the total tumor numbers
identified from panproctocolectomy at age
53 (see also Figure S1B).
(C) Pedigree of Family CRDFF-336 with
a homozygous MBD4 loss-of-function
(c.939dup) variant. For colorectal ade-
nomas, we show the total tumor numbers
identified from panproctocolectomy at 39
years of age (see also Figure S1C).
(D) Pedigree of Family DB1 with the bi-
allelic MBD4 loss-of-function c.939dup
and c.1688T>A variants (see also
Figure S1D).
Abbreviations: Ads, colorectal adenomas;
AML, acute myeloid leukemia; CRC, colo-
rectal cancer; DCIS, ductal carcinoma in
situ of the breast; OvGCT, ovarian granu-
losa cell tumor; PrC, prostate cancer;
SADS, sudden arrhythmia death syn-
drome; SC, stomach cancer; UVM, uveal
melanoma; upper GI TVA, upper gastroin-
testinal ampullary tubulovillus adenoma;
question mark, age unknown; MT, muta-
tion; WT, wild-type. Arrows indicate index
individuals. Number between brackets
indicate age at diagnosis.
progressed to acute myeloid leukemia (AML) within

3 months. CRDFF-292-1 (individual II-3 in Figure 1B) had

33 colorectal adenomas at panproctocolectomy at 53 years

of age and was diagnosed concurrently with a uveal mela-

noma. A CT scan also revealedmultiple liver cysts andmul-

tiple, bilateral small renal cysts. His brother (individual II-1

in Figure 1B) had been diagnosed with colorectal cancer at

52 years of age and had died of leukemia aged 60, but no

material was available for genetic testing. CRDFF-336-1 (in-

dividual II-1 in Figure 1C) had 20 colorectal adenomas at

panproctocolectomy at 39 years of age and previously

had surgical removal of an ovarian granulosa cell tumor

at 12 years of age. Genotyping confirmed that her brother

(CRDFF-336-2, individual II-2 in Figure 1C) was also homo-

zygous for the adenine duplication (c.939dup), and

colonoscopy at 39 years of age revealed approximately 20

colorectal polyps that were confirmed histologically to be

adenomas with low grade dysplasia.

Two of three individuals with AML previously identi-

fied to have MBD4 deficiency were noted to have

colorectal polyps, without information on their type or

multiplicity.10 We therefore obtained more comprehen-

sive clinicopathological information on their colorectal

tumors (Table 1). Individual WEHI-2 (previously WEHI-

AML-210) developed a total of 17 colorectal polyps over
The Ame
a period of 22 years from the age of 18 years. Histological

assessment classified all available polyps (n ¼ 12) as

tubular adenomas with mild-to-moderate dysplasia, and

the majority (n ¼ 7) were found in the rectum

(Figure S1I). A moderately differentiated adenocarcinoma

was found in the ascending colon at age 40 and the indi-

vidual underwent a right hemicolectomy. Individual

EMC-AML-1 developed multiple colonic polyps and un-

derwent a hemicolectomy at age 31, although no polyp

counts were reported and tissue blocks were unavailable

for histological re-assessment. The third individual

(WEHI-AML-110) did not have gastrointestinal assess-

ment prior to her death.

We performed WES on DNA extracted from fresh-frozen

or formalin-fixed paraffin-embedded (FFPE) tissue from 11

colorectal adenomas from D:II-1 and eight colorectal ade-

nomas from WEHI-2 (Table S2). The mutation burden

was increased significantly in colorectal adenomas from

both individuals with MBD4 deficiency compared to

previously published multi-region WES data from nine

sporadic fresh-frozen adenomas11 (Figure 2A; Table S2).

The excess mutations were almost all CpG>TpG transi-

tions (>95%) that accumulated steadily over time

(Figure 2B) and were significantly more prevalent (Fisher’s

exact, p ¼ 2.9 3 10�7) than in the sporadic colorectal
rican Journal of Human Genetics 109, 953–960, May 5, 2022 955



Table 1. Clinical phenotype of individuals with bi-allelic germline MBD4 loss-of-protein-function variants

Individual
cDNA change
(GenBank: NM_003925.2) Amino acid change M/F Malignancies Polyps Benign lesions

D:II-1 c.612_615del (homozygous) p.Ser205Thrfs*9 M AML (49) >130 A N/A

CRDFF-292-1:II-3 c.939dup (homozygous) p.Glu314Argfs*13 M UVM (53) 33 A liver cysts (53), bilateral
small renal cysts (53)

CRDFF-336-1:II-1 c.939dup (homozygous) p.Glu314Argfs*13 F OvGCT (12) >20 A N/A

CRDFF-336-2:II-2 c.939dup (homozygous) p.Glu314Argfs*13 M N/A >20 A N/A

DB1-70:II-3 c.939dup/c.1688T>A p.Glu314Argfs*13/
p.Leu563*

F UVM (38, 45) multiple A (35);
19 A (49); upper
GI TVA (49)

meningioma (41);
DCIS (50); schwannomas
(50)

WEHI-210 c.939dup/c.1562�1G>T p.Glu314Argfs*13/
abnormal splicing

F AML (34); CRC (40) 17 A N/A

WEHI-AML-110 c.939dup/c.1562�1G>T p.Glu314Argfs*13/
abnormal splicing

F AML (31) no colonoscopy
performed

N/A

EMC-AML-110 c.1699_1701del (homozygous) p.His567del M AML (33) multiple A N/A

M, male; F, female; AML, acute myeloid leukemia; UVM, uveal melanoma; OvGCT, ovarian granulosa cell tumor; CRC, colorectal cancer; A, colorectal adenomas
(numbers indicate total cumulative number of colorectal polyps unless stated otherwise); upper GI TVA, upper gastrointestinal tract tubulovillus adenoma; DCIS,
ductal carcinoma in situ of the breast; N/A not applicable. Numbers in parentheses refer to the age of diagnosis of the affected individual. Unspecified number of
polyps is indicated as ‘‘multiple.’’
adenomas (Figure 2C). The mutation spectrum was almost

exclusively attributable to COSMIC mutational signature

SBS112 in colorectal adenomas from individuals with

MBD4 deficiency, in contrast to sporadic colorectal ade-

nomas (Figure 2D; Figures S2 and S3). This is fully consis-

tent with a failure to repair G:T mismatches resulting

from deamination of 50-methylcytosine caused by loss of

MBD4 function. Furthermore, virtually all mutated sites

were methylated in normal colon (>96% of sites mutated

compared to 58% of all exonic CpG sites; Figure 2E).

The driver genes mutated in MBD4-deficient adenomas

were similar to those in sporadic adenomas and CRCs

(Table S4). All MBD4-deficient adenomas (those that un-

derwent WES and one additional adenoma from WEHI-2

that was targeted sequenced; see also Table S2 and the sup-

plemental methods) harbored somatic driver mutations in

APC with a significant enrichment of the CpG>TpG tran-

sition (GenBank: NM_000038.4: c.4348C>T) resulting in

p.Arg1450*, compared with sporadic adenomas and

CRCs (Fisher’s exact; p < 0.00001; Figure 2F). MBD4-defi-

cient adenomas harbored fewer KRAS mutations (three of

19 adenomas) than sporadic tumors (Fisher’s exact, p ¼
0.0028) but significantly more somatic mutations in

AMER1 (MIM: 300647) (12 of 19 adenomas; Fisher’s exact,

p ¼ 0.039) (Figure 2F). Overall, 88% of driver mutations in

adenomas from individuals with MBD4 deficiency were

CpG>TpG transitions compared to only 37% in sporadic

adenomas (Table S4).

Incorporation of MBD4 into diagnostic gene panels for

colorectal polyposis, AML, and uveal melanoma at one

of our centers has led to the identification of a further

individual (DB1-70) with MBD4-associated neoplasia

syndrome (MANS). DB1-70 (individual II-3 in Figure 1D)

is compound heterozygous for the MBD4 variants

c.939dup and c.1688T>A (p.Leu563*; Figure S1D). She
956 The American Journal of Human Genetics 109, 953–960, May 5,
developed multiple adenomatous polyps in the colon at

age 35, underwent a left hemicolectomy at age 39, and

had 19 adenomatous polyps removed from her residual

colon at age 49. DB1-70 was also diagnosed with two uveal

melanomas, one at age 38 and one at age 45 years, a me-

ningioma at age 41, a ductal carcinoma in situ of the breast

at age 50, and a chest wall and cervical schwannoma at

age 50. At age 52, she was diagnosed with liver metastases

from the uveal melanoma (Figure 1D). Her sister, for

whom no material was available for genetic testing, was

diagnosed with a uveal melanoma at age 30 and duodenal

polyps andmultiple adenomatous polyps in the colon, for

which a right hemicolectomy was performed, at age 37.

She was diagnosed with AML at age 42 and died a year

later.

Following the discovery that bi-allelic MBD4 LOF vari-

ants predispose to AML,10 we here show that inherited

MBD4 deficiency causes a wider neoplastic syndrome

including adenomatous polyposis with a colorectal pheno-

type similar to attenuated familial adenomatous polyposis

(MIM: 175100) and to individuals with germline patho-

genic variants in MUTYH, NTHL1, POLE, and POLD1.

Loss of MBD4 function leads to an accumulation of so-

matic CpG>TpG mutations, including in well-known

CRC driver genes, arising from spontaneous deamination

of 5’-methylcytosine, creating a mutational signature

very similar to COSMIC SBS1. We suggest the name

MBD4-associated neoplasia syndrome (MANS) for this

condition.

To date, colorectal polyposis, MDS/AML, and uveal mel-

anoma appear to be the most common clinical manifesta-

tions of MANS. Thus far, to our knowledge, all individuals

that have had a colonoscopy have had multiple colorectal

polyps early in life, and most have experienced MDS/

AML. Identification of individuals with bi-allelic MBD4
2022



Figure 2. Somatic mutation burden and analysis of polyps of individuals with MBD4 deficiency
(A) Somatic mutation rate for each polyp, formalin-fixed and paraffin-embedded samples indicated with asterisks (*). The color of the
bars represents mutations in different sequence contexts; red shows CG>TG mutations, blue shows CA>AA mutations (primarily de-
tected in WEHI-2 P9), and gray represents other base contexts. The median value is presented for samples that had multi-region
sequencing. Median mutation burden/Mb in fresh frozen adenomas of D:II-1 was 11.1 [range 8.5–23.3] compared to 1.8 in a set of
nine fresh frozen sporadic adenomas [range 1.0–3.1] (see also Figures S1H–S1I for representative HE slides).
(B) The number of somatic CG>TG mutations detected in WES data is plotted as function of age. The linear fit is shown, together with
95% confidence intervals (gray shading).
(C) We assessed the contribution of deamination of 5mC toMBD4-deficient samples by comparing the number of CG>TGmutations to
all other single-nucleotide mutations. The plot compares MBD4-deficient polyps and AMLs12 to sporadic polyps, and to colon and rectal
cancers from The Cancer Genome Atlas (TCGA). MSI, microsatellite instability; MSI-H, MSI-high; MSS, microsatellite stable (‘‘MSS’’ in-
cludes both MSS and MSI-low samples); TCGA NA, no MSI data available.
(D) Extracted de novo signature SBS1MBD4 C>T panel from all polyps fromD:II-1(left) and polyps P1–P8 ofWEHI-2 (middle) and the C>T
panel from COSMIC SBS1-v3 (right).
(E) Fraction of mutated CpG sites that are methylated in normal sigmoid colon (beta value > 0.5 in WGBS data from the Roadmap
Epigenomics Consortium11). Each point summarizes WES results from a sample and includes all sites with sufficient coverage in

(legend continued on next page)
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pathogenic variants may inform their clinical manage-

ment and that of their families. The identification and

follow up of additional individuals will help to define

the magnitude of cancer risks in MANS. In the interim,

we propose colonoscopies every 2 years from age 18–20,

or the date of diagnosis, a regimen often used for other

BER-related polyposis syndromes.13,14 At least one of the

AMLs in our study developed from MDS, and we have

observed clonal hematopoiesis in others.10 We suggest

regular follow up full blood counts for individuals with

MANS if their initial presentation is with adenomatous

polyposis. If the individual presents with AML, then we

suggest genetic testing for any family member being

considered as a haematopoietic stem cell donor, in keep-

ing with current expert recommendations for managing

inherited predisposition to myeloid malignancy.15,16

Given that heterozygous LOF MBD4 variant carriers

appear to be susceptible to uveal melanoma17–19 and our

identification of uveal melanoma in three of eight indi-

viduals with MANS suggests annual ophthalmological

surveillance may also be appropriate.20 The occurrence

of a rare juvenile ovarian granulosa cell tumor in one of

four females and schwannomas in another individual re-

ported here is noteworthy and the spectrum of MBD4-

deficiency-associated cancers may widen as further indi-

viduals with MANS are identified. In contrast to findings

with uveal melanoma where heterozygotes for MBD4

LOF variants appear to be at a 4- to 20-fold increased

risk, our limited data show no convincing evidence for a

comparable effect on the relative risk of developing polyp-

osis and/or CRC. We cannot rule out the possibility that

individuals heterozygous for an MBD4 LOF variant have

a small increased risk of CRC and/or polyposis,21 but at

present, no colonoscopy surveillance beyond population

screening or local guidelines based on familial history

for CRC is recommended. Additionally, although it has

been suggested that variable expression of MBD4 contrib-

utes to differences in DNA repair capacity,22 further inves-

tigation is required to determine whether this contributes

to modify disease risk.

In conclusion, constitutional deficiency of MBD4

causes a rare genetic syndrome, MANS, that is character-

ized by the development of adenomatous polyposis and

predisposition to AML. MBD4 deficiency results in an

elevated mutation burden with a mutation spectrum

very similar to COSMIC mutational signature SBS1. A

high mutational burden is associated with a good prog-

nosis in CRC, and we speculate that MANS CRCs may

respond to immune checkpoint inhibitors, as has been re-

ported in MBD4-deficient uveal melanomas.17,18 It is

possible that such a strategy could also be used to treat

other neoplasia in MANS. In the short term, genetic
WGBS (n ¼ 177–1,507 CG>TG mutations) and the median value is
methylated CG sites across all exons.
(F) Oncoprint of driver gene mutation analysis of genes significantly d
the number and type of somatic mutation is shown. *Polyp P10 from
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testing for MANS could be implemented readily by

incorporating MBD4 into existing gene panels used in

diagnostic testing for adenomatous polyposis, CRC,

early-onset AML, and uveal melanoma.
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