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Pathway-based dissection of 
the genomic heterogeneity of 
cancer hallmarks’ acquisition with 
SLAPenrich
Francesco Iorio   1,2,5, Luz Garcia-Alonso1,5, Jonathan S. Brammeld2, Iňigo Martincorena2, 
David R. Wille3,5, Ultan McDermott   2 & Julio Saez-Rodriguez   1,4,5

Cancer hallmarks are evolutionary traits required by a tumour to develop. While extensively 
characterised, the way these traits are achieved through the accumulation of somatic mutations in 
key biological pathways is not fully understood. To shed light on this subject, we characterised the 
landscape of pathway alterations associated with somatic mutations observed in 4,415 patients across 
ten cancer types, using 374 orthogonal pathway gene-sets mapped onto canonical cancer hallmarks. 
Towards this end, we developed SLAPenrich: a computational method based on population-level 
statistics, freely available as an open source R package. Assembling the identified pathway alterations 
into sets of hallmark signatures allowed us to connect somatic mutations to clinically interpretable 
cancer mechanisms. Further, we explored the heterogeneity of these signatures, in terms of ratio 
of altered pathways associated with each individual hallmark, assuming that this is reflective of the 
extent of selective advantage provided to the cancer type under consideration. Our analysis revealed 
the predominance of certain hallmarks in specific cancer types, thus suggesting different evolutionary 
trajectories across cancer lineages. Finally, although many pathway alteration enrichments are 
guided by somatic mutations in frequently altered high-confidence cancer genes, excluding these 
driver mutations preserves the hallmark heterogeneity signatures, thus the detected hallmarks’ 
predominance across cancer types. As a consequence, we propose the hallmark signatures as a ground 
truth to characterise tails of infrequent genomic alterations and identify potential novel cancer driver 
genes and networks.

The swift progression of next-generation sequencing technologies is enabling a fast and affordable production of 
an extraordinary amount of genome sequences. Cancer research is particularly benefiting from these advances, 
and comprehensive catalogues of somatic mutations involved in carcinogenesis, tumour progression and 
response to therapy are becoming increasingly available and ready to be exploited for the identification of new 
diagnostic, prognostic and therapeutic markers1–4. Exploration of the genomic makeup of multiple cancer types 
has highlighted that driver somatic mutations typically involve a few genes altered at high frequency and a long 
tail of more genes mutated at very low frequency5,6, with a tendency for both sets of genes to code for proteins 
involved into a limited number of biological processes7. As a consequence, a reasonable approach is to consider 
these alterations by grouping them based on a prior knowledge of the cellular mechanisms and biological path-
ways where the products of the mutated genes operate. This reduces the dimensionality of large genomic datasets 
involving thousands of altered genes into a sensibly smaller set of altered mechanisms that are more interpretable, 
possibly actionable in a pharmacological or experimental way8, and that can be used as therapeutic markers 
whose predictive ability is significantly improved when compared to that of genomic lesions in individual genes9. 

1European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, 
Cambridge, CB10 1SD, UK. 2Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, 
UK. 3GlaxoSmithKline, Gunnels Wood Rd, Stevenage Herts, SG1 2NY, UK. 4Joint Research Centre for Computational 
Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, MTZ Pauwelstrasse 19, Aachen, 52074, 
Germany. 5Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SD, UK. Correspondence and requests for 
materials should be addressed to F.I. (email: francesco.iorio@sanger.ac.uk) or J.S.-R. (email: saezrodriguez@gmail.com)

Received: 5 June 2017

Accepted: 16 April 2018

Published online: 30 April 2018

OPEN

http://orcid.org/0000-0001-7063-8913
http://orcid.org/0000-0001-9032-4700
http://orcid.org/0000-0002-8552-8976
mailto:francesco.iorio@sanger.ac.uk
mailto:saezrodriguez@gmail.com


www.nature.com/scientificreports/

2SCIEntIfIC RePortS | (2018) 8:6713 | DOI:10.1038/s41598-018-25076-6

Additionally, this facilitates the stratification of cancer patients into informative subtypes10, the characterisation 
of rare somatic mutations11, and the identification of the spectrum of possible alterations underpinning a com-
mon evolutionarily successful trait acquired by a normal cell as it transforms itself into a precancerous cell and 
ultimately into a cancer. In two landmark papers12,13 these traits have been summarised into a set of 11 principles, 
collectively referred as the hallmarks of cancer.

Here we propose a computational strategy, that we call SLAPenrich (Sample-population Level Analysis of 
Pathway Alterations Enrichments), for characterising the set of genomically altered pathways that might contrib-
ute to the acquisition of the canonical cancer hallmarks across 10 different cancer types, via a systematic analysis 
of 4,415 public available cancer patients’ genomes (from the Cancer Genome Atlas). Similarly to other exist-
ing methods (such as PathScan and PathScore14,15), SLAPenrich aims to identify pathways that are consistently 
altered across the samples of a population, rather than pathways over-represented in the merged set of alterations 
in the population. Additionally, with respect to other existing tools, we go one step further by devising a metric 
to assess the predominance of alterations in pathways associated to the same canonical hallmark in each cancer 
type in a data-driven way. Finally, after verifying that the majority of these predominances are led by somatic 
mutations in established high-confidence cancer genes, we show that they are maintained when excluding these 
mutations from the analysis. Thus we propose to use the obtained heterogeneity signatures of cancer hallmarks 
as a ground truth for functionally characterising long tails of infrequent genomic alterations, across cancer types. 
Finally, we highlight a number of potential novel cancer driver genes and networks, identified with this approach. 
Our method is implemented as an R package and publicly available at https://github.com/saezlab/SLAPenrich.

Results
Sample-population Level Analysis of Pathway Alterations Enrichments (SLAPenrich).  Problem 
definition and method overview.  In the first step of our analysis we make use of SLAPenrich (Sample Level 
Analysis of Pathway alteration Enrichments): a computational method implementing an established statistical 
framework to perform pathway analyses of genomic datasets at the sample-population level. We have designed 
this tool as a means to characterize, in an easily interpretable way, sparse somatic mutations detected in hetero-
geneous cancer sample populations, which share traits of interest and are subjected to strong selective pressure, 
leading to combinatorial patterns.

Several computational methods have been designed to perform pathway analysis on genomic data, aiming at 
prioritizing sets of genomically altered genes whose products operate in the same cellular process or functional 
network. All the approaches proposed so far toward this aim can be categorised into two main classes16. The first 
class of approaches aims at identifying pathways whose constituent genes are significantly over-represented in 
the set of altered genes from all the samples of a dataset, compared with the background set of all studied genes. 
Many tools exist and are routinely used to perform this analysis17–19, sometimes incorporating additional features, 
such as inter-gene dependencies and signal correlations20, and also estimating single sample pathway deregu-
lations based on transcriptional data21. To identify pathways, gene sets and gene-ontology categories that are 
over-represented in a selected set of genes satisfying a certain property (for example, being differentially expressed 
when contrasting two biological states of interest), the likelihood of their recurrence in the gene sets of interest is 
usually estimated. This is normally quantified through a p-value assignment computed through a hypergeometric 
(or Fisher’s exact) test, against the null hypothesis that there is no association between the pathway under con-
sideration and the biological state yielding the selected set of genes. The test fails (producing a non-significant 
p-value) when the size of the overlap between the considered pathway and the set of genes of interests is close to 
that expected by random chance. The second class of approaches aims at identifying novel pathways by mapping 
genomic alteration patterns on large protein interaction networks. The combinatorial properties occurring among 
the alterations are then analyzed and used to define cost functions, for example, based on the tendency of a group 
of genes to be mutated in a mutually exclusive manner. On the basis of these cost functions, optimal sub-networks 
are identified and interpreted as novel cancer driver pathways22–24. However, at the moment there is no consensual 
method to rigorously define a mathematical metric for mutual exclusivity and compute its statistical significance, 
and a number of interpretations exist22,23,25–27.

The problem we tackle here is rather different: we want to test the hypothesis that, in a given cohort of cancer 
patients (or any population under evolutionary pressure), the number of samples harbouring a mutation in at 
least one gene belonging to a given pathway is significantly larger than its expectation (when considering the 
size of the measured cohort, the background mutation rate and the non-overlapping total exonic block lengths 
of all the genes). If this is the case, then the pathway under consideration is deemed as enriched at the population 
level (SLAPenriched) in relation to the whole cohort of patients. Therefore, SLAPenrich does not require somatic 
mutations in a pathway to be statistically enriched among those detected in an individual sample nor the merged 
(or aggregated) set of mutations in the population. It assumes that the mutation of a single gene of a pathway in an 
individual sample can be sufficient to deregulate the pathway activity. This allows pathways containing groups of 
genes with a tendency to be mutated in a mutually exclusive fashion (and therefore different individually mutated 
genes in different samples) to still be detected as enriched at the population level and further filtered based on this 
tendency, as additional evidence of positive selection28. Hence, SLAPenrich belongs roughly to the first class of 
computational methods described above, although it shares the mutual exclusivity consideration with the meth-
ods in the second class. More precisely, after modeling the probability of observing a genomic alteration in at least 
one member of a given pathway across the individual samples, SLAPenrich performs a collective statistical test 
against the null hypothesis that the number of samples with at least one alteration in that pathway is that expected 
by random chance. An additional advantage of modeling probabilities of at least an individual mutation in a given 
pathway (instead of, for example, the probability of the actual number of mutated genes) is that this prevents sig-
nal saturations due to hypermutated samples.

https://github.com/saezlab/SLAPenrich
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Statistical framework and implementation.  The input to SLAPenrich is a collection of samples accounting for the 
mutational status of a set of genes, such as a cohort of human cancer genomes. This is modeled as a dataset where 
each sample consists of a somatic mutation profile indicating the status (point-mutated or wild-type) of a list of 
genes (Supplementary Figure S1A). For a given biological pathway P, each sample is considered as an individual 
Bernoulli trial that is successful when that sample harbours somatic mutations in at least one of the genes belong-
ing to the pathway under consideration (Supplementary Figure S1B). The first analytical step of SLAPenrich 
consists in modeling the probability of such event for each individual sample. To this aim, for each sample, the 
likelihood of observing at least a mutation in the pathway under consideration by random chance is estimated, 
given the background mutation rate (for example, the number of observed mutations in the sample) and the 
total exonic block length of all the genes in the pathway. These individual probabilities are then aggregated in a 
collective test (detailed in the Methods) against the null hypothesis that the number of samples with at least one 
mutation in the pathway under consideration is that expected by random chance, therefore there is no association 
between that pathway and the disease represented by the analysed dataset.

The probability of success in each of the modeled Bernoulli trials, i.e. each sample, can be computed by either 
(i) a general hypergeometric model accounting for the mutation burden of the sample under consideration, the 
size of the gene background population and the number of genes in the pathway under consideration, or (ii) a 
more refined modeling of the likelihood of observing point mutations in a given pathway, accounting for the 
total exonic block lengths of the genes in that pathway (Supplementary Figure S1A,B) and the estimated (or 
actual) mutation rate of the sample under consideration29. In addition, more sophisticated methods accounting, 
for example, for gene sequence compositions, trinucleotide rates, and other covariates (such as expression, chro-
matin state, or sequencing coverage and mappability) can be used through user-defined functions that can be 
easily integrated into SLAPenrich.

Once these probabilities have been computed, the expected number of samples in the population harbour-
ing at least one somatic mutation in P can be estimated, and its probability distribution modeled analytically 
(Methods). Based on this, a pathway alteration score can be computed observing the deviance of the number 
of samples harbouring somatic mutations in P from its expectation, and its statistical significance quantified 
analytically (Supplementary Figure S1C). Finally, the resulting statistically enriched pathways are further filtered 
by looking at the tendency of their composing genes to be mutated in a mutually exclusive fashion across all the 
analyzed samples, as additional evidence of positive selection22,23,30.

A formal description of the statistical framework underlying SLAPenrich is provided in the Methods; fur-
ther details are provided in the Supplementary Methods. SLAPenrich is implemented as a publicly available R 
package and is fully documented at https://github.com/saezlab/SLAPenrich/. It includes a visualization/report 
framework enabling easy exploration of outputted enriched pathways across the analyzed samples, in a way that 
highlights their mutual exclusivity mutation trends, and a module for the identification of core-component genes, 
shared by related enriched pathways. A brief description of the SLAPenrich exported functions is included in the 
Supplementary Note.

Unique features of SLAPenrich.  To our knowledge, there are only two other tools enabling the type of analysis sup-
ported by SLAPenrich: PathScan14 and PathScore15. SLAPenrich performs comparably to both of them, showing a 
slightly improved ability to rank pathways containing established cancer driver genes as highly enriched. Additionally, 
several aspects make SLAPenrich more suitable for the analyses described in this manuscript. Particularly, PathScan 
does not take possible mutual exclusivity trends between patterns of mutations of genes in the same pathway into 
account and, in more practical terms, it requires raw sequencing data (BAM files) as input: this is quite uncomfortable 
for large-scale analyses where (as in our case) it is far more convenient to use available processed datasets represented 
through binary presence/absence matrices. PathScore uses the same mathematical framework as SLAPenrich, but the 
models for computing the individual pathway mutation probabilities are not fully customisable. More importantly, it 
is implemented as a web-application that restricts the number of individual analyses to a maximum of 10 per week. 
Furthermore, both PathScan and PathScore make use of fixed pathway collections from public repositories (KEGG31 
for PathScan, and MsigDB32 for PathScore). In contrast, the SLAPenrich R package allows users to define and use any 
collection of gene sets and, by default, it employs a large pathway collection from Pathway Commons33 (including 2,794 
pathways, covering 15,281 genes, 15 times the pathways and 3 times the genes considered by Pathscan, and twice the 
pathways and 1.72 times the genes of PathScore). Additionally, the SLAPenrich R package includes routines to update, 
on the fly, gene attributes and exonic lengths, to check and update gene nomenclatures across datasets and reference 
pathway gene sets, to perform mutual exclusivity sorting of binary matrices, and to identify pathway core-components 
(i.e. subsets of genes leading the enrichment of different pathways).

These and other aspects are discussed in the Supplementary Methods, together with results from applying 
SLAPenrich to a case study Lung Adenocarcinoma Dataset to identify pathways that are differentially enriched 
across subpopulations of Smokers/non-smokers and mucinous/non-mucinous bronchioalveolar types, and 
from a systematic comparison of SLAPenrich, PathScan and PathScore (Supplementary Tables S1–S5 and 
Supplementary Figures S2–S4).

SLAPenrich analyses across different cancer types.  Leveraging the capacities of SLAPEnrich, we set 
out to perform a systematic large-scale analysis of pathway alterations in cancer. To this aim we used a col-
lection of pathways from the Pathway Commons data portal (v8, 2016/04)33 (post-processed as detailed in the 
Methods), and we performed individual SLAPenrich analyses of 10 different genomic datasets containing somatic 
point mutations, preprocessed as described in34, from 4,415 patients across 10 different cancer types, from pub-
licly available studies, in particular The Cancer Genome Atlas (TCGA) and the International Cancer Genome 
Consortium (ICGC). In these analyses we used a Bernoulli model to define individual pathway alteration prob-
abilities across the single samples (equation 5). With respect to the hypergeometric models (equations 3 and 4), 

https://github.com/saezlab/SLAPenrich/
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this formulation upon full expansion sums the individual gene mutation probabilities, each accounting for the 
individual gene lengths.

The analysed samples (see Methods) comprise breast invasive carcinoma (BRCA, 1,132 samples), colon and 
rectum adenocarcinoma (COREAD, 489), glioblastoma multiforme (GBM, 365), head and neck squamous cell 
carcinoma (HNSC, 375), kidney renal clear cell carcinoma (KIRC, 417), lung adenocarcinoma (LUAD, 388), 
ovarian serous cystadenocarcinoma (OV, 316), prostate adenocarcinoma (PRAD, 242), skin cutaneous melanoma 
(SKCM, 369), and thyroid carcinoma (THCA, 322).

Results from all these individual SLAPenrich analyses are contained in Supplementary Table S6.
We tested the stability of SLAPenrich with respect to variations in mutation calling reliability, evaluating the 

effect of random noise and errors at the level of the SLAPenrich input matrices. To this aim, we increasingly intro-
duced (respectively removed) uniformly distributed false-positives (respectively true-positives) mutations, in 
each of the 10 analysed genomic datasets. This was performed simulating a reduction of mutation call sensitivity 
(respectively, specificity) to 95, 80, 70, and 50%, producing 10 noise-inflated versions of the considered dataset 
for each reduction level. Subsequently, we executed a SLAPenrich analysis on each of these datasets and com-
pared the sets of outputted pathways with those obtained when running SLAPenrich on the corresponding orig-
inal datasets. Results from these analyses (detailed in the Supplementary Methods) are shown in Supplementary 
Figure S5. They highlight that the output of SLAPenrich is highly stable with respect to the introduced noise 
(median area under the Receiver Operating Characteristic (ROC) curves stably over 0.995 for all the tested ratios 
of Variants False Positives, and over 0.99 for all the tested ratios of Variants False Negatives).

Mapping pathway enrichments onto canonical cancer hallmarks.  Subsequently, we reasoned that 
since the main role of cancer driver alterations is to enable cells to achieve a series of phenotypic traits termed 
the cancer hallmarks12,13, that can be linked to gene mutations35, it would be informative to group the pathways 
according to the hallmark they are associated to. Towards this end, through a computer-aided manual curation 
(see Methods and Supplementary Table S7) we were able to map 374 gene-sets (from the most recent release of 
pathway commons33) to 10 cancer hallmarks12,13 (Figure 1AB), for a total number of 3,915 genes (included in 
at least one gene set associated to at least one hallmark; Supplementary Table S8). The vast majority (99%, 369 
sets) of the considered pathway gene-sets were mapped on two hallmarks at most, and 298 of them (80%) was 
mapped onto one single hallmark (Fig. 1C). Regarding the individual genes contained in at least one pathway 
gene-set, about half (49%) were associated with a single hallmark, 22% with two, 12% with three, and 7% with 
four (Fig. 1D). Finally, as shown in Fig. 1E, the overlaps between the considered pathway gene-sets was minimal 
(74% of all the possible pair-wise Jaccard indexes was equal to 0 and 99% < 0.2). In summary, our manual cura-
tion produced a non-redundant matching in terms of both pathways- and genes-hallmarks associations. Mapping 

Figure 1.  Manually curated mapping between genes, pathways and hallmarks. (A) Heatmap with cancer 
hallmarks on the rows, pathways gene sets on the columns. A coloured bar in position (i, j) indicates that the 
j-th pathway is associated with the i-th hallmark; bar diagram on the right shows the number of pathways 
associated with each hallmark. (B) Heatmap with cancer hallmarks on the rows and genes on the columns. 
A coloured bar in position (i, j) indicates that the j-th gene is contained in at least one pathway associated 
with the i-th hallmark (thus associated with the i-th hallmark); bar diagram on the right shows the number of 
genes associated with each hallmark. (C) Number of associated hallmarks per pathways: the majority of the 
pathways is associated with 1 hallmark. (D) Number of associated hallmarks per gene: the majority of the genes 
is associated with less than 3 hallmarks. (E) Distribution of Jaccard similarity scores (quantifying the extent of 
pair-wise overlaps) computed between pairs of pathway gene sets.
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pathway enrichments into canonical cancer hallmarks through this curation covered 46% of significant results on 
average across cancer types (Supplementary Figure S6A).

We observed a weak correlation (R = 0.53, p = 0.11) between the number of hallmark-associated (HMA) 
enriched pathways across the different analyses and the number of available samples in the analysed dataset 
(Supplementary Figure S6B), but a down-sampled analysis showed that our results are not broadly confounded 
by the sample sizes (see Methods and Supplementary Figure S6C).

We investigated how our HMA-pathway enrichments capture known tissue-specific cancer driver genes. To 
this aim, we used a list of high-confidence and tissue-specific cancer driver genes34,36 (from now high-confidence 
Cancer Genes, HCGs, assembled as described in the Methods). We observed that the majority of the HCGs was 
contained in at least one SLAPenriched HMA-pathway, across the 10 different tissues analyses (median percent-
age = 63.5, range = 88.5%, for BRCA, to 28.7% for SKCM) (Supplementary Figure S6D).

Interestingly, we found that the number of HMA-SLAPenriched pathways per cancer type (median = 130, 
range = 55 for PRAD, to 200 for BRCA and COREAD) was independent of the average number of mutated genes 
per sample across cancer types (median = 46, range from 15 for THCA to 388 for SKCM) with a Pearson cor-
relation R = 0.16 (p = 0.65), Fig. 2A, as well as from the number of high confidence cancer driver genes (as pre-
dicted in36, median = 100, range from 33 for THCA to 251 for SKCM, Fig. 2B). Particularly, THCA has the lowest 
average number of mutations per sample (15.03), but there are 4 tissues with a lower number of HMA-pathways 
enriched. In contrast, SKCM has the highest average number of point mutations per sample (387.63), but the 
number of affected pathways is less than half of those of BRCA and GBM (82 enrichments against an average of 
191), which have on average less than 100 mutations per sample (Fig. 2A). GBM, OV, KIRC, PRAD and BRCA 
are relatively homogeneous with respect to the average number of somatic mutations per sample (mean = 41.03, 
from 34.76 for KIRC to 45.95 for PRAD) but when looking at the number of enriched HMA-pathways for this 
set of cancer types we can clearly distinguish two separate groups (Fig. 2A). The first group includes BRCA and 
GBM that seem to have a more heterogeneous set of processes impacted by somatic mutations (average number of 
SLAPenriched pathways = 191) with respect to the second group (63 SLAPenriched pathways on average). These 
results suggest that there is a large heterogeneity in the number of processes deregulated in different cancer types 
that is independent of the mutational burden. This might also be indicative of different subtypes with dependen-
cies on different pathways (and at least for BRCA this is expected) but could also be biased by the composition of 
the analysed cohorts being representative of selected subtypes only.

Genomic heterogeneity of cancer hallmarks’ acquisition across cancer types.  Inspecting the sets 
of enriched HMA-pathways across the performed analyses allowed us to explore how different cancer types might 
acquire the same hallmark by selectively altering different pathways. Heatmaps in Fig. 3, and Supplementary 
Figure S7 (one per each hallmark) show a different level of enrichment of pathways associated with the same 
hallmark across different tissues, with clearly distinguishable patterns and well-defined clusters.

As an example, the heatmap related to the Genome Instability and mutation hallmark shows that BRCA, OV, 
GBM, LUAD and HNSC might achieve this hallmark by selectively altering a group of pathways related to homol-
ogous recombination deficiency, whose prevalence in BRCA and OV is established37. This deficiency has been 
therapeutically exploited recently and translated into a clinical success thanks to the introduction of PARP inhi-
bition as a very selective therapeutic option for these two cancer types38.

Pathways preferentially altered in BRCA, OV, GBM, LUAD and HNSC include G2/M DNA Damage 
Checkpoint // Processing Of DNA Double Strand Break Ends, TP53 Regulates Transcription Of DNA Repair Genes 
and other signaling networks related to BRCA1/2 and its associated RING Domain 1 (BARD1). Conversely, the 
Androgen receptor pathway, known to regulate the growth of glioblastoma multiforme (GBM) in men39 is exclu-
sively and preferentially altered in this cancer type.

The acquisition of the Genome Instability and mutation hallmark seems to be dominated in COREAD by alterations 
in the HDR Through Single Strand Annealing (SSA), Resolution Of D Loop Structures Through Synthesis Dependent 

Figure 2.  Number of SLAPenrichments versus mutation burdens and number of established cancer genes.  
(A) Number of pathways enriched at the population level across cancer types compared with the average 
number of mutated genes and (B) the average number of high confidence cancer driver genes.
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Strand Annealing (SDSA), Homologous DNA Pairing And Strand Exchange and other pathways more specifically linked 
to a microsatellite instability led hypermutator phenotype, known to be prevalent in this cancer type40.

Finally, the heatmap for Genome Instability and Mutation shows nearly no enriched pathways associated to 
the acquisition of this hallmark in SKCM. This is consistent with the high burden of mutations observed in mel-
anoma being the effect of this hallmark rather than leading its acquisition. In fact, genomic instability in SKCM 
originates from cell extrinsic processes such as UV light exposure41.

Figure 3.  Heterogeneity of hallmark acquisition across cancer types. Heatmaps showing pathways enrichments 
at the population level across cancer types for individual hallmarks (representative cases). Color intensities 
correspond to the enrichment significance. Cancer types and pathways are clustered using a correlation metric. 
See also Supplementary Figure 7.
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The maintenance of genomic integrity is guarded by a network of damage sensors, signal transducers, and 
mediators, and is regulated through changes in gene expression. Recent studies show that miRNAs play a crucial 
role in the response to UV radiation in skin cells42. Our analysis strikingly detects MiRNAs Involved In DNA 
Damage Response as the unique pathway associated to Genome instability and mutation in SKCM. This suggests 
that mutations in this pathway, involving ATM (as the most recurrently mutated gene, and known to induce 
miRNA biogenesis following DNA damage43), impair the ability of melanocytes to properly respond to insults 
from UV light and may have a significant role in the tumourigenesis of melanoma.

The Avoiding Immune destruction heatmap (Fig. 3) highlights a large number of pathways selectively enriched 
in COREAD, whereas very few pathways associated to this hallmark are enriched in the other analysed cancer 
types. This could explain why immunotherapies, such as PD-1 inhibition, have a relatively low response rate in 
COREAD when compared to, for example, non-small cell lung cancer44, melanoma45 or renal-cell carcinoma46. 
In fact, response to PD-1 inhibition in COREAD is limited to tumours with mismatch-repair deficiency, perhaps 
due to their high rate of neoantigen creation47.

Moreover, in the context of COREAD, the Tumor-promoting inflammation heatmap (Fig. 3) also highlights sev-
eral pathways predominantly and very specifically altered in this cancer type. Chronic inflammation is a proven 
risk factor for COREAD and studies in animal models have shown a dependency between inflammation, tumor 
progression and chemotherapy resistance48. Indeed, a number of clinical trials evaluating the utility of inflammatory 
and cytokine-modulatory therapies are currently underway in colorectal cancer49,50. Interestingly, according to our 
analysis this hallmark is acquired by SKCM by exclusively preferentially altering IRF3 related pathways.

Several other examples would be worthy of mention. For example, the detection of the Warburg effect pathway 
contributing to the acquisition of the Deregulating cellular energetics hallmark in GBM only (Fig. 3). The Warburg 
effect is a unique bioenergetic state of aerobic glycolysis, whose reversion has been recently proposed as an effec-
tive way to decrease GBM cell proliferation51. Additionally, the pathway Formation of senescence-associated het-
erochromatin, associated to the Enabling replicative immortality hallmark is enriched in multiple cancer types. 
Genomic alterations in this pathway have not been linked to cancer so far. More interestingly the enrichment of 
this pathway, across cancer types, is not driven by any established cancer gene.

Finally, we quantified the diversity of altered pathways mapped to each cancer hallmark in a given tumor 
type, via a cumulative heterogeneity score (CHS). The CHS of a hallmark is computed as the proportion of the 
pathways associated to that hallmark that are significantly enriched. We hypothesize that a large CHS points to 
the exploitation of many evolutionary trajectories pursued to acquire a defined hallmark. This might suggest 
that the hallmark with a higher CHS is more advantageous evolutionary than others for the cancer type under 
consideration.

The pattern of CHSs per cancer hallmark in a cancer type gives its hallmark heterogeneity signature (Fig. 4). 
Results show consistency with the established predominance of certain hallmarks in determined cancer types such 
as, for example, a high CHS for Genome instability and mutation in BRCA and OV52, for Tumour-promoting inflam-
mation and Avoiding immune-destruction in COREAD53. Lastly and as expected, for Sustaining proliferative-signaling 
and Enabling replicative immortality, the key hallmarks in cancer initiation12, high CHSs are observed across the 
majority of the analysed cancer types.

Taken together, these results show the potential of our pipeline to perform systematic landscape analyses 
of large cohorts of cancer genomes. In this case, this is very effective in highlighting commonalities and differ-
ences in the putative acquisition of the cancer hallmarks across tissue types, confirming several known relations 
between cancer types, and pinpointing preferentially altered pathways.

Hallmark heterogeneity analysis points at novel cancer driver genes and networks.  To investigate 
the potential of our computational method in identifying novel cancer driver genes and networks, we evaluated 
first to what extent the identified enriched HMA-pathways were dominated by somatic mutations in established 
high-confidence cancer genes (HCGs)36 across cancer types. To this aim, for each pathway P enriched in a given 
cancer type T, we computed an HCG-dominance score as the ratio between the number of samples with mutations 
in HCGs in P and the number of samples with mutations in any gene in P. Results of this analysis are shown in 
Supplementary Figures S7 and S8. We observed a median of 15% of pathway enrichments, across hallmarks, with a 
HCG-dominance score < 50%, thus not led by somatic mutations in HCGs (range from 9% for Deregulating Cellular 
Energetics to 21% for Genome Instability and Mutation). Additionally, a median of 3% of pathway enrichments had 
a null HCG-dominance, thus did not involve somatic mutations in HCGs (range from 0.25% for Evading Growth 
Suppression to 15% for Avoiding Immune Destruction). Across all the hallmarks, the cancer type with the lowest 
median HCG-dominance was KIRC (33%), whereas that with the highest was THCA (91%).

Subsequently, we re-analysed the TCGA data excluding all the variants involving HCGs from each cancer type 
(from now the filtered analysis). Results from this exercise (Fig. 5, Supplementary Table S9 and Supplementary 
Figure S10), showed that the majority of the enrichments identified in the original analyses (on the unfiltered 
genomic datasets) were actually led by alterations in the HCGs (consistent with their condition of high reliable 
cancer genes). The average ratio of retained enrichments in the filtered analyses across cancer types (maintained 
enrichments (MA) in Fig. 5 and Supplementary Figure S10) was 21%, (range from 2.1% for GBM to 56.2% for 
COREAD). However, several HMA-pathway enrichments (some of which did not include any HCGs) were still 
detected in the filtered analysis and, most importantly, the corresponding hallmark heterogeneity signatures were 
largely conserved across the filtered and unfiltered analyses for most of the cancer types, with coincident top fit-
ting hallmarks and significantly high over-all correlations (Fig. 5, Supplementary Figure S10).

If the hallmark signatures from the original unfiltered analyses are faithful representations of the mutational 
landscape of the analysed cancer types and the filtered analyses still detect this landscape despite the removal 
of known drivers, then the filtered analyses might have uncovered novel cancer driver networks composed by 
infrequently mutated genes. In fact, these new gene modules are typically composed by groups of functionally 
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interconnected and very lowly frequently mutated genes (examples are shown in Fig. 6 and the whole bulk of 
identified network is included in the Supplementary Results).

An example is given by the pathway Activation Of Matrix Metalloproteinases associated with the Invasion and 
metastasis hallmark and highly enriched in the filtered analyses of COREAD (FDR = 0.002%), SKCM (0.09%) 
(Fig. 6A), LUAD (0.93%), and HNSC (3.1%). The activation of the matrix metalloproteases is an essential event to 
enable the migration of malignant cells and metastasis in solid tumors54. Although this is a hallmark acquired late 
in the evolution of cancer, according to our analysis this pathway is still detectable as significantly enriched. As a 
consequence, looking at the somatic mutations of its composing genes (of which only Matrix Metallopeptidase 
2 - MMP2 - has been reported as harbouring cancer-driving alterations in LUAD36) might reveal novel key com-
ponents of this pathway leading to metastatic transitions. Interestingly, among these, one of the top frequently 
mutated genes (across all the 4 mentioned cancer types) is Plasminogen (PLG), whose role in the evolution of 
migratory and invasive cell phenotype is established55. Furthermore, blockade of PLG with monoclonal antibod-
ies, DNA-based vaccination or silencing through small interfering RNAs has been recently proposed to coun-
teract cancer invasion and metastasis56. The remaining altered component of this pathway is mostly made of a 
network of very lowly frequently mutated (and in a highly mutually exclusive manner) other metalloproteinases.

Another similar example is given by the IL 6 Type Cytokine Receptor Ligand Interactions pathway signif-
icantly enriched in the filtered analysis of SKCM (FDR = 4.6%) and associated with the Tumour-promoting 
inflammation hallmark (Fig. 6B). IL-6-type cytokines have been observed to modulate cell growth of several 
cell types, including melanoma57. Increased IL-6 blood levels in melanoma patients correlate with disease pro-
gression and lower response to chemotherapy58. Importantly, studies proposed OSMR, an IL-6-type cytokine 
receptor, to play a role in the prevention of melanoma progression59, and as a novel potential target in other 
cancer types60. Consistent with these findings, OSMR is the member of this pathway with the largest number of 
mutations in the SKCM cohort (Fig. 6B), complemented by a large number of other lowly frequently mutated 
genes (most of which are interleukins).

In the context of melanoma, we observed two other highly enriched pathways in the filtered analysis: PDGF 
receptor signaling network (FDR = 2.7%) (Fig. 6C) and Neurophilin Interactions with VEGF And VEGFR (0.21%) 
(Fig. 6D), both associated with the Inducing angiogenesis hallmark. Mutations in all of the components of these 
two pathways are not common in SKCM and have not been highlighted in any genomic study so far. The first of 

Figure 4.  Cancer hallmark heterogeneity signatures. Each cancer hallmark signature plot is composed of three 
concentric circles. Bars between the inner and middle circles indicate pathways, bars between the middle and 
external circle indicate cancer hallmarks. Different colors indicate different cancer hallmarks. Pathway bars are 
coloured based on their hallmark association. The presence of a pathway bar indicates that the corresponding 
pathway is enriched at the population level (FDR < 5%, EC = 50%) in the cancer type under consideration. The 
thickness of the hallmark bars are proportional to the ratio of enriched pathways over those associated with that 
hallmark.
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these two pathway enrichments is characterised by patterns of highly mutually exclusive somatic mutations in 
Platelet-derived growth factor (PDGF) genes, and their corresponding receptors: a network that has been recently 
proposed as an autocrine endogenous mechanism involved in melanoma proliferation control61.

A final example is given by the enriched pathway Regulating the activity of RAC1 (associated with the 
Activating Invasion and Metastasis hallmark) in COREAD (Fig. 6E). The Ras-Related C3 Botulinum Toxin 
Substrate 1 (RAC1) gene is a member of the Rho family of GTPases, whose activity is pivotal for cell motility62. 
Previous in vitro and in vivo studies in prostate cancer demonstrated a marked increase in RAC1 activity in cell 

Figure 5.  Hallmark heterogeneity signature analysis including and not including known cancer driver genes. In 
each row, the first circle plot show pathway enrichments at the population level when considering all the somatic 
variants (bars on the external circle) and when considering only variants not involving known high-confidence 
cancer driver genes (internal circle); the second circle plot compares the hallmark signatures resulting from 
SLAPenrich analysis including (bars on the external circle) or excluding (bars on the internal circle) the variants 
involving known high-confidence cancer genes. The bar plot shows a comparison, in terms of true-positive-rate 
(TPR) and positive-predictive-value (PPV), of the SLAPenriched pathways recovered in the filtered analysis vs. the 
complete analysis., The scatter plots on the right show a comparison between the resulting hallmark signatures.



www.nature.com/scientificreports/

1 0SCIEntIfIC RePortS | (2018) 8:6713 | DOI:10.1038/s41598-018-25076-6

migration and invasion, and that RAC1 inhibition immediately stopped these processes63,64. However, although 
the role of RAC1 in enabling metastasis has already been suggested, the mechanisms underlying such aberrant 
behaviour are poorly understood, and our findings could be used as a starting point for further investigations65.

Another interesting case is the high level of mutual exclusivity observed in the mutation patterns involving 
members of the TP53 network, highly enriched in the filtered analysis of SKCM, encompassing TP63, TP73, 
TNSF10, MYC and SUMD1 (Fig. 6F). Whereas alterations in some nodes of this network are known to be an 
alternative to p53 repression, conferring chemoresistance and poor prognosis66, dissecting the functional 

Figure 6.  Example of potential novel cancer genes and networks. Picked examples of novel putative cancer 
driver genes and networks. The first FDR value refers to the unfiltered analysis, whereas the second FDR refers 
to the filtered one (in which variants involving high confidence and highly frequently mutated cancer driver 
genes have been removed).



www.nature.com/scientificreports/

1 1SCIEntIfIC RePortS | (2018) 8:6713 | DOI:10.1038/s41598-018-25076-6

relations between them is still widely considered a formidable challenge67. Our results point out alternative play-
ers worthy to be looked at in this network (particularly, among the top frequently altered, TNSF10).

Taken together, these results show the effectiveness of our approach in identifying potential novel cancer 
driver networks composed by lowly frequently mutated genes.

Discussion
We have presented a computational pipeline, with a paired statistical framework implemented in an open-source 
R package (SLAPenrich) to identify genomic alterations in biological pathways, which putatively contribute to 
the acquisition of the canonical cancer hallmarks. Our statistical framework does not seek pathways whose alter-
ations are enriched at the individual sample level nor at the global level, i.e. considering the union of all the genes 
altered in at least one sample. Instead, it assumes that an individual mutation involving a given pathway in a given 
sample might be sufficient to deregulate the activity of that pathway in that sample and it allows enriched path-
ways to be mutated in a mutually exclusive manner across samples.

With this method we have performed a large-scale comparative analysis of the mutational landscape of dif-
ferent cancer types at the level of cancer hallmarks. Our results represent a first data-driven landmark explora-
tion of the hallmarks of cancer showing that they might be acquired through preferential genomic alterations of 
heterogeneous sets of pathways across cancer types. This has confirmed the established predominance of certain 
hallmarks in defined cancer types, and it has highlighted peculiar patterns of altered pathways for several can-
cer lineages. Finally, by using the identified hallmark signatures as a ground truth signal, we have devised an 
approach to detect novel cancer driver genes and networks.

A number of possible limitations could hamper the derivation of definitive conclusions from our study, such 
as the use of only mutations, the possibility that some of the analysed cohorts of patients are representative only 
of well-defined disease subtypes, the limitation of our knowledge of pathways, and the possibility that pathways 
that we were not mapped onto cancer hallmarks in our curation could correspond to specific capabilities of 
cancer cell in certain tumour types. Possible future developments of our method could integrate different omics, 
such as transcriptional data, to better refine the set of functionally impacting variants considered in the analysis. 
Additionally further refinements could account for structural variants such as small indels and copy number 
alterations, known to play an important role in cancer.

Our computational pipeline should be of wide usability for the functional characterization of sparse genomic 
data from heterogeneous populations sharing common traits and subjected to strong selective pressure. As an 
example of its applicability we have studied large cohorts of publicly available cancer genomes that are publicly 
available from the TCGA. However, SLAPenrich is of great utility in other scenarios such as for characterizing 
genomic data generated upon chemical mutagenesis to identify somatic mutations involved in acquired drug 
resistance, as reported in a recent publication68. More generally, it can be used to characterize, at the pathway 
level, any type of biological dataset that can be modeled as a presence/absence matrix, where genes are on the 
rows and samples are on the columns.

Methods
Formal description of the SLAPenrich statistical framework.  Let us consider the list of all the genes 
G = {g1, g2, …, gn}, whose somatic mutational status has been determined across a population of samples S = {s1, 
s2, …, sm}, and a function

= .f g s g s( , ) {1 if harbours a somatic mutation in and 0 otherwise} (1)i j i j

Given the set of all the genes whose products belong to the same pathway P, we aim at assessing if there is 
a statistically significant tendency for the samples in S to carry mutations in P. Importantly, we do not require 
the genes in P to be significantly enriched in those that are altered in any individual sample nor in the subset of 
G composed by all the genes harbouring at least one somatic mutation in at least one sample. In what follows P 
will be used to indicate the pathway under consideration as well as the corresponding set of genes, interchange-
ably. We assume that P is altered in sample sj if there is a gene gi belonging to G such that gi is a member of P and 
f(gi, sj) = 1, i.e. at least one gene in the pathway P is altered in the j-th sample (Supplementary Figure S1B). To 
quantify how likely it is to observe at least one gene belonging to P altered in sample sj, we introduce the varia-
ble Xj = |{gi ∈ G:gi ∈ P and f(gi, sj) = 1}|, accounting for the number of genes in P altered in sample sj. Under the 
assumption of both a gene-wise and sample-wise statistical independence, the probability of Xj assuming a value 
greater or equal than 1 is given by:

∑= ≥ =
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1

where N is the size of the gene background-population, k is the number of genes in P, nj is the total number of 
genes gi such that f(gi, sj) = 1, i.e. the total number of genes harbouring an alteration in sample sj, and H is the 
probability mass function of a hypergeometric distribution:
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To take into account the impact of the exonic lengths λ(g) of the genes (g) on the estimation of the alteration 
probability of the pathway they are part of P, it is possible to redefine the pj probabilities (of observing at least one 
genes in the pathway P altered in sample sj) as follows:

∑= ≥ = ′ ′ ′
=

p X H x N k nPr( 1) ( , , , ),
(4)j j

x

k

j
1

where λ′ = ∑ ∈N g( )g G , with G the gene background-population, i.e. the sum of all the exonic content block 
lengths of all the genes; k g( )g Pλ′ = ∑ ∈  is the sum of the exonic block length of all the genes in the pathway P; n′j 
is the total number of individual point mutations involving genes belonging to P in sample sj, and H is defined as 
in equation 3, but with parameters x, N′, k′, and n′j. Similarly, the pj probabilities can be modeled accounting for 
the total exonic block lengths of all the genes belonging to P and the expected/observed background mutation 
rate29, as follows:

p X kPr( 1) 1 exp( ), (5)j j ρ= ≥ = − − ′

where k′ is defined as for equation 4 and ρ is the background mutation rate, which can be estimated from the 
input dataset directly or set to established estimated values (such as 10−6/nucleotide)29.

If considering the event “the pathway P is altered in sample sj” as the outcome of a single test in a set of 
Bernoulli trials {j} (with j = 1, …, M) (one for each sample in S), then each pj can be interpreted as the success 
probability of the j-th trial. By definition, summing these probabilities across all the elements of S (all the trials) 
gives the expected number of successes E(P), i.e. the expected number of samples harbouring a mutation in at 
least one gene belonging to P:

∑= .
=

E P p( )
(6)j

M

j
1

On the other hand, if we consider a function φ on the domain of the X variables, defined as φ(X) = 1 − δ(X), 
where δ(X) is the Dirac delta function (assuming null value for every X ≠ 0), i.e. φ(X) = {1 if X > 0, and 0 other-
wise}, then summing the φ(Xi) across all the samples in S, gives the observed number of samples harbouring a 
mutation in at least one gene belonging to P:

O P X( ) ( )
(7)j

M

j
1

∑φ= .
=

A pathway alteration index, quantifying the deviance of O(P) from its expectation, and thus how unexpected 
is to find so many samples with alterations in the pathway P, can be then quantified as:

∆ = .P O P
E P

( ) log ( )
( ) (8)10

To assess the significance of such deviance, let us note that the probability of the event O(P) = y, with y ≤ M, 
i.e. the probability of observing exactly y samples harbouring alterations in the pathway P, distributes as a Poisson 
binomial B (a discrete probability distribution modeling the sum of a set of {j} independent Bernoulli trials where 
the success probabilities pj are not identical (with j = 1, …, M). In our case, the j-th Bernoulli trial accounts for the 
event “the pathway P is altered in the sample sj” and its success probability is given by the {pj} introduced above 
(and computed with one amongst 2, 4, or 5). The parameters of such B distribution are then the probabilities 
π = {pj}, and its mean is given by Equation 6. The probability of the event O(P) = y can be then written as

∑ ∏ ∏π= = = −
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O P y B y p pPr( ( ) ) ( , ) (1 ),
(9)A F k A

k
h A
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c

where Fy is the set of all the possible subsets of y elements that can be selected from the trial 1, 2, …, M (for 
example, if M = 3, then F2 = {{1, 2}, {1, 3}, {2, 3}}, and Ac is the complement of A, i.e. {1, 2, …, M}\A. Therefore 
a p-value can be computed against the null hypothesis that O(P) is drawn from a Poisson binomial distribution 
parametrised through the vector of probabilities π. Such p-value can be derived for an observation O(P) = z, with 
z ≤ M, as (Supplementary Figure S1C):

∑ ∑ π≥ = = =
= =

O P z O P j B jPr( ( ) ) Pr( ( ) ) ( , )
(10)j z

M

j z

M

Finally, p-values resulting from testing all the pathways in the considered collection are corrected for mul-
tiple hypothesis testing with a user-selected method among (in decreasing order of stringency) Bonferroni, 
Benjamini-Hochberg, and Storey-Tibshirani69.

SLAPenrich is implemented as an R package publicly available and fully documented at (https://github.com/
saezlab/SLAPenrich/). An overview of the exposed function of this package is also provided in the Additional 
File 8.

https://github.com/saezlab/SLAPenrich/
https://github.com/saezlab/SLAPenrich/
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Pathway gene sets collection and pre-processing.  The hallmark signature analyses were performed 
on a large collection of pathway gene sets from the Pathway Commons data portal (v8, 2016/04)33 (http://www.
pathwaycommons.org/archives/PC2/v4–201311/). This contained an initial catalogue of 2,794 gene sets (one for 
each pathway) that were assembled from multiple public available resources, and covering 15,281 unique genes.

From this pathway collection, those gene sets containing less than 4 or more than 1,000 genes, were discarded. 
Additionally, in order to remove redundancies, those gene sets (i) corresponding to the same pathway across differ-
ent resources or (ii) with a large overlap (Jaccard index (J) > 0.8, as detailed below) were merged together by inter-
secting them. The gene sets resulting from this compression were then added to the collection (with a joint pathway 
label) and those participating in at least one of these merging were discarded. Finally, gene names were updated to 
their most recent HGCN70 approved symbols (this updating procedure is also executed by a dedicate function in of 
the SLAPenrich package, by default on each genomic datasets prior the analysis). The whole process yielded a final 
collection of 1,911 pathway gene sets, for a total number of 1,138 genes assigned to at least one gene set.

Given two gene sets P1 and P2 the corresponding J(P1, P2) is defined as:

∩
∪

=
| |
| |

.J P P P P
P P

( , )
(11)1 2

1 2

1 2

To guarantee results’ comparability with respect to previously published studies, for the case study analysis on 
the LUAD dataset we downloaded and used the whole collection of KEGG31 pathway gene sets from MsigDB32, 
encompassing 189 gene sets for a total number of 5,224 genes included in at least one set.

Curation of a pathway/hallmark map.  We implemented a simple routine (included in the SLAPenrich R 
package) that assigns to each of the 10 canonical cancer hallmarks a subset of the pathways in a given collection. 
To this aim this routine searches for determined keywords (typically processes or cellular components) known to 
be associated with each hallmark in the name of the pathway (such as for example: ‘DNA repair’ or ‘DNA damage’ 
for the Genome instability and mutations hallmark) or for key nodes in the set of included genes or keyword in 
their name prefix (such as for example ‘TGF’, ‘SMAD’, and ‘IFN’ for Tumour-promoting inflammation. The full 
list of keywords used in this analysis are reported in the Supplementary Table S7. Results of this data curation are 
reported in the Supplementary Table S8.

Mutual exclusivity coverage.  After correcting the p-values yielded by testing all the pathways in a given collec-
tion, the enriched pathways can be additionally filtered based on a mutual exclusivity criterion, as a further evidence of 
positive selection. To this aim, for a given enriched pathway P, an exclusive coverage score C(P) is computed as

=
′C P O P

O P
( ) 100 ( )

( ) (12)

where O(P) is the number of samples in which at least one gene belonging to the pathway P is mutated, and O′(P) 
is the number of samples in which exactly one gene belonging to the pathway gene-set P is mutated. All the path-
ways P such that C(P) is at least equal to a chosen threshold value pass this final filter.

Hallmark heterogeneity signature analysis: genomic datasets and high-confidence cancer genes.  
Tissue-specific catalogues of genomic variants for 10 different cancer types (breast invasive carcinoma, colon 
and rectum adenocarcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma, kidney renal 
clear cell carcinoma, lung adenocarcinoma, ovarian serous cystadenocarcinoma, prostate adenocarcinoma, skin 
cutaneous melanoma, and thyroid carcinoma) were downloaded from the GDSC1000 data portal described in34 
(http://www.cancerrxgene.org/gdsc1000/). This resource (available at http://www.cancerrxgene.org/gdsc1000/
GDSC1000_WebResources//Data/suppData/TableS2B.xlsx) encompasses variants from sequencing of 6,815 
tumor normal sample pairs derived from 48 different sequencing studies36 and reannotated using a pipeline con-
sistent with the COSMIC database71 (Vagrent: https://zenodo.org/record/16732#.VbeVY2RViko).

Lists of tissue-specific high-confidence cancer genes36 were downloaded from the same data portal (http://www.
cancerrxgene.org/gdsc1000/GDSC1000_WebResources//Data/suppData/TableS2A.xlsx). These were identified by 
combining complementary signals of positive selection detected through different state of the art methods72,73 and 
further filtered as described in34 (http://www.cell.com/cms/attachment/2062367827/2064170160/mmc1.pdf).

Hallmark heterogeneity signature analysis: Individual SLAPenrich analysis parameters.  All the 
individual SLAPenrich analyses were performed using the SLAPE.analyse function of the SLAPenrich R pack-
age (https://github.com/saezlab/SLAPenrich/) using a Bernoulli model for the individual pathway alteration prob-
abilities across all the samples, the set of all the genes in the dataset under consideration as background population, 
selecting pathways with at least one gene point mutated in at least 5% of the samples and at least 2 different genes 
with at least one point mutation across the whole dataset, and and a pathway gene sets collection downloaded from 
pathway commons33, post-processed for redundancy reduction as explained in the previous sections, and embedded 
in the SLAPenrich package as R data object: PATHCOM_HUMAN_nr_i_hu_2016.RData.

A pathway in this collection was considered significantly enriched, and used in the following computation of 
the hallmark cumulative heterogeneity score, if the SLAPenrichment false discovery rate (FDR) was less than 5% 
and its mutually exclusive coverage (EC) was greater than 50%.

Down-sampling analyses.  To investigate how differences in sample size might bias the SLAPenrichment 
results due to a potential tendency for larger datasets to produce larger number of SLAPenriched pathways, 
down-sampled SLAPenrich analyses were conducted for the 5 datasets with more than 350 samples, i.e. BRCA, 

http://www.cancerrxgene.org/gdsc1000/
https://zenodo.org/record/16732#.VbeVY2RViko
http://www.cell.com/cms/attachment/2062367827/2064170160/mmc1.pdf
https://github.com/saezlab/SLAPenrich/
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COREAD, GBM, HNSC, and LUAD. Particularly, for n ∈ {800, 400, 250} for BRCA and n = 250 for the other can-
cer types, 50 different SLAPenrich analyses were performed on n samples randomly selected from the genomic 
dataset of the cancer type under consideration, with the parameter specifications described in the previous sec-
tion. The average number of enriched pathways (FDR < 5% and EC > 50%) across the 50 analysis was observed.

Hallmark signature analysis: signature quantification.  For a given cancer type C and a given hall-
mark H a cumulative heterogeneity score (CHS) was quantified as the ratio of the pathways associated to H in the 
SLAPenrich analysis of the C variants.

The CDS scores for all the 10 hallmark composed the hallmark signature of C.
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