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KEY LEARNING POINTS

What is already known about this subject?
• Despite progress in understanding processes affecting allograft kidney in transplanted patients, renal function decline and
allograft loss remain significant concerns.

• Clinical parameters, kidney biopsy, and instrumental evaluations may guide patient management.
• To date, a large effort is dedicated to the identification of prognostic biomarkers of graft dysfunction to direct therapeutic
interventions.

What this study adds?
• We analysed extracellular vesicle (EV) surface antigen profile in a longitudinal cohort of transplanted patients.
• We identified an EV-based signature comprising endothelial and platelet markers in serum EVs, reflecting the cardiovas-
cular profile of the recipient, and mesenchymal/progenitor cell marker in urine EVs, reflecting the repairing/regenerative
features of the graft, and predicting 1-year renal outcome.

What impact this may have on practice or policy?
• EV profiling may be performed by standardized, low-cost, flow cytometric assays directly applicable on a small amount of
fresh or frozen samples.

• This approach is minimally invasive, amenable to full automation and represents a promising point-of-care testing tool
for a tailored management of follow-up of patients undergoing kidney transplant.

ABSTRACT

Background. A long-standing effort is dedicated towards the
identification of biomarkers allowing the prediction of graft
outcome after kidney transplant. Extracellular vesicles (EVs)
circulating in body fluids represent an attractive candidate, as
their cargo mirrors the originating cell and its pathophysiolog-
ical status. The aim of the study was to investigate EV surface
antigens as potential predictors of renal outcome after kidney
transplant.
Methods. We characterized 37 surface antigens by flow
cytometry, in serum and urine EVs from 58 patients who were
evaluated before, and at 10–14 days, 3 months and 1 year after
transplant, for a total of 426 analyzed samples. The outcome
was defined according to estimated glomerular filtration rate
(eGFR) at 1 year.
Results. Endothelial cells and platelets markers (CD31,
CD41b, CD42a and CD62P) in serum EVs were higher at base-
line in patientswith persistent kidney dysfunction at 1 year, and
progressively decreased after kidney transplant. Conversely,
mesenchymal progenitor cell marker (CD1c, CD105, CD133,
SSEEA-4) in urine EVs progressively increased after transplant
in patients displaying renal recovery at follow-up. These
markers correlated with eGFR, creatinine and proteinuria,
associated with patient outcome at univariate analysis andwere
able to predict patient outcome at receiver operating char-
acteristics curves analysis. A specific EV molecular signature
obtained by supervised learning correctly classified patients
according to 1-year renal outcome.
Conclusions. An EV-based signature, reflecting the cardio-
vascular profile of the recipient, and the repairing/regenerative
features of the graft, could be introduced as a non-invasive tool
for a tailored management of follow-up of patients undergoing
kidney transplant.

Keywords: biomarker, chronic kidney disease, extracellular
vesicle, kidney transplant, machine learning

INTRODUCTION
Kidney transplantation is the preferred treatment for patients
with end-stage renal disease, as it provides higher survival rates
and better quality of life compared with dialysis [1, 2]. Despite
the progress in understanding the multiple processes affecting
the allograft kidney, renal function decline and allograft loss
remain significant concerns. In fact, while improvements in
the immunosuppressive therapy enabled mitigation of organ
function decline in relation to acute rejection, the complex and
multifactorial mechanisms affecting the long-term survival
of the kidney graft still need to be addressed [3]. Overall,
renal graft function decline may result from an imbalance
between immune and non-immune mediated organ damage
and the organ’s ability to repair toward functional tissue
after damage, limiting maldifferentiation of fibrotic tissue
[3, 4]. In this context, clinical parameters of organ function
and immune monitoring, percutaneous allograft biopsy and
instrumental evaluationsmay guide the graft management and
surveillance. In addition, a large effort is currently dedicated
to the identification of noninvasive diagnostic and prognostic
biomarkers of delayed graft function, rejection and chronic
allograft dysfunction to direct therapeutic interventions [5].

Extracellular vesicles (EVs) are considered promising can-
didates as disease biomarkers. They are nanosized vesicles
released from multi-vesicular bodies or shed from the surface
membranes of almost all cell types [6, 7]. Of interest, surface
markers and cargo, including proteins and RNA species, reflect
the originating cell and its physiopathological state [8, 9]. In
serum, EVs are a heterogeneous population deriving from the
different cells of the bloodstreamaswell as from the endothelial
layer [9, 10]. In particular, serum EVs deriving from platelets,
leukocytes and endothelial cells can be identified through spe-
cific surface markers of the originating cell [11]. In urine, EVs
are considered to mainly derive from cells of the nephron, and
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their marker expression might provide relevant information
on the kidney pathophysiology [12, 13]. Data from literature
suggest that Dynamic changes of EV markers and content
in serum and urine during kidney transplant might mirror
recovery of renal and endothelial functions [14–17]. In
particular, our group previously showed that urinary EVs
expressing CD133, a marker of renal progenitor cells involved
in tissue repair, progressively increased in the first week after
transplant, and paralleled the graft function [18]. In analogy,
the kinetics of EV serum subpopulations at different timings
after graft transplant showed decrease of endothelial- and
platelet-derived particles, suggesting a decrease of cardiovas-
cular injury after transplant [14, 17, 19]. Interestingly, their
levels correlated with renal function [20].

In the present study, we aimed to combine the analyses
of serum and patient-matched urinary EVs, before and at
different time points after kidney transplant, in order to stratify
patients according to their outcome. We reasoned that data
from serum and urine EVs, taken together, may provide
information on the status of the graft tissue and, in parallel,
on the recipient cardiovascular and immune profile. We took
advantage of a previously validated flow cytometric platform
which allowed the simultaneous profiling of several EV
surface antigens (including markers from mesenchymal/stem
progenitor cells, platelets, endothelium and immune cells) [21,
22], and through supervised learning algorithms, we obtained
a specific molecular signature able to predict renal outcome
after kidney transplant.

MATERIALS AND METHODS
A detailed description of patient enrollment, EV characteriza-
tion and statistics is provided as Supplementary material.

Patient recruitment and sampling strategy
We consecutively recruited 58 patients who underwent

kidney transplant for end-stage renal disease. All patients gave
written informed consent. Patients were excluded in case of
concomitants infections, acute inflammatory disease or active
cancer. The study complied with the Declaration of Helsinki.
Patient outcomewas defined according to glomerular filtration
rate estimated by Chronic Kidney Disease Epidemiology
Collaborationequation (eGFR) at 12 months, using a cut-off
of 45 mL/min/1.73 m2. For each patient, peripheral blood
and urine samples were collected before kidney transplant
(baseline, or T0), and at 10–14 days (T1), 3 months (T2) and
12 months (T3) after transplant (urine was not available for 38
anuric patients at T0; Fig. 1A). Pre-analytical factors for sample
handling and storage complied with recommendations of the
International Society for Extracellular Vesicles [23, 24].

EV characterization
Venous blood was collected in serum separator tubes; after

clot formation a first centrifugation at 1600 g for 15 min at 4°C
was performed to separate serum from cellular components.
Serum was transferred in a new clean tube and centrifuged

at 3000 g for 20 min, at 10 000 g for 15 min and at
20 000 g for 30 min to remove intact cells, cellular debris
and larger EVs. Second morning urine samples were collected
in parallel; a first centrifugation at 3000 g for 15 min at 4°C
was performed to separate urine from cellular components.
Urine was transferred in a new clean tube and centrifuged at
3000 g for further 15min; high-speed centrifugation steps were
not performed for urine to avoid co-precipitation of Tamm-
Horsfall protein and EVs [24, 25]. Samples were processed
immediately after collection andpre-cleared aliquotswere then
stored at −80°C and never thawed prior to analysis. Particle
concentration and diameter were measured by nanoparticle
tracking analysis (NTA). After EV immuno-capture by beads
coated with antibodies against 37 specific EV markers, EV
surface antigenic profile was evaluated by a multiplex flow
cytometric (FC) assay (MACSPlex human Exosome Kit;
Miltenyi Biotec), as previously described (Fig. 1B) [11]. The
average levels of tetraspanins (CD9-CD63-CD81) for each
serum and urine sample were used as internal normalizer
of fluorescence levels of all the other 37 markers to allow
comparison among samples and correct for intra- and inter-
patient variations of vesicle concentration in the analyzed
biofluid [23, 24]. Our data provide an evaluation of specific
antigen fluorescence intensity normalized to a standard EV
marker (tetraspanins levels), thus reflecting an EV qualitative
profile for a normalized EV concentration rather than a quan-
titative EV characterization. To rule out confounding factors
related to the experimental protocol, our standard protocol
was compared with an alternative protocol including a pre-
isolation step by ultracentrifugation (see Supplementary data,
Extended Methods). Single vesicle analysis was performed
by super-resolution microscopy using Nanoimager S Mark II
microscope from ONI (Oxford Nanoimaging, Oxford, UK)
after EV isolation by ultracentrifugation.

Statistics and diagnostic modelling
Normally distributed variables are expressed as

mean ± standard deviation and analyzed by Student’s t-test.
Non-normally distributed variables are expressed as median
(interquartile range) and analyzed by Mann–Whitney test
or Wilcoxon test, as appropriated. Categorical variables are
expressed as absolute number (percentage) and compared
with chi-square tests. Correlations were evaluated by Pearson’s
test. Odds ratios (ORs) were calculated by univariate logistic
regression. Receiver operating characteristics (ROC) curves
were analyzed to assess area under the curve (AUC). Machine
learning (ML)–supervised algorithms were used to train
and validate diagnostic models to predict renal outcome at
T3, using normalized median fluorescence intensity (nMFI)
of serum or urine EV surface antigens. Four different ML
classifiers (linear discriminant analysis, random forest,
support vector machine with linear or gaussian kernel)
and three algorithms for data imbalance correction were
applied, generating 616 different models. After tuning of
hyperparameters, best models were validated by a leave-
one-out algorithm (see Supplementary data, Extended
Methods).
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Figure 1: Study design and protocol. We analyzed serum and urine at different time points in patients who underwent kidney transplant. (A) A
cohort of 58 patients was included in the study, and evaluated at baseline (before transplant, T0), and at 10–14 days (T1), 3 months (T2) or 12
months after transplant (T3). Patients were discriminated according to creatinine levels at T3 (eGFR ≤45 mL/min, persistent renal dysfunction,
versus eGFR >45 mL/min, renal recovery). A total of 232 serum and 194 urine samples were analyzed (*urine were not available for 38 anuric
patients at T0). (B) Whole blood and urine samples underwent serial centrifugation cycles to eliminate cells, cellular debris and larger vesicles.
EVs were immuno-captured using fluorescent-labelled beads [different amount of phycoerythrin (PE) and fluorescein isothiocyanate (FITC)]
coated with antibodies against 37 EV surface antigens. The analysis of EV surface antigens was performed by flow cytometry after incubation
with detection antibodies against CD9, CD63 and CD81, labeled with allophycocyanin (APC). Gating strategy is described in the
Supplementary data, Extended Methods section; representative plots are reported for one serum (above) and one urine sample (below).

RESULTS
Patient characteristics
We enrolled 58 patients who underwent kidney transplant

for end-stage renal disease. Baseline characteristics are re-
ported in Table 1: mean age was 54 years, 44.8% were male,
77.6% received the transplanted kidney from a deceased donor.
Patients were evaluated at baseline (before transplant, T0),
and at 10–14 days (T1), 3 months (T2) and 12 months (T3)
after transplant (Fig. 1A); 35 patients displayed renal function
recovery, while 23 had an eGFR ≤45 mL/min at T3 and
were classified as persistent renal dysfunction. At baseline, no

differences were found between patients with renal recovery
versus persistent dysfunction; donor parameters were also
similar (Table 1). At follow-up, eGFR was significantly lower
at T2 and T3 in patients with persistent renal dysfunction
compared with those with renal recovery, while creatinine and
proteinuria were higher at T3 (Supplementary data, Table S1).
No other significant differences were found between patients
with renal recovery versus persistent renal dysfunction, includ-
ing prevalence/incidence of delayed graft function, vesical-
ureteral reflux, bacterial and viral infections (urinary tract
infections, sepsis, BK virus, cytomegalovirus and colonization
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Table 1: Baseline characteristics of patients.

Variable
Overall cohort

(n = 58)
Renal recovery

(n = 35)

Persistent renal
dysfunction
(n = 23) P-value

Donor parameters
Age (years) 54 ± 18.1 50 ± 17.5 59 ± 18.1 .071
Male sex, n (%) 26 (44.8) 17 (48.6) 9 (39.1) .479
Hypertension, n (%) 15 (25.9) 8 (22.9) 7 (30.4) .519
Diabetes, n (%) 5 (8.6) 3 (8.6) 2 (8.7) 1.000
Deceased donor, n (%) 45 (77.6) 29 (82.9) 16 (69.6) .235
Cause of death

Cerebrovascular, n (%) 31 (68.9) 19 (65.5) 12 (75.0) .738
Trauma, n (%) 14 (31.1) 10 (34.5) 4 (25.0)

eGFRa (mL/min) 98 ± 25.5 98 ± 26.1 97 ± 25.1 .910
Receiver parameters
Age at transplant (years) 49 ± 13.5 48 ± 13.6 51 ± 13.4 .358
Male sex, n (%) 38 (65.5) 25 (71.4) 13 (56.5) .243
Hypertension, n (%) 41 (70.7) 24 (68.6) 17 (73.9) .662
Diabetes, n (%) 2 (3.4) 0 (0.0) 2 (8.7) .153
Months on dialysis prior to transplant 43 (24; 60) 45 (21; 59) 41 (27; 72) .956
Peritoneal dialysis, n (%) 19 (32.8) 13 (37.1) 6 (26.1) .380
Hemodialysis, n (%) 44 (75.9) 26 (74.3) 18 (78.3) .729

Cause of kidney insufficiency
Unknown, n (%) 19 (32.8) 12 (34.3) 7 (30.5) .198
APDKD, n (%) 16 (27.6) 11 (31.4) 5 (21.7)
Glomerular disease, n (%) 11 (19.0) 8 (22.9) 3 (13.0)
Diabetes, n (%) 2 (3.4) 0 (0.0) 2 (8.7)
Vascular, n (%) 0 (0.0) 0 (0.0) 0 (0.0)
Otherb, n (%) 10 (17.2) 4 (11.4) 6 (26.1)

Transplant and treatment
HLA mismatches 3 (3; 4) 3 (3; 4) 3 (3; 4) .870
Cold ischemia (h) 11.0 (6.8; 14.0) 11.0 (8.0; 14.0) 9.0 (3.0; 15.0) .463
Thymoglobulin, n (%) 17 (29.3) 11 (31.4) 6 (26.1) .662
Basiliximab, n (%) 41 (70.7) 24 (68.6) 17 (73.9) .662
Steroid, n (%) 58 (100.0) 35 (100.0) 23 (100.0) 1.000
FK-506, n (%) 58 (100.0) 35 (100.0) 23 (100.0) 1.000
Ciclosporin, n (%) 0 (0.0) 0 (0.0) 0 (0.0) 1.000
Mycophenolic acid, n (%) 57 (98.3) 34 (97.1) 23 (100.0) 1.000
mTor inhibitor, n (%) 0 (0.0) 0 (0.0) 0 (0.0) 1.000

Kidney function/damage at baseline
Creatinine (mg/dL) 8.5 ± 3.06 8.7 ± 2.78 8.2 ± 3.49 .509
eGFRa (mL/min) 7 ± 2.9 7 ± 2.7 7 ± 3.1 .580

Data are presented as mean ± standard deviation, median (interquartile range) or n (%).
Clinical and biochemical characteristics of patients included in the analysis after stratification for post-transplant renal outcome at baseline (T0; before kidney transplant): renal recovery
(n = 35) versus persistent renal dysfunction (n = 23; eGFR ≤45 mL/min at T3).
APDKD, autosomal dominant polycystic kidney disease.
A P < .05 was considered significant.
aeGFR: glomerular filtration rate was estimated by Chronic Kidney Disease Epidemiology Collaboration equation.
bOther includes autoimmune diseases, pyelonephritis and hemolytic-uremic syndrome.

by Klebsiella pneumoniae carbapenemase-producing bacteria),
new-onset diabetes mellitus, graft rejection and positivity for
donor-specific antibodies.

Quantitative evaluation of serum and urine EVs
Serum and urine samples were collected at each time point

(urine was not available for 38 anuric patients at T0); overall,
we analyzed 426 samples (232 serum and 194 urine). Serum
and urine samples were first directly analyzed by NTA; after
immuno-capture, EV surface antigenswere then systematically
characterized by a multiplex FC assay (Fig. 1, Supplementary
data, Tables S2 and S3).

Comparing serum and urine samples, the number of serum
EVs was higher than urine EVs (2.4e12 versus 5.6e9/mL;

P < .001), whereas particle diameter was similar (183 versus
181 nm; Supplementary data, Fig. S1A–D and Table S2),
independently from the renal outcome and the evaluated time
point. Of interest, the number of serumEVs, but not urine EVs,
significantly correlated to the corresponding creatinine level
(Supplementary data, Fig. S1H–L). EV concentration was re-
evaluated after stratification for time points (Supplementary
data, Table S4). Serum EV number per mL decreased sig-
nificantly after kidney transplant, while a similar but not
significant trend was observed for urine EVs (Supplementary
data, Fig. S2).

Characterization of serum and urine EV surface antigens
Serum and urine EVs, characterized by labelling to

typical tetraspanins markers, were further analyzed using
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fluorescent-labelled beads coated with antibodies against 37
different surface markers (Supplementary data, Fig. S3, and
Tables S5 and S6). We reasoned that serum EVs, deriving from
endothelial cells, platelets and immune cells, could reflect the
cardiovascular and immunological features of the recipient,
whereas urine EVs, mainly deriving from renal and infiltrating
cells, could reflect the graft physiopathology.

For both serum and urine samples, the levels of expression
of EV markers (CD9-CD63-CD81), correlated with the EV
concentration measured by NTA (Supplementary data, Fig.
S1G–I). Moreover, consistently with the observed EV number,
the specific CD9-CD63-CD81 EV expression was higher in
serum than in urine (Supplementary data, Fig. S1E and F) and
decreased after kidney transplant (Supplementary data, Fig.
S2C–F).

The average MFI for CD9-CD63-CD81 was then used
as internal normalizer of fluorescence levels of all other 37
markers to enable comparison among the different samples
and to exclude non-specific binding such as small debris. A
separate pool of samples was analyzed to evaluate whether
a pre-isolation step by ultracentrifugation may affect the
profiling of serum and urine EV surface antigens. After
ultracentrifugation, as expected, mean MFI for CD9, CD63
and CD81 was higher in samples underwent EV enrichment
compared with standard protocol, whereas EV surface profile,
after normalization by CD9-CD63-CD81, was similar to
that obtained by the standard protocol (Supplementary data,
Fig. S4).

Serum versus urine EVs showed a very different profile,
being different for 29 of the 37 tested markers (Supplementary
data, Fig. S3). Of note, CD42a, CD41b, CD62P and HLA-II
were highly expressed in serum EVs, whereas CD105, SSEA-
4 and HLA-I were in urine EVs. We subsequently analyzed
the kinetics of evaluated EV surface antigens in transplanted
patients at different times after transplant. The expression
of a large number of markers varied during the follow-up.
In particular, 12 out of 37 evaluated surface antigens of
serum EVs showed significant differences during follow-up
(Supplementary data, Fig. S5A), possibly due to effect of drugs
as well as to the normalization of the uremic status. In parallel,
34 out of 37 markers changed in urine, most of which at
T3 (12 months) as compared with T1 or T2 (Supplementary
data, Fig. S5B), in relation to a large variety of cellular
processes occurring in the transplanted graft (Supplementary
data, Tables S6).

EV signature of kidney graft dysfunction
We therefore evaluated the different EV profile according

to the transplant outcome, defined as persistent renal dysfunc-
tion, or renal recovery after 1 year, in case of eGFR less/equal
or higher to 45 mL/min, respectively (Supplementary data,
Fig. S6).

Among serum EV surface antigens, CD62P, CD41b, CD42a
and CD31 (platelet/endothelial markers) were highly ex-
pressed in patients with persistent renal dysfunction compared
with those with renal recovery at both T0 and T1, and
their expression was able to predict patient outcome at T3

(Fig. 2). CD62P, CD42a and CD31 appeared higher also at
T2 in patients with kidney dysfunction. During follow-up, the
expression of these markers gradually decreased in all patients
independently from renal outcome, and CD62P, CD42a and
CD31 were also inversely correlated to eGFR (R ranging
between −0.247 and −0.130; Fig. 2). The expression of all
EVmarkers was similar between groups at T3 (Supplementary
data, Tables S7–S10). The association of CD62P, CD41b,
CD42a and CD31 with patient outcome was confirmed by
univariate analysis at T0, with ORs ranging between 0.84 and
0.98 (Supplementary data, Table S11). The analysis indicates a
2%–19% decrease in the likelihood of renal recovery for each
1 unit increase in nMFI of the considered EV surface antigens.

Considering urine EVs, as differences observed from T0
to T1 may be attributable to vesicles secreted by transplanted
kidney (Supplementary data, Table S12), we analyzed their
profile starting fromT1 (Supplementary data, Tables S13–S15).
CD105, CD1c, SSEA-4 andCD133/1, characteristic of immune
cells and mesenchymal/stem progenitor cells, gradually and
significantly increased from T1 to T3 in patients with renal
recovery, but not in those with persistent renal dysfunction
at T3 (Fig. 3). Noteworthy, at T1 these four EV markers were
already significantly higher in patients with renal recovery,
and associated with patient outcome at univariate analysis,
with ORs ranging between 1.01 and 1.15 (Supplementary
data, Table S11), thus indicating a 1%–15% increase in the
likelihood of renal recovery for each 1 unit increase of their
nMFI. CD105, CD1c, SSEA-4 and CD133/1 were also directly
correlated to eGFR (R ranging between 0.187 and 0.384;
Fig. 3). A pool of urine EVs isolated by control subjects
was analyzed using super-resolution microscopy to assess
colocalization of thesemarkers on single vesicles: 48.9%, 21.3%
and 10.6% of EVs expressed CD105, CD133/1 and SSEA-
4, respectively. Interestingly, CD105 emerged as the marker
with higher expression levels also in flow cytometric analyses.
In addition, 24.7% of urine EVs co-expressed CD105 and
CD133/1, while other combinations were observed in <2% of
vesicles (Supplementary data, Fig. S7).

Finally, we correlated serum and urine EV surface antigens
with creatinine, eGFR and proteinuria (Supplementary data,
Table S16). Of note, all urine EV markers were correlated to
creatinine and eGFR, while CD31 on serum EVs and SSEA-
4 on urine EVs correlated with proteinuria as index of renal
damage (R of 0.264 and –0.206, respectively; P < .01).

Prediction of renal recovery after kidney transplantation
The diagnostic performance of serum and urine EV surface

antigens associated with patient outcome at univariate analysis
(Figs 4A and 5A) was assessed by analysis of ROC curves;
each EV marker was evaluated singularly or as a compound
EVmarker generated by linear weighted combination of all the
others (CD62P-CD41b-CD42a-CD31 for serum EVs; CD105-
CD1c-SSEA4-CD133/1 for urine EVs; Supplementary data,
Table S17). AUC for serum EV markers ranged between
0.730 and 0.999, with the compound marker displaying an
AUC of 0.836 [95% confidence interval (CI) 0.736–0.929;
Fig. 4B]; of note, serum CD42a displayed an AUC of 0.999
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Figure 2: Prediction of renal recovery by serum EV surface antigens. Serum EV surface antigens were evaluated by flow cytometry in
transplanted patients at different time points (T0, before transplant; T1, 10–14 days after transplant; T2, 3 months after transplant; T3, 12
months after transplants; left column); median fluorescence intensity (nMFI; %) was reported after normalization for mean MFI for CD9,
CD63 and CD81. The correlation of each EV antigen with eGFR (mL/min) was evaluated by Pearson’s R test (central column); regression lines
with 95% CIs are shown for each correlation. In the right column, mean nMFI (with standard error) is shown at the different time points in
patients displaying renal recovery (green line) or persistent renal dysfunction at T3 (red line; eGFR ≤45 mL/min). *P < .05; **P < .01
***P < .001; statistics are reported in Supplementary data, Tables S5, and S7–S10. We reported EV surface antigens associated with renal
outcome at univariate logistic regression analysis (Supplementary data, Table S11): CD62P (A), CD41b (B), CD42a (C) and CD31 (D).

(95% CI 0.995–1.000), correctly discriminating all except one
patient. On the other side, the AUC for urine EV markers
was comprised between 0.686 and 0.856, with the compound
marker reaching up to 0.901 (95% CI 0.823–0.978; Fig. 5B).

Finally, in an attempt to exploit the specific EV signature
and develop an advanced diagnostic model to predict renal
outcome at T3, we combined nMFI levels of all EV surface
antigens differentially expressed in patients with persistent

renal dysfunction compared with those with renal recov-
ery, at T0 for serum EVs (HLA-II-CD62P-CD41b-CD42a-
CD29-CD31; Supplementary data, Table S7), or at T1 for
urine EVs (CD19-CD56-CD105-CD2-CD1c-SSEA-4-HLA-
I-CD42a-CD133/1-CD45-CD20; Supplementary data, Table
S13) by the use of supervised ML algorithms. As detailed
in the Materials and methods section, four ML classifiers
and different algorithms for dataset imbalance correction

770 J. Burrello et al.



Figure 3: Prediction of renal recovery by urine EV surface antigens. Urine EV surface antigens were evaluated by flow cytometry in transplanted
patients at different time points (T0, before transplant; T1, 10–14 days after transplant; T2, 3 months after transplant; T3, 12 months after
transplants; left column); median fluorescence intensity (nMFI; %) was reported after normalization for mean MFI for CD9, CD63 and CD81.
The correlation of each EV antigen with eGFR (mL/min) was evaluated by Pearson’s R test (central column); regression lines with 95% CIs are
shown for each correlation. In the right column, mean nMFI (with standard error) is shown at the different time points for each EV antigen in
patients displaying renal recovery (green line) or persistent renal dysfunction at T3 (red line; eGFR ≤45 mL/min). *P < .05; **P < .01;
***P < .001; statistics are reported in Supplementary data, Tables S6, and S12–S15. We reported EV surface antigens associated with renal
outcome at univariate logistic regression analysis (Supplementary data, Table S11): CD105 (A), CD1c (B), SSEA-4 (C) and CD133/1 (D).

were applied to levels of EV markers in serum and urine,
resulting in 616 different models. Accuracy of prediction
models based on serum EV antigens ranged between 72.4%
and 100.0% at training, and between 69.0% and 98.3% at
validation; models based on urine EV antigens displayed an
accuracy comprised between 74.1% and 86.2% at training and
between 62.1% and 80.1% at validation (Supplementary data,
Table S18).

The best ML model exploiting a serum EV signature was
an random Forest (RF) regressor with synthetic minority
over-sampling technique as correction for data imbalance;
confusion matrix and a representative classification tree are
shown in Fig. 4C and D. At training, all patients with
persistent renal dysfunction, and 34 of 35 patients with renal
recovery were correctly classified (sensitivity 100.0% and
specificity 97.1%), resulting in an overall accuracy of 98.3%.
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Figure 4: Supervised learning to predict renal recovery using serum EV markers. Supervised learning was used to train and validate a prediction
model able to discriminate patients with renal recovery (n = 35) from those with persistent renal dysfunction (eGFR ≤ 45 mL/min; n = 23).
nMFI of serum EV surface antigens at T0 was used to derive the prediction models. (A) The association of differentially expressed serum EV
antigens with renal outcome was assessed by univariate regression analysis. ORs are reported for each EV antigen together with its 95% CI; an
OR >1 is associated with an increased likelihood of renal recovery; an OR <1 is associated with a decreased likelihood (significant associations
were highlighted in red). (B) Analysis of ROC curves for EV surface antigens associated with renal outcome at univariate analysis. Diagnostic
performance was assessed also for a compound EV marker derived by linear combination of all the others (black line) (C,D) ML algorithms
were used to train and validate 308 different diagnostic models based on serum EV markers. A confusion matrix and a representative tree are
shown for the best model at training and validation: a random forest regressor with SMOTE correction for dataset imbalance, 10 classification
trees and a maximum split number of 20. Validation is provided by leave-one-out algorithm (see Supplementary data, Extended Methods).
Statistics are reported in Supplementary data, Tables S11, S17 and S18.

At validation, the model confirmed a very high performance
(98.3% accuracy, 95.7% sensitivity, 100.0% specificity) without
any detected overfitting effect. Of note, only one patient with
persistent renal dysfunction was misclassified at validation,
meaning a negative predictive value of 97.3%.

Conversely, a urine EV signature obtained by a linear sup-
port vector machine algorithm (see Materials and methods)
displayed a lower but still reliable performance, with the
correct prediction of 17 of 23, and 32 of 35 patients with per-
sistent renal dysfunction or renal recovery, respectively (84.5%
accuracy, 73.9% sensitivity, 91.4% specificity) at training. At
validation, we observed a minimum overfitting bias (4.4%),
with a final accuracy of 80.1%, and a sensitivity/specificity

respectively of 71.6% and 85.7% (Fig. 5C). The plot built on
the two best discriminants (SSEA-4 and CD105) confirmed an
excellent discrimination of patients according to their outcome
(Fig. 5D).

Considering donor age and type (explant from deceased
versus living donors) as potentially associated with graft
function, we also performed a multivariate logistic regression
analysis to assess their impact on associations between renal
outcome and each single serum- and urine-derived EVmarker
(Supplementary data, Table S19). All EV antigens that were
significantly associated with renal outcome (CD105-CD1c-
SSEA4-CD133/1 from urine, and CD62P-CD41b-CD42a-
CD31 from serum) confirmed their association independently
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Figure 5: Supervised learning to predict renal recovery using urine EV markers. Supervised learning was used to train and validate a prediction
model able to discriminate patients with renal recovery (n = 35) from those with persistent renal dysfunction (eGFR ≤45 mL/min; n = 23).
nMFI of urine EV surface antigens at T1 was used to derive the prediction models. (A) The association of differentially expressed urine EV
antigens with renal outcome was assessed by univariate regression analysis. ORs are reported for each EV antigen together with its 95% CI; an
OR >1 is associated with an increased likelihood of renal recovery; an OR <1 is associated with a decreased likelihood (significant associations
were highlighted in red). (B) Analysis of ROC curves for EV surface antigens associated with renal outcome at univariate analysis. Diagnostic
performance was assessed also for a compound EV marker derived by linear combination of all the others (black line) (C,D) ML algorithms
were used to train and validate 308 different diagnostic models based on urine EV markers. A confusion matrix and a representative plot are
shown for the best model at training and validation: a support vector machine with linear kernel. Validation is provided by leave-one-out
algorithm (see Supplementary data, Extended Methods). The plot illustrates discriminant performance of 2 of the 11 differentially expressed
EV antigens: if a circle of a defined color (real outcome) falls within a graph area of the same color (predicted outcome), then the patient is
correctly predicted according to its outcome. Statistics are reported in Supplementary data, Tables S11, S16, and S17.

of donor age/type, except the serum EV marker CD42a which
was no longer related to patient outcome after correction
for donor age or type. Interestingly, renal outcome was not
only directly associated with CD133/1 (OR 1.09; P = .008),
but also inversely related to donor age (OR 0.97; P = .035),
meaning an increased likelihood of renal recovery at the
increase of CD133/1 levels and as the donor age decreased.
Consistently, sensitivity analysis performed on ML models
confirmed a negligible impact of donor age/type on prediction
performance, which remains highly reproducible even when
models were applied on the cohort stratified for age tertile, or
for deceased versus living donor (Supplementary data, Fig. S8).

EV signature of graft rejection
Finally, we performed a sub-analysis on serumandurine EV

profile in patients with or without graft rejection, diagnosed in
transplanted patients by kidney biopsy in seven cases during
a follow-up of 1 year (six cellular and one humoral acute
rejection; Supplementary data, Tables S20 and S21).

Serum EV concentration and mean MFI for CD9-CD63-
CD81 were respectively 2.4- and 4.2-fold higher in rejecting
patients compared with the others (Supplementary data, Fig.
S9A–C); 15 of the 37 serum EV antigens (CD3-CD19-CD8-
CD25-CD49e-ROR1-CD209-CD9-CD11c-CD86-CD44-
CD326-CD69-CD45-CD20) were highly expressed in case of
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graft rejection compared to normal follow-up (Supplementary
data, Fig. S9D). Similarly, urine EV concentration and mean
MFI for CD9-CD63-CD81 were respectively 2.6- and 3.6-fold
higher in rejecting patients (Supplementary data, Fig. S9E–G),
and 10 EV antigens (CD19-CD56-CD105-CD1c-ROR1-
CD209-CD9-CD42a-CD86-CD14) were more expressed
in case of rejection, compared to non-rejecting patients
(Supplementary data, Fig. S9H). Of interest, both serum and
urine EVmarkers weremainly of immune origin, and different
from those associated with renal outcome.

At univariate analysis, we confirmed the association of 9 of
the 15 serum EV markers and 7 of the 10 urine EV markers
with a diagnosis of graft rejection (Supplementary data, Fig.
S10A and B, and Table S22). The diagnostic performance of
EV markers associated with the diagnosis of rejection was
assessed by ROC curves; AUC ranged between 0.720 and
0.834 (Supplementary data, Table S23). Serum EV compound
biomarker reached an AUC of 0.857 (95% CI 0.702–1.000),
whereas for urine EV compound biomarker the AUC was
0.770 (95% CI 0.578–0.962, Supplementary data, Fig. S10C
and D). Finally, supervised learning was used to develop and
validate diagnostic models to detect graft rejection. As before,
we trained 616 different models based on serum or urine EV
markers differentially expressed in rejecting patients. After
tuning, ML models with the highest accuracy were reported
in Supplementary data, Table S24: accuracy ranged between
81.5% and 99.1% at training, and 81.0% and 96.1% at validation
for models combining serum EV antigens, and between 71.6%
and 80.9% at training, and 72.3% and 79.3% at validation
for urine EV antigens. The best model was again an RF
regressor based on serum EVmarkers; a confusion matrix and
a representative classification tree are shown in Supplementary
data, Fig. S10E and F. At training the accuracy was 99.1%,
with the correct identification of all cases of rejection (100%
sensitivity) and of 223 out of 225 cases of normal follow-up
(specificity 99.1%). Reliability of the models was confirmed by
leave-one-out validation: accuracy was 96.1% (3% overfitting),
with a sensitivity of 71.4% and a specificity of 96.9%.

DISCUSSION
We here report for the first time a comprehensive character-
ization of serum and urine EVs in a cohort of transplanted
patients by a standardized multiplex flow cytometric assay.
The prospective longitudinal evaluation of EV profile over 1-
year follow-up allowed us to identify a molecular signature
that appear to predict the outcome of the grafted kidney,
related to pre-transplant asset of both receiver (serum) and
graft (urine). In particular, serum EV signature was mainly
characterized by endothelial cells and platelets markers,
probably reflecting the cardiovascular profile of the recipient.
Conversely, urine EV signature was mainly characterized by
markers of mesenchymal progenitor cells, which may mirror
the repairing/regenerative features of the graft.

EVs and their content have been extensively studied in the
context of kidney transplant. Different EV subpopulations in
biological fluids, deriving from different cell types and charac-
terized on the basis of EV surfacemarker expression, have been

previously profiled using conventional cytofluorimetric-based
analyses [14, 19]. However, this technique implies several
limitations in terms of detection threshold (exclusive char-
acterization of larger EVs, so called microparticles), possible
identification of multiple vesicles as a single event and non-
specific nanoparticle detection of protein/antibody aggregates.
Alternatively, bead-based cytofluorimetric assays have been
used to characterize bead-absorbed isolated EVs for single
markers [26]. This procedure, however, requires EV isolation,
and appears time-consuming and poorly standardized. In our
study, we were able to analyze serum and urine EVs using a
commercially available cytofluorimetric kit [21, 22], which al-
low the fast and reproducible profiling of a standardized panel
of 37 EV surface antigens including markers from endothe-
lium, platelets, immune cells and mesenchymal/stem progen-
itor cells. According to a previously validated protocol [11],
we directly characterized EVs after immuno-capture without
other pre-isolation steps. Of note, we did not perform any vesi-
cle pre-enrichment steps, in an effort to implement and stan-
dardize an assay, which was developed for an application on
isolated EVs [21, 22], to be directly applied as point-of-care tool
for EV analysis in complex biofluids. This approach has further
relevance as it can be achieved avoiding time-consuming
protocols and without sophisticated instrumentation, and
therefore could easily be translated to clinical practice.

Using this assay, we systematically characterized surface
antigens expressed on serum and urine EVs from 58 patients
evaluated at the different time points, for a total of 426 analyzed
samples. A large number of markers appeared to change after
transplant. In particular, endothelial- and platelet-derived EVs
from serum samples progressively decreased 3 and 12 months
after transplant. This is in line with prospective studies in
transplanted patients evaluating serum endothelial and platelet
microparticles, which were reported to progressively decrease,
paralleling renal function recovery [14, 19, 20]. The novelty
of our findings was the ability of endothelial and platelet EV
markers, namely, CD31, CD41b, CD42a and CD62P, to predict
the renal recovery at 1 year. These results suggest that not
only renal function improvement may decrease the uremia-
induced cardiovascular injury, lowering inflammation and
oxidative stress, but that, in turn, the recipient pre-transplant
cardiovascular and/ormetabolic statusmay profoundly impact
graft vascularization and function at follow-up. The use
of serum rather than plasma may have determined the
artificial generation of platelet-derived EVs; however, low-
speed centrifugation may determine in vitro cold-induced
platelet activation also in plasma samples [27, 28]. EV release
by platelets in this circumstance is not fully standardizable,
thus making EV quantitative data less reliable. In vitro platelet
activation induced by serum separator tubes is expected to
be similar in all groups, thus avoiding significant biases when
comparing EV surface profiles. Indeed, both plasma and serum
have been used in biomarkers discovery studies, and previous
studies did not find any significant difference in EV profiling
of serum and plasma from matched samples [11, 29].

In analogy, we identified four different markers in urine
EVs (CD1c, CD105, CD133 and SSEA-4) that progressively
increased in transplanted patients, and that were able to predict
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the recovery of renal function. Thesemarkers are characteristic
of proliferating mesenchymal/stem cells and immune cells
which may be involved in the reparative ability of the kidney.
Of interest, CD133 has been described as a characteristic
marker of progenitor cells, with the ability to survive after
damage and proliferate in response to cell injury [30, 31].
Accordingly, the levels of urine EVs expressing CD133 were
found elevated in healthy individuals and almost absent in end-
stage kidney disease [18]. Our group previously reported the
increase in CD133 expressing EVs in the first week following
a kidney transplant associated with early graft function, un-
derlying that EV-carried CD133might mirror the regenerative
processes occurring in the transplanted kidney after ischemic
processes [18]. Indeed, at graft tissue level, the number of
CD133-expressing cells was lower in delayed graft function
in respect to early graft function patients [32], underlying the
ability of EVs to mirror the tissue expression profile.

Our results on the prominent role of intrinsic pro-
regenerative markers to predict long term graft function
underline the concept that the pre-transplant graft status
might dictate the gain of functional versus fibrotic tissue
after ischemia–reperfusion insults. These findings are also
in line with recent data showing the importance of organ
biological age not only on post-transplant function, but also
on risk of rejection, as organ damage may lead to leakage
of cellular chromatin and mitochondrial proteins triggering
immune responses in the recipient [33, 34]. EVs may also
carry information predicting ongoing or imminent rejection.
In this regard, we observed, in a small subset of patients, the
increase of a distinct subset of antigens in case of rejection, in
both serum or urine EVs, including mainly markers of T-/B-
lymphocytes and of immune systemactivation. In linewith this
hypothesis, an increase of CD3-positive EVs has been observed
in urine of patients with acute cellular rejection, reflecting
infiltration of T cells in the graft [35]. Moreover, circulating
CD31/CD45 endothelial EVs and C4d-positive EVs increased
in patients with antibody-mediated humoral rejection and
may provide information on its severity and response to
treatment [36, 37]. These data suggest that an EV signature
reflecting immune cell activationmay allow the discrimination
of rejecting patients [38], representing an attractive choice,
which needs to be validated in a dedicated study.

Altogether, we were able to identify a signature of the pre-
transplant cardiovascular asset and graft regenerative ability
that might predict the post-transplant graft performance.
The molecular signature was obtained by combination of
fluorescence levels of single EV antigens using advanced
computational algorithms. Supervised learning was applied
to train and validate the prediction models, exploiting high-
dimensional and non-linear boundaries among data obtained
from EV profiling, allowing an accurate prediction of renal
outcome. Accuracy at validation was 98.3% and 80.1%,
respectively, for serum and urine EV markers, outperforming
previously reported conventional biomarkers [5, 13].

The main limitation of our study is the absence of an
external validation cohort. The longitudinal design and the use
ofML algorithms allowed a robust internal validation, demon-
strating the dynamic consistent change of EV biomarkers over

patient follow-up, and a high generalizability of the proposed
models due to the negligible overfitting effect. Second, our ex-
perimental approach including beads-based immunocapture
and flow-cytometry does not allow the evaluation of single
vesicles, while the use of pre-clearing steps by low-medium
speed centrifugation excludes larger EVs from the analysis.
A third limitation is the absence of kidney-specific antigens
among EV markers included in the analysis; on the contrary,
we chose to use a validated and high-performing platform
which included the majority of surface markers expressed on
vesicles, and we focused on the specific EV signature, as a
reflex of the cardiovascular profile of the recipient and of the
repairing/regenerative capability of the graft.

In conclusion, we systematically characterized serum and
urine EVs from a highly selected longitudinal cohort of
patients who underwent kidney transplant. We developed
the first prediction model based on the profile of antigens
expressed on the EV surface; our model was able to predict
renal outcome at 1-year follow-up using EV parameters before
or immediately after kidney transplant. EV profiling was been
performed using a standardized, low-cost, flow cytometric
platform. This approach isminimally invasive, amenable to full
automation and represents a promising point-of-care testing
tool. After validation in larger studies, EV profiling could be
integrated into the post-transplant clinical work-up, enabling
the selection of patients at higher risk of persistent renal
dysfunction for a closer follow-up.
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