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The small molecule ZY-214-4 may reduce
the virulence of Staphylococcus aureus by
inhibiting pigment production
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Abstract

Background: In recent years, clinical Staphylococcus aureus isolates have become highly resistant to antibiotics,
which has raised concerns about the ability to control infections by these organisms. The aim of this study was to
clarify the effect of a new small molecule, ZY-214-4 (C19H11BrNO4), on S. aureus pigment production.

Results: At the concentration of 4 μg/mL, ZY-214-4 exerted a significant inhibitory effect on S. aureus pigment
synthesis, without affecting its growth or inducing a toxic effect on the silkworm. An oxidant sensitivity test and a
whole-blood killing test indicated that the S. aureus survival rate decreased significantly with ZY-214-4 treatment.
Additionally, ZY-214-4 administration significantly reduced the expression of a pigment synthesis-related gene
(crtM) and the superoxide dismutase genes (sodA) as determined by real-time quantitative polymerase chain
reaction (RT-qPCR) analysis. ZY-214-4 treatment also improved the survival rate of S. aureus-infected silkworm larvae.

Conclusions: The small molecule ZY-214-4 has potential for the prevention of S. aureus infections by reducing the
virulence associated with this bacterium.
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Background
The skin and nasopharynx of approximately 20 to 30%
of the world’s population [1, 2] are continuously colo-
nized by the Staphylococcus aureus. This bacterium is an
opportunistic pathogen that can cause superficial skin
diseases and numerous fatal diseases such as bacteremia
and infective endocarditis, and also causing osteoarticu-
lar, pleuropulmonary, and device-related infections [3–
6]. Vancomycin, a glycopeptide antibiotic that can in-
hibit cell wall biosynthesis, is the first-choice treatment
for methicillin-resistant S. aureus (MRSA) infections [7,

8]; however, moderate or complete resistance to this
antibiotic has become widespread among S. aureus
strains [8, 9]. Importantly, although significantly fewer
antibiotics have been identified or synthesized this cen-
tury compared with the last century [10], the prescrip-
tion of antibiotics for the treatment of infections over
the years has led to the emergence of drug-resistant S.
aureus strains [11]. Eliminating bacterial virulence fac-
tors is increasingly used as a means of combating anti-
biotic resistance [12], and represents a strategy that
avoids the emergence of drug resistance induced by bac-
terial stress [12, 13].
Notably, the success of S. aureus as a pathogen also

lies in its ability to reduce oxidative stress [14]. Super-
oxide dismutase (SOD) is a key detoxifying enzyme [14–
16] that converts reactive oxygen species (ROS) into less
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harmful products, thereby allowing bacteria that infect
the body to escape the body’s immune system and sur-
vive [12, 14]. Pigments produced by pathogenic microbes
are known to be important virulence factors [17]. S. aur-
eus defective in pigment production exhibit reduced in-
fectivity and increased vulnerability to neutrophils [18],
and cannot infect the mice in the mouse model [3, 19].
For example, S. aureus mutants with defective caroten-
oid biosynthesis are more likely to be killed by oxidants,
show impaired neutrophil survival and lower pathogen-
icity [20]. Pigment biosynthesis is mediated by proteins
encoded by a five-gene cluster (crtM, crtN, crtP, crtQ,
and crtO) [21], which represents a potential new target
for antibacterial therapy.
ZY-214-4, molecular formula C19H10BrNO4, contains

a chromone ring and an N-phenyl-substituted malei-
mide. Chromone and its derivatives are widely distrib-
uted in naturally occurring products and
pharmaceuticals as key scaffolds, and chromone deriva-
tives have been shown to exert antimicrobial activities
against Penicillium spp., Escherichia coli, and Shigella
flexneri [22–24]. Maleimide motifs are prevalent in many
natural products and drug candidates, and possess a
broad spectrum of biological properties, including anti-
tumor and antibacterial activities [25–27]. However, no
studies have reported on the antibacterial activity of
chromone–maleimide hybrids in inhibiting golden pig-
ment production in S. aureus. In this study, we sought
to clarify whether subinhibitory concentrations of ZY-
214-4 can inhibit pigment production in clinical S. aur-
eus strains.

Results
The effect of subinhibitory concentrations of ZY-214-4 on
the growth of S. aureus strains
The minimum inhibitory concentration (MIC) of ZY-
214-4 was 64 μg/mL against S. aureus strains SA21,

SA882, and SA923, and 256 μg/mL against strains
SA2698 and SA2956. To verify whether ZY-214-4 re-
duced the virulence of S. aureus by reducing the expres-
sion of virulence genes rather than the number of S.
aureus cells, we generated a growth curve for these clin-
ical isolates of S. aureus at a series of subinhibitory con-
centration (Additional Figure 1). We found that the
number of bacteria in the late logarithmic growth period
remained constant at the subinhibitory concentration of
4 μg/mL of ZY-214-4 (Fig. 1). Therefore, this concentra-
tion was used for subsequent experiments.

ZY-214-4 inhibited pigment production
We undertook a quantitative and qualitative assessment
of pigment synthesis in ZY-214-4-treated and untreated
cells. ZY-214-4 treatment markedly inhibited golden pig-
ment production. Compared with the golden pigmenta-
tion of untreated S. aureus, that of S. aureus treated with
ZY-214-4 was white or light yellow (Fig. 2a). Quantita-
tive analysis showed that pigment production was de-
creased by 38.7–41.8%, 36.8–38.9%, 39.0–43.8%, 41.1–
42.8%, 54.1–56.7% in five ZY-214-4-treated clinical S.
aureus isolates when compared with their respective un-
treated counterparts (Fig. 2b).

The effect of ZY-214-4 on the susceptibly of S. aureus to
human blood and H2O2

As ZY-214-4 could inhibit pigment production in S. aur-
eus, and because the pigment can shield S. aureus cells
from host oxidants, we next compared the sensitivity of
ZY-214-4-treated (4 μg/mL) and untreated S. aureus to
H2O2 and healthy human blood. The results of an H2O2

sensitivity assay showed that ZY-214-4-treated cells were
substantially more sensitive to H2O2 than untreated con-
trol cells (Fig. 3a). Moreover, compared with untreated
controls, both the number of colonies and the survival
rate of clinical S. aureus strains were greatly decreased

Fig. 1 Growth curves for Staphylococcus aureus strains cultured with ZY-214-4. TSB was used as a blank control. Images made by GraphPad Prism
6 (GraphPad Software, version 6.00, https://www.graphpad.com/)
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in the whole blood of healthy volunteers following ZY-
214-4 treatment (Fig. 3b). Together, these results indi-
cated that ZY-214-4 treatment reduced the resistance of
S. aureus to human blood and H2O2.

Treatment with subinhibitory concentrations of ZY-214-4
downregulated the expression of the sod and crtM genes
of S. aureus
We observed that pigment synthesis was reduced in S.
aureus and that the bacterium was more sensitive to
H2O2 and healthy blood following ZY-214-4 treatment.
To further explore the mechanism underlying these ef-
fects of ZY-214-4 on S. aureus, we used RT-qPCR to
measure the expression levels of crtM, which is involved
in antioxidant pigment synthesis, and that of sodA and
sodM, which are coding for superoxide dismutase, the
enzymes that scavenge oxygen free radicals and play a
key role in the evasion of host defenses. We found that
the expression of crtM and sodA were down-regulated
in ZY-214-4-treated S. aureus cells when compared with

that in controls, and 3 out 5 strains were significant for
reduction in expression of sodM. (Fig. 4).

Analysis of the cytotoxicity of ZY-214-4
To evaluate the cytotoxicity of ZY-214-4, we injected
silkworms with different concentrations of ZY-214-4 (2–
8 μg/mL) and evaluated the effects after 24 h. No deaths
were observed in either the treatment or corresponding
concentration of DMSO control group (Data not
shown).

ZY-214-4 reduced the virulence of S. aureus in infected
silkworms
We found that, in vivo, the virulence of S. aureus was
significantly lower with ZY-214-4 treatment (4 μg/mL)
than without. As shown in Fig. 5, following S. aureus in-
fection, mortality occurred later in ZY-214-4-treated
silkworm larvae than in untreated animals. After 5 h, the
mortality rate of untreated silkworm larvae was 100% for
those infected with the S. aureus SA21 strain, 100% for
those infected with the SA882 strain, 90% for those in-
fected with the SA923 strain, 90% for those infected with
the SA2698 strain, 100% for those infected with the
SA2956 strain. The respective values for ZY-214-4-
treated silkworm larvae were 50, 20, 10, 30, and 30%.
These results indicated that ZY-214-4 treatment can
delay death in S. aureus-infected insects.

Discussion
Multidrug-resistant strains of S. aureus are a leading
cause of skin and soft tissue infection [28, 29]. The abil-
ity of S. aureus to survive under diverse environmental
pressures is an important determinant of its pathogen-
icity [21, 30], highlighting the need for the development
of alternative treatments. Many studies have shown that
the S. aureus pigment is a key factor in its virulence [18,
31, 32]. The biosynthetic pathway of pigment is dis-
rupted in a “deleted” crtM of S. aureus, resulting in the
absence of pigmentation and enhanced susceptibility to
killing by ROS [18]. One study reported that, in a mouse
subcutaneous abscess model, S. aureus mutants with im-
paired carotenoid biosynthesis were more easily killed by
oxidants and neutrophils and exhibited lower pathogen-
icity when compared with their wild-type counterparts
[18].
In this study, we synthesized a new small-molecule

compound—ZY-214-4—and selected five clinical S. aur-
eus strains isolated from different sites of infection to in-
vestigate the effect of subinhibitory concentrations of
ZY-214-4 on the virulence of this bacterium. Because we
found that high concentrations of ZY-214-4 could in-
hibit S. aureus growth (Additional Figure 1), we se-
lected a subinhibitory concentration (4 μg/mL) that did
not affect the growth of the bacterium, thus excluding

Fig. 2 (a) Images showing the inhibition of pigment production in
ZY-2144-treated Staphylococcus aureus strain SA2956. SA2956
without ZY-214-4 treatment served as control group. (b) The
inhibitory effect of ZY-214-4 on pigment production in S. aureus.
Images made by GraphPad Prism 6 (GraphPad Software, version
6.00, https://www.graphpad.com/)
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Fig. 3 The effect of ZY-214-4 (4 μg/mL) treatment on the survival of Staphylococcus aureus in (a) H2O2 and (b) healthy human blood. Error bars
indicate the SD and asterisks indicate statistical significance (p < 0.05). Images made by GraphPad Prism 6 (GraphPad Software, version
6.00, https://www.graphpad.com/)

Fig. 4 The relative expression levels of genes associated with the virulence of Staphylococcus aureus cultured in ZY-214-4 (4 μg/mL). Values
represent means ± SD of three repeated assays. For each strain, there were significant differences when compared with the control groups
(grown without ZY-214-4) (p < 0.05). Images made by GraphPad Prism 6 (GraphPad Software, version 6.00,https://www.graphpad.com/)
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the possibility that any reduction in virulence could re-
sult from a reduction in the number of bacteria.
The pigment of S. aureus has been reported to be an

important virulence factor [33]. The pigment has anti-
oxidant properties, and its many double bonds can react
with ROS produced by neutrophils and macrophages,
thereby protecting S. aureus against oxidative stress [34].
The first key step in pigment biosynthesis is catalyzed by
dehydrosqualene synthase (also known as diphospho-
nene synthase or CrtM) [35]. Many related studies have
found that there is a positive correlation between pig-
ment production and crtM expression [35, 36]. Here, we
found that pigment production and crtM gene expres-
sion were significantly downregulated in S. aureus under
the effect of ZY-214-4. We speculate that ZY-214-4 ex-
erts its inhibitory effect on pigment production by redu-
cing the expression of crtM.
To deal with ROS, bacteria have evolved complex oxi-

dative stress response mechanisms [37]. Notably, S.

aureus has developed several means of escaping the im-
mune systems of its hosts [38, 39], including phagocyte-
mediated oxidative killing [40, 41]. This resistance is me-
diated by SOD production [42–44]. The absence of sodA
can reduce S. aureus virulence in a model of abscess or
retroorbital infection [45, 46]. SodM is as important as
SodA [16]. SOD is a representative antioxidant enzyme
that can eliminate ROS produced under oxidative stress.
SOD may also help bacterial pathogens survive against
oxidative outbreaks produced by inflammatory cells [47].
As sodA genes was downregulated in this study, the ex-
pression of sodM in more than half of S. aureus was also
significantly down-regulated. We suggest that sub-
bacteriostatic concentrations of ZY-214-4 can weaken
the antioxidant defense of S. aureus by inhibiting sod ex-
pression. Insects possess both cellular and humoral im-
mune response pathways, and the related literature
reported that the virulence of the strain was weak-
ened by drug action [48, 49]. In our study, we found

Fig. 5 The survival of silkworm larvae inoculated with untreated or ZY-214-4-treated (4 μg/mL) Staphylococcus aureus. p-values < 0.05 were
considered significant. (a) n = 10 per group, p = 0.0014. (b) n = 10 per group, p = 0.0010. (c) n = 10 per group, p = 0.0002. (d) n = 10 per group, p =
0.0004. (e) n = 10 per group, p = 0.0001. p < 0.05, were significantly different from that of the untreated groups. Images made by GraphPad Prism
6 (GraphPad Software, version 6.00, https://www.graphpad.com/)
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that ZY-214-4 could reduce the virulence of S. aureus
in the silkworm. Under the same conditions, the sur-
vival time of treated animals was significantly differ-
ent from that of untreated controls.
The use of mammals for drug development is expen-

sive and ethically problematic [50]. The mechanisms in-
volved in the absorption, distribution, metabolism, and
excretion of chemicals are similar in silkworm larvae
and mammals [51, 52]. In this study, we found that ZY-
214-4 was not cytotoxic within the concentration range
tested, and may be beneficial for the treatment of S. aur-
eus infection.

Conclusions
In summary, we found that treatment with a subinhibi-
tory concentration of a new small molecule, ZY-214-4,
can reduce the virulence of S. aureus by inhibiting pig-
ment production. This study provides a basis for explor-
ing potential drug targets and developing new drugs for
the treatment of S. aureus infection. However, this study
also had some limitations. For example, the level of pro-
tection that ZY-214-4 provides against mortality of silk-
worms is not impressive. Further investigations are
needed to clarify the mechanisms underlying how ZY-
214-4 regulates the expression of crtM and sod.

Methods
Bacterial strains
The strains used in this study are listed in Table 1. The
five S. aureus strains—SA21, SA882, SA923, SA2698,
and SA2956—were isolated from patients at the First Af-
filiated Hospital of Wenzhou Medical University. The S.
aureus isolates and the medical records of the patients
were obtained for research purposes with the approval
of the Ethics Committee of The First Affiliated Hospital
of Wenzhou Medical University. Written informed con-
sent was obtained from all the patients.

Procedure for the synthesis of C19H11BrNO4

ZY-214-4 (Fig. 6) was synthesized by the School of Phar-
macy, Wenzhou Medical University [53]. In step 1, chro-
mone 1 (0.2 mmol, 1 equivalent) and maleimide 2 (0.5
mmol, 2.5 equivalent) were completely dissolved in 2 mL

of 1,2-Dichloroethane (0.1M DCE) in a 12-mL screw-
cap tube. In step 2, [Ru(p-methylbenzyl)Cl2]2 (0.01
mmol, 0.05 equivalent), AgNTf2 (0.04 mmol, 0.2 equiva-
lent), and AgOAc (0.6 mmol, 3 equivalent) were added
to the reaction mixture at room temperature. For step 3,
the mixture was placed on a heating mantle and the
temperature was raised to 120 °C for 0.5 h, with stirring.
In step 4, when the reaction was completed, the entire
reaction mixture was directly loaded into a silica gel col-
umn, followed by purification with petroleum ether/
EtOAc (step 5), yielding the desired product (product 3)
with a yield of 75%. All the reagents used were of analyt-
ical grade (Additional Figure 2).

MIC determination
ZY-214-4 was dissolved in dimethyl sulfoxide (DMSO,
BOYUN, SH, China) at a concentration of 20 mg/mL.
The broth microdilution method based on CLSI guide-
lines was used to determine the minimal inhibitory con-
centration (MIC) [54]. The MIC was defined as the
lowest concentration at which no visible bacterial
growth was observed. To exclude the influence of the
solvent, during the determination, we simultaneously
tested the same volume of solvent as a control.

Growth assay
The S. aureus strains were grown in TSB (Becton, Dick-
inson and Company, NJ, USA) to an optical density
(OD) of 0.3 at 600 nm, following which the cultures were
aliquoted into five flasks. Different doses of ZY-214-4
were then added to the culture to final concentrations of
4 μg/mL,8 μg/mL and 16 μg/mL. An Erlenmeyer flask
containing only TSB was used as a blank control. All the
cultures were incubated at 37 °C with shaking at 220
rpm. The OD600 value was measured hourly for 24 h.
The assay was performed in triplicate.

Pigment extraction
To evaluate pigment production, the five S. aureus
strains were inoculated into 10 mL of TSB with or with-
out ZY-214-4 (4 μg/mL). After 12 h of incubation, the
cultures were centrifuged at 10,000 rpm (enppendorf, F-
34-6-38) for 10 min. The pellets were washed twice with

Table 1 The minimum inhibitory concentrations (MIC) of ZY-214-4 against five Staphylococcus aureus strains

Strain MIC (μg/mL) Ward Year Source Antimicrobial Agents

SA21 64 Digital subtraction angiography (DSA) 2012 Tissue PG(R);OX(R);EM(R);CC(R);LVX(R); MXF(R);GM(R);RIF(R)

SA882 64 Digestive ward 2014 Wound exudate PG(R);OX(S);EM(S);CC(S);LVX(S); MXF(S);GM(S);RIF(S)

SA923 64 Neurology ward 2014 Sputum PG(R);OX(R);EM(R);CC(R);LVX(R); MXF(R);GM(S);RIF(S)

SA2698 256 Emergency rescue 2017 Blood PG(R);OX(S);EM(S);CC(S);LVX(S); MXF(S);GM(S);RIF(S)

SA2956 256 Hemodialysis 2017 Blood PG(R); OX(S);EM(R);CC(R); LVX(R); MXF(R);GM(R);RIF(R)

PG Penicillin G; OX Oxacillin; EM Erythromycin; CC Clindamycin; LVX Levofloxacin; MXF Moxifloxacin; GM Gentamicin; RIF Rifampicin. R and S denotes drug
resistance and drug sensitivity, respectively
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PBS, resuspended in 2 mL of methanol, and placed in an
incubator for 24 h with shaking. The samples were then
centrifuged at 10,000 rpm (enppendorf, F-24-6-38) for
10 min, and the OD value was measured at 465 nm. The
percent inhibition of pigment production was calculated
as follows: pigment inhibition rate (%) = [(ControlOD465

−TreatedOD465)/Control OD465] × 100 [31, 55].

Oxidant susceptibility assay
H2O2 sensitivity assays were performed as previously de-
scribed [56]. Control and ZY-214-4-treated (4 μg/mL) S.
aureus were pelleted by centrifugation at 8000 rpm
(enppendorf, F-34-6-38) for 10 min and resuspended in
PBS containing 0.25% H2O2 (The chemical reagent 30%
hydrogen peroxide was diluted by aseptic PBS) at 37 °C
for 1 h. The cells were then serially diluted with PBS,
spread on TSB agar plates, and incubated at 37 °C for
12 h. The numbers of viable cells were counted after in-
cubation to determine whether ZY-214-4 affected S. aur-
eus susceptibility to H2O2.

Human whole-blood killing assay
For the whole-blood killing assay, cultures of each strain
treated or not with ZY-214-4 (4 μg/mL) were centrifuged
and resuspended in sterile PBS to a final concentration
of 1 × 107 CFU/mL. Whole blood from healthy human
volunteers was collected into Vacutainer PT tubes (Bec-
ton, Dickinson and Company, NJ, USA). Aliquots
(600 μL) of whole blood were transferred into 1.5-mL
test tubes and mixed with 200 μL of bacterial samples to
a final concentration of 2.5 × 106 CFU/mL as previously
described [57]. The tubes were incubated at 37 °C with
shaking (250 rpm) for 1 h, following which dilutions
were spread on Colombian blood plates to count the
numbers of colonies.

RNA-seq and identification of differentially expressed
genes
Bacteria were cultured for 12 h in TSB with or without
ZY-214-4 (4 μg/mL) and then collected by centrifugation

at 12,000×g for 1 min at 4 °C. RNA was extracted using
the QIAGEN RNeasy Maxi Kit (QIAGEN, BER,
Germany) following the manufacturer’s instructions.
The RNA was sequenced using the Illumina HiSeq X
platform with a paired-end read length of 150 bp. DEG-
seq software [58] was used to analyze the effect of ZY-
214-4 on gene expression. Differences in gene expression
were considered significant with |log2 (fold change)| > 1
and p < 0.005.

Quantitative real-time RT-PCR
S.aureus was cultured in the medium with and without
ZY-214-4 (4 μg/mL). After 12 h, RNA was extracted as
described above. The primer pairs used for qPCR are
listed in Table 2. Total RNA was reverse transcribed
using a Takara RNA PCR Kit (Takara, Tokyo, Japan).
qPCRs were performed in 20-μL reaction mixtures using
Luna Universal qPCR Master Mix (New England Bio-
labs, MA, USA). Each test was performed independently
in triplicate.

Assessment of the toxicity of ZY-214-4 in the silkworm
The toxicity of ZY-214-4 against the silkworm was
assessed as previously described, with slight modifica-
tions [59]. A disposable plastic syringe (Terumo, TY,
Japan) was used to inject different concentrations (2–
8 μg/mL) of ZY-214-4 (0.05 mL) into the body of

Fig. 6 Procedure for ZY-214-4 synthesis. 1: Chromones; 2: Maleimides; 3: ZY-214-4

Table 2 Primers used for RT-qPCR

Primer name Sequence (5′–3′)

gyrb-RT-F ACATTACAGCAGCGTATTAG

gyrb-RT-R CTCATAGTGATAGGAGTCTTCT

sodA-RT-F GACAGACATCATAACACTTA

sodA-RT-R ACTCCCAGAATAATGAATG

sodM-RT-F CTGTACCTTCTACTGCAGCATTTA

sodM-RT-R TTAGAACCACATTTTGACAAAGAA

crtM-RT-F CATCGTATGTCTGATGTG

crtM -RT-R GCTGAATTATTCGGATATTG
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silkworm larvae. The survival rate was measured one day
after injection.

The infection of silkworm larvae for the assessment of S.
aureus virulence following ZY-214-4 treatment
Staphylococcus aureus strains were cultured on
Columbia blood agar plates at 37 °C overnight. The next
day, S. aureus was inoculated into TSB and grown to the
logarithmic phase at 37 °C with shaking (220 rpm). ZY-
214-4 was added to a final concentration of 4 μg/mL. A
bacterial solution without ZY-214-4 was used as control.
After 12 h, the bacteria were collected by centrifugation
at 8000 rpm for 5 min at 4 °C, washed three times with
phosphate-buffer saline (PBS), and diluted to 0.5 McFar-
land standard at 600 nm. The total colony units were
further adjusted to obtain the required dose. For the in-
fection of silkworm larvae, there were 10 larvae in each
group, and the weight of each larva is 250 mg. Injection
was performed as previously described [60] with slight
modifications. In brief, a syringe was used to inject 50 μL
of S. aureus into the last left forelimb of each larva. After
the injection, the larvae were placed in an incubator at
37 °C, and larval mortality was recorded. Larvae were
considered to be dead when they did not respond to
touch. Silkworm larvae that were not exposed to ZY-
214-4 and those injected with phosphate-buffered saline
(PBS) were used as controls.

Statistical analysis
GraphPad Prism 6 (GraphPad Software, version 6.00,
https://www.graphpad.com/) was used to analyze the ex-
perimental data. A p-value < 0.05 was considered statisti-
cally significant. In addition to using log rank test
analysis of survival rate of silkworm, all others used one-
way analysis of variance.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12866-021-02113-5.

Additional file 1 Figure 1 Growth curves for Staphylococcus aureus
strains cultured with ZY-214-4(4 μg/mL). TSB was used as a blank control.
Images made by GraphPad Prism 6 (GraphPad Software, version 6.00,
https://www.graphpad.com/).

Additional file 2. Figure 2 HPLC of ZY-214-4.
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