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Abstract

It is well-recognized that vitamin D3 has immune-modulatory properties and that the variation in ultraviolet (UV) exposure
affects vitamin D3 status. Here, we investigated if and to what extent seasonality of vitamin D3 levels are associated with
changes in T cell numbers and phenotypes. Every three months during the course of the entire year, human PBMC and
whole blood from 15 healthy subjects were sampled and analyzed using flow cytometry. We observed that elevated serum
25(OH)D3 and 1,25(OH)2D3 levels in summer were associated with a higher number of peripheral CD4+ and CD8+ T cells. In
addition, an increase in naı̈ve CD4+CD45RA+ T cells with a reciprocal drop in memory CD4+CD45RO+ T cells was observed.
The increase in CD4+CD45RA+ T cell count was a result of heightened proliferative capacity rather than recent thymic
emigration of T cells. The percentage of Treg dropped in summer, but not the absolute Treg numbers. Notably, in the Treg
population, the levels of forkhead box protein 3 (Foxp3) expression were increased in summer. Skin, gut and lymphoid
tissue homing potential was increased during summer as well, exemplified by increased CCR4, CCR6, CLA, CCR9 and CCR7
levels. Also, in summer, CD4+ and CD8+ T cells revealed a reduced capacity to produce pro-inflammatory cytokines. In
conclusion, seasonal variation in vitamin D3 status in vivo throughout the year is associated with changes in the human
peripheral T cell compartment and may as such explain some of the seasonal variation in immune status which has been
observed previously. Given that the current observations are limited to healthy adult males, larger population-based studies
would be useful to validate these findings.
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Introduction

Vitamin D3 is traditionally associated with bone homeostasis

and calcium metabolism. The extra-renal synthesis of 1,25-

dihydroxyvitamin D3 [1,25(OH)2D3] by macrophages and other

immune cells has re-invented the role of vitamin D3. In recent

years, research efforts were also focused on understanding the

immunemodulatory properties of vitamin D3. 1,25-dihydroxyvi-

tamin D3 has been shown to influence the growth and

differentiation of both the innate and acquired immune cells, as

well as their functions such as cytokine production [1–3]. As such,

there has been much interest to identify its therapeutic potential in

autoimmune or inflammatory diseases.

Sources of vitamin D3 include dietary uptake (primarily fatty

fish and cod liver oil) as well as cutaneous biosynthesis from UVB

exposure causing 7-dehydrocholestrol to form previtamin D3 in

the skin. Vitamin D3 is subsequently hydroxylated into 25-

hydroxyvitamin D3 [25(OH)D3] by 25-hydroxylase in the liver.

25-hydroxyvitamin D3 is further hydroxylated by 1a-hydroxylase

in the kidney into the biologically active metabolite, 1,25(OH)2D3

[4]. The main source of vitamin D3 derives from UVB-induced

vitamin D3 production, accounting for 80–90% of circulating

vitamin D3 [5].

The seasonal variation in vitamin D3 status in temperate and

cold climates with reduced sunlight exposure during certain

periods of the year is thought to be responsible for the high

prevalence of vitamin D3 insufficiency among populations residing

at higher latitudes [6]. Low wintertime vitamin D3 levels have

been found partly accountable for the seasonal peak in influenza

and URTI occurrence [7–9]. Moreover, reduced sun exposure

and vitamin D3 status have been identified as risk factors for the

development of autoimmune diseases. Epidemiological studies

have implicated seasonality of birth as well as geographical

variation in UV radiation and serum vitamin D3 levels as

contributing factors to the prevalence of multiple sclerosis and

insulin-dependent diabetes mellitus [10–15].

T cells are known targets for 1,25(OH)2D3 since they express

vitamin D receptor [16,17]. Upon T cell activation, the expression
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of vitamin D receptor is up-regulated, suggesting an important

functional role for vitamin D3 in adaptive immunity. Both human

in vitro and animal models revealed that vitamin D3 can suppress

pro-inflammatory T helper (Th)1 and Th17 cytokine responses

[18,19], while enhancing the production of interleukin (IL)-4, IL-5

and IL-10, thereby promoting a Th2 and regulatory T cell (Treg)

phenotype [20,21]. Indeed, accumulating evidence supports the

notion that vitamin D3 could favorably influence the course of

certain autoimmune pathology by increasing the number of Treg

[13,15]. In addition, chemokine receptors expression is a

determining factor in migration and localization of T lymphocytes

during physiological and inflammatory responses [22,23].

1,25(OH)2D3 has been demonstrated to affect the homing capacity

of the peripheral CD4+ T cell population in vitro and in an animal

model [24,25].

Taken together, the involvement of 1,25(OH)2D3 in the

dynamics of T cell compartment warrants further investigation.

Previously, we have found a down-regulation of Toll-like receptor

(TLR)4-mediated proinflammatory cytokines production in asso-

ciation with an elevated vitamin D3 status in summer [26].

However, our current knowledge on the immunomodulatory role

of vitamin D3 conveys limited information on how the adaptive

immune response of healthy individuals varies in response to

physiological changes in vitamin D3 status in vivo during the

different seasons of the year. Intrigued by the strong epidemio-

logical association between vitamin D3 deficiency and autoimmu-

nity, and the proposed effects of 1,25(OH)2D3 on Treg, we

investigated whether there is a seasonal variation in the

composition of the peripheral T cell pool and the circulating

Treg. A potential modification in these parameters may provide a

better understanding on how sun exposure and vitamin D3 can act

as candidate risk-modifying factors in certain autoimmune

disorders.

Materials and Methods

Study subjects
Fifteen healthy male volunteers (median 36 years old, range 28–

60; mean BMI 22.8 kg/m2, range 20.5–26.2) were recruited and

followed up for one year. Body mass index (BMI) has been shown

to be inversely related to vitamin D3 levels [27]. We have

eliminated this confounder from our study since none of the 15

volunteers was obese (BMI.30 kg/m2). Venous blood was drawn

from the subjects every three months, at the end of four

consecutive seasons in 2009; February in winter, May in spring,

August in summer and November in autumn. On the rare

occasions that a participant reported on being unwell, the

experiment would be postponed until one week post-recovery.

Ethics Statement
The study was approved by the Ethical Committee on Human

Experimentation of the Radboud University Nijmegen. A written

consent was obtained from all participants in the study.

Flowcytometry
Cells were phenotypically analyzed by five-color flow cytometry

(Coulter Cytomics FC 500, Beckman Coulter, Fullerton, USA)

using Coulter Epics Expo 32 software. PBMC as well as whole

blood (after red cell lysis) were used for flow cytometric analysis.

Peripheral blood mononuclear cells (PBMC) were isolated by

density centrifugation on Ficoll-Hypaque (Pharmacia Biotech,

Uppsala, Sweden). Cells were washed with PBS with 0.2% bovine

Figure 1. Seasonal variation in serum vitamin D3 levels and the amount of daylight. Median serum A) 25(OH)D3 and B) 1,25(OH)2D3

concentrations of 15 healthy volunteers during each of the four seasons. C) Duration of daylight in the study region in a month prior to serum vitamin
D3 concentration assay (source: the Royal Netherlands Meteorological Institute). * p,0.05 as compared to winter.
doi:10.1371/journal.pone.0029250.g001
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serum albumin (BSA) before being labeled with fluorochrome-

conjugated antibodies (mAb). After incubation for 20 minutes at

room temperature, in the dark, cells were washed twice to remove

unbound antibodies and analyzed. For cell surface staining, the

following mAb were used: CD127 PC5- or PC7-labeled (RDR5;

eBioscience, Uithoorn, The Netherlands), CD25-PE (M-A251),

CD25-APC (2A3) CD45RA-FITC (HI100), CCR4-PC7 (1G1),

CCR6-PE (11A9), CLA-FITC (HECA-452) (all from BD Biosci-

ences, Breda, The Netherlands), CD3-ECD (UCHT1), CD4 ECD-

or PC7-labeled (SFCI12T4D11), CD4-PC5 (13B8.2), CD8-ECD

(SFCI21Thy2D3), CD8-PC5 (B9.11), CD27-PC5 (1A4CD27),

CD45RA-ECD (2H4LDH11LDB9) CD45RO-ECD (UCHL1)

(all from Beckman Coulter, Mijdrecht The Netherlands),

CCR7-FITC (150503), CCR9-PE (112509) (both from R&D

Systems, Minneapolis, USA), CD27-FITC (M-T271), CD45-PE

(T29/33), CD45RA-PE (4KB5) (both from Dako, Glostrup,

Denmark) and CD31 Alexa FluorH 488 (WM59) (BioLegend, San

Diego, USA). Appropriate isotype control mAbs were used for

gate settings. The live gate was set based on the forward angle

light scatter (FSCs) and the side angle light scatter (SSCs), and

Annexin-V/PI staining.

For intracellular staining of FoxP3 and Ki-67, cells were fixed

and permeabilized using Fix and Perm reagent (eBioscience)

according to the manufacturer’s recommendations. The following

mAb were used for staining: anti-FoxP3 FITC- or PE- labeled

(FCH101; eBioscience), anti-Ki-67-FITC (B56, BD Biosciences).

Figure 2. Peripheral T cell (subset) numbers throughout the four seasons. A) Percentage (of live gate) and absolute numbers of CD4+ T cells.
B) Percentage (of live gate) and absolute numbers of CD8+ T cells, over time. C) Percentage (within CD4+ T cells) and absolute counts, of
CD4+CD45RA+ T cells. D) Percentage (within CD4+ T cells) and absolute counts, of CD4+CD45RO+ T cells. E) Percentage and absolute counts of Ki-67-
expressing CD4+CD45RA+ T cells. Whole blood samples obtained from 15 healthy volunteers during each season were analyzed for the respective
markers using flow cytometry. Ki-67 analysis was performed on PBMC. Data show results of viable cells from 15 healthy donors. * p,0.05 as
compared to winter.
doi:10.1371/journal.pone.0029250.g002
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Figure 3. Seasonal variation in numbers and Foxp3 expression of Treg during the four seasons. A) Percentage (within CD4+ T cells) and
absolute numbers of CD4+CD25hiCD1272 Treg and B) level of Foxp3 expression (mean fluorescence intensity; MFI). Whole blood and PBMC isolated
from 15 healthy volunteers during each season were analyzed for the respective markers using flowcytometry. Data show results from 15 healthy
donors. * p,0.05 as compared to winter.
doi:10.1371/journal.pone.0029250.g003
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Intracellular staining of cytokines was performed after 4 hours

stimulation with PMA (12.5 ng/ml) and ionomycin (500 ng/ml) in

the presence of Brefeldin A (5 mg/ml; Sigma, Zwijndrecht, The

Netherlands). Cells were fixed and permeabilized using Fix and

Perm reagent (eBioscience) according to the manufacturer’s

recommendations. The following mAb were used for staining:

anti-IFNc-PC7 (4S.B3), anti-IL-17-Alexa FluorH 647 (eBIO64-

DEC17) (both from eBioscience), and anti-IL-2-PE (MQ1-17H12)

(BD Bioscience).

Vitamin D3 measurement
Serum 25(OH)D3 was determined using high-performance

liquid chromatography (HPLC) with ultraviolet (UV) detection,

after prior extraction on small SepPak columns as previously

described [28]. Tritiated 25(OH)D3, collected from the HPLC

system during passage of the UV peak, was used to correct for

procedural losses. Serum 1,25(OH)2D3 was measured using a

radioreceptor assay (RRA) with prior extraction and chromato-

graphic pre-purification with correction for recovery as previously

described [29]. For 25(OH)D3, the within run precision was 2.6%

at 69 nmol/l and between run precision was 6.2% at 69 nmol/l.

For 1,25(OH)2D3, the within run precision was 10.6% at

115 pmol/l and between run precision was 17.2% at 69 nmol/l.

Statistical analysis
Results were pooled and analyzed using SPSS 16.0 statistical

software. Data given as means+SEM and the Analysis of Variance

(ANOVA) was performed to assess overall variation. Where the

ANOVA indicated a significant difference (p,0.05), the Friedman

test using Graphpad PRISM software (Graphpad Prism Inc., version

4, CA, USA) was used to compare differences between groups (unless

otherwise stated). The level of significance was set at p,0.05.

Results

Serum 25(OH)D3 and 1,25(OH)2D3 levels are increased
during summer

First, we determined serum concentrations of both 25(OH)D3

and 1,25(OH)2D3 in 15 healthy volunteers (median 36 years old,

range 28–60) through winter (December to February), spring

(March to May), summer (June to August) and autumn (September

to November). The median concentration of 25(OH)D3 varied

between the four seasons and was doubled from 43 nmol/l in

winter to 89 nmol/l in summer (Figure 1A). Also, the median

serum concentration of 1,25(OH)2D3 raised significantly from

219 pmol/l in winter to 237 pmol/l in summer (Figure 1B). These

observed trends paralleled the amount of sunlight in the study

region. Likewise, there is considerable seasonal difference in

ultraviolet B (UVB) radiation in the study region [30]. The total

duration of daylight in a month prior to vitamin D3 measurement

were 103 hours and 240 hours in winter and summer respectively,

which worked out to an average daily duration of 3.3 hours in

winter and 7.7 hours in summer (Figure 1C).

Seasonal variation in peripheral blood T cell subset
numbers associated with vitamin D3 levels

Next, we investigated whether seasonal variation in vitamin D3

status was associated with changes in the peripheral T cell pool, by

performing flowcytometric analysis on blood samples obtained

during the different seasons of the year (Figure S1). In spring and

summer months when serum vitamin D3 levels were elevated, the

percentage as well as the absolute CD4+ T cell counts were

significantly raised as compared to winter (Figure 2A). For CD8+

T cells, this effect was less outspoken (Figure 2B).

The composition and size of the naı̈ve and memory T cell pools

are regulated by cytokines and T cell receptor (TCR) signalling

from contact with major histocompatibility complex (MHC).

Naı̈ve T cells predominately express CD45RA and memory T cell

express CD45RO. Interestingly, during spring and summer, we

observed a relative increase in the percentage of CD4+CD45RA+

T cells (Figure 2C), with a corresponding drop in CD4+CD45RO+

T cell percentage (Figure 2D). Also, absolute CD4+CD45RA+ T

cell counts were increased in spring and summer months, while the

number of CD4+CD45RO+ T cells was not significantly changed.

To investigate whether the increase in peripheral CD4+CD45RA+

T cells as observed in spring and summer could be attributed to

recent thymic emigration or a higher proliferative capacity; we

stained cells with Ki-67 and CD31. Ki-67 is a nuclear protein

associated with cellular proliferation, while CD31 has been used as

a marker for recent thymic emigrants [31]. In spring and summer,

an increased Ki-67-expressing population was found within the

CD4+CD45RA+ T cells (Figure 2E). On the other hand, there

were no significant differences in both the frequency of

CD4+CD45RA+ T cell expressing CD31 as well as their level of

expression between winter and summer (data not shown).

The increase in vitamin D3 levels found in summer, as

compared to winter was paralleled by a reduction in the

percentage of CD25hiCD1272 Treg within the CD4+ T cell

population (Figure 3A), however the absolute Treg numbers were

not associated with the variation in vitamin D3 levels. Of note, the

level of expression (mean fluorescence intensity, MFI) of Foxp3 by

the peripheral regulatory T cell population was increased in

summer (Figure 3B).

Seasonal variation in homing potential of peripheral
blood CD4+ T cells

Peripheral T cell trafficking is regulated by specific chemokine

receptors which are selectively expressed by the various T cells

subsets. As 1,25(OH)2D3 has been demonstrated to affect the

homing capacity of the peripheral CD4+ T cell population in vitro

and in vivo, we wondered if we could detect seasonal variation in

homing receptors expression. We looked at the expression of

homing markers on CD4+ T cells, as well as more specifically on

the Treg population, and included chemokine receptors associated

with migration to the skin (CCR4, CCR6 and CLA), gut (CCR9)

and lymphoid tissues (CCR7).

In summer, an increased skin homing potential of CD4+ T cells

was observed compared to winter, given that the percentage of

CD4+ T cells expressing CCR4 and CCR6 (Figure 4A,B) was

significantly increased together with elevated expression levels

(MFI) of CCR4, CCR6 and CLA (Figure 4A–C). Also, the

percentage of CD4+ T cells expressing the gut homing marker

CCR9 was increased in summer, as well as the level of expression

(Figure 4D). Similar observations were seen in the expression level

of the chemokine receptor associated with lymphoid tissue

homing, CCR7 (Figure 4E).

Figure 4. Skin, lymphoid tissue and gut homing receptor expression on CD4+ T cells. Percentage and level of expression (MFI) of A) CCR4,
B) CCR6, C) CLA, D) CCR7 and E) CCR9 by CD4+ T cells during the different seasons of the year. Whole blood from 15 healthy volunteers during each
season was analyzed for the respective markers using flow cytometry. Data show results from 15 healthy donors. * p,0.05 as compared to winter.
doi:10.1371/journal.pone.0029250.g004
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The skin homing potential of the regulatory T cell subset

mirrored that of the whole peripheral CD4+ T cell population.

Notably, in especially in summer Treg displayed a heightened skin

homing potential as seen by a significantly increased frequency of

CCR4-expressing Treg (Figure 5A), and higher expression levels

of CCR4, CCR6 and CLA (Figure 5A–C), when compared to

winter. The level of expression (MFI) of chemokine receptors

involved in gut homing, CCR9 (Figure 5D) and lymphoid tissue

homing, CCR7 (Figure 5E) were also increased in summer.

Reduced proinflammatory cytokine production by
peripheral blood T cells in summer

Intrigued by the increased CD4+ T cell numbers in spring and

summer, we also looked at functional characteristics of the cells by

examining the cytokine-producing capacity of CD4+ T cells using

intracellular cytokine staining for interferon (IFN)c, IL-2 and IL-

17. There was no significant effect on the percentage of IFNy-

producing CD4+ T cells (Figure 6A), but the level of expression

was lowered in summer (p,0.05). The percentages of IL-2 and IL-

17- secreting CD4+ T cells were reduced in summer (Figure 6B

and 6C), with unchanged levels of production on a per cell basis.

Also for CD8+ T cells we found lowered levels of IFNy

production from spring to autumn (Figure 6D). The percentage of

CD8+ T cells producing IL-2 was significantly reduced from spring

to autumn (Figure 6E); expression levels were increased during

spring.

Discussion

There is growing evidence that vitamin D3 plays a pivotal role

in infections and autoimmune diseases. Whilst UV-induced

vitamin D3 production serves as the main source of vitamin D3

in the body [5], it is not apparent whether seasonal variation in

vitamin D3 can impact T cell immunity. We show for the first time

that physiological elevation in vitamin D3 concentrations during

summer is paralleled by changes in the peripheral T cell

composition, with a notable shift in the naı̈ve and memory

CD4+ T cell balance as a consequence of increased proliferation of

naı̈ve CD4+CD45RA+ T cells.

By virtue of its stability and long half-life, 25(OH)D3 is the

vitamin D metabolite that best reflects the vitamin D3 status [32].

Here, we found a significant difference between winter (December

to February) and summer (June to August) 25(OH)D3 levels.

Serum 1,25(OH)2D3 concentrations were also higher in summer as

compared to winter. In our cohort of 15 subjects residing at 52uN
from the Equator, this variation correlated with the amount of

sunlight and ultraviolet B radiation received in the study region.

Vitamin D3 insufficiency at high latitudes has been implicated in

the prevalence of autoimmune diseases such as multiple sclerosis

and insulin-dependent diabetes [33,34]. Therefore, we investigat-

ed whether the peripheral T cell compartment might vary with

physiological changes in vitamin D3 status throughout the year.

We found higher percentages of peripheral CD4+ and CD8+ T

cells concomitant with a heightened vitamin D3 status during

summer. Of note, we observed a higher proportion of

CD4+CD45RA+ naı̈ve T cells in the spring/summer months with

a corresponding drop in the percentage, but not in the absolute

number, of CD4+CD45RO+ memory T cells. When investigated

further, the expansion of CD4+CD45RA+ naı̈ve T cells resulted

from an increased proliferative capacity as seen by a higher

absolute cell count and an increased population expressing the

proliferative marker, Ki-67. One of the key targets of 1,25(OH)2D3

are the CD4+ T cells. In vitro, 1,25(OH)2D3 inhibits T cell

proliferation [35,36]. Though few studies examined the differential

effects on naı̈ve and memory T cells, the inhibitory effect has been

found to be more pronounced in the memory T cell compartment

[37].

1,25(OH)2D3 exerts a marked inhibitory effect on cells of the

adaptive immune system and it has been consistently described

that 1,25(OH)2D3 inhibits cytokines such as IFNc [21,38] and IL-

17, as well as IL-2 [19,39], both under in vitro conditions and in

animal models. Our data reveal that in healthy adult males

residing at 52uN from the Equator, the percentages of IL-17- and

IL-2-producing CD4+ T cells were down-regulated in summer and

the IFNy expression levels in both CD4+ and CD8+ T cells were

also reduced.

Regulatory T cells are characterized by a constitutively high

expression of the transcription factor, Foxp3. We observed that,

although the percentage of peripheral Treg was lower in summer

as compared to winter, there was no correlation between absolute

numbers of Treg and vitamin D3 levels. This is in concert with

findings of Smolders et al, who failed to detect a correlation

between Treg numbers and serum 25(OH)D3 levels in patients

with multiple sclerosis [40]. Of note, they did find that higher

25(OH)D3 levels were associated with improved suppressive

function. This fits our data on increased expression of Foxp3 in

the Treg during summer. Morales-Tirado et al reported that in

vitro, 1,25(OH)2D3 enhanced Treg function by increasing the

expression of Foxp3 and that this was shown to be associated with

modulation of cell cycle progression by vitamin D3 [41].

T cell migration is determined by the presence of specific

selectins, chemokine receptors and integrins. Homing receptors

are selectively expressed and regulated in different T cell subsets

[23,42]. Our results are suggestive of a vitamin-D3 associated up-

regulation of skin, gut- and lymphoid tissue- homing expression on

CD4+ T cells, including Treg. Although not previously described

in the context of physiological variation, 1,25(OH)2D3 has been

reported to influence certain skin homing markers in human T

cells. In vitro, it has been shown that addition of 1,25(OH)2D3

resulted in induction of CCR10, inhibition of CLA, but not CCR4

and CCR6 expression [38,43]. In our study, we found that during

summer an increased frequency of CCR4-expressing cells as well

as an increased level of expression (mean fluorescence intensity;

MFI) of CCR4, CCR6 and CLA. These data suggest that in

summer CD4+ T cells, including Treg, are better equipped to

migrate to the skin. Also, we observed higher levels of CCR9 and

thus heightened potential to migrate to the gut. Previously,

1,25(OH)2D3 was described not to affect gut-homing markers [25].

However, it should be appreciated that the physiological up-

regulation of vitamin D3 levels by UV light through the skin is

likely to yield distinct effects from those obtained through

supraphysiological doses employed in these in vitro studies.

In the present study, we assessed a homogenous study

population (healthy, adult males of normal BMI) to establish if

and how the human peripheral T cell compartment varies with the

season. Unique to previous in vitro and in vivo studies examining the

Figure 5. Skin, lymphoid tissue and gut homing receptor expression on CD4+CD25hiCD1272 regulatory T cells. Percentage of Treg
(within CD4+ T cells) and their level of expression (MFI) of A) CCR4, B) CCR6, C) CLA, D) CCR7 and E) CCR9 during the four seasons of the year. Whole
blood from 15 healthy volunteers during each season was analyzed for the respective markers using flow cytometry. Data show results from 15
healthy donors. * p,0.05 as compared to winter.
doi:10.1371/journal.pone.0029250.g005

Seasonal Changes in Vit D3 Linked to Immune Status

PLoS ONE | www.plosone.org 8 January 2012 | Volume 7 | Issue 1 | e29250



Seasonal Changes in Vit D3 Linked to Immune Status

PLoS ONE | www.plosone.org 9 January 2012 | Volume 7 | Issue 1 | e29250



role of 1,25(OH)2D3 on T cells, our current results suggest that

physiological variation in serum vitamin D3 levels throughout the

four seasons might influence CD4+ and CD8+ T cell homeostasis

and homing behavior. Given that serum 25(OH)D3 levels can be

affected by various factors, our observations warrant future

validation in a larger and more diverse population cohort to

identify any possible differences in adaptive immune responses

among the extreme of ages and different genders. Nevertheless,

our data provide insight on previous epidemiological findings

regarding the prevalence of certain autoimmune diseases and

infections, which have been attributed to seasonal variation in sun

exposure and serum 25(OH)D3 levels [10–12],[44]. Although not

as extensively reported as vitamin D3 status, certain hormones and

corticosteroids such as catecholamine and aldosterone seem to

vary with seasons as well [45,46]. It would be of interest to find out

if these factors are associated with changes in immunological

characteristics of T cell.

In conclusion, we have demonstrated for the first time the

existence of variations in adaptive immunity throughout the four

seasons of the year in association with physiological changes in

serum 25(OH)D3 levels in vivo. These novel findings further our

understanding on the seasonal variability between vitamin D3 and

human peripheral T cell composition, and support the basis for

conducting larger population-based studies to investigate the

benefits of vitamin D3 supplementation in temperate regions

during winter.

Supporting Information

Figure S1 Gate setting for CD4+ and CD8+ T cells gated
on CD45+ cells; and CD4+CD45RA+ T cells,
CD4+CD45RO+ T cells and CD4+CD25hiCD1272 regula-
tory T cells gated on CD4+ T cells. Dotplots show surface

staining for markers performed on whole blood.
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