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Abstract

We present a new phylogenetic approach, selection on amino acids and codons (SelAC), whose substitution rates are
based on a nested model linking protein expression to population genetics. Unlike simpler codon models that assume
a single substitution matrix for all sites, our model more realistically represents the evolution of protein-coding DNA
under the assumption of consistent, stabilizing selection using a cost-benefit approach. This cost–benefit approach
allows us to generate a set of 20 optimal amino acid-specific matrix families using just a handful of parameters and
naturally links the strength of stabilizing selection to protein synthesis levels, which we can estimate. Using a yeast
data set of 100 orthologs for 6 taxa, we find SelAC fits the data much better than popular models by 104–105 Akike
information criterion units adjusted for small sample bias. Our results also indicated that nested, mechanistic models
better predict observed data patterns highlighting the improvement in biological realism in amino acid sequence
evolution that our model provides. Additional parameters estimated by SelAC indicate that a large amount of
nonphylogenetic, but biologically meaningful, information can be inferred from existing data. For example, SelAC
prediction of gene-specific protein synthesis rates correlates well with both empirical (r¼0.33–0.48) and other
theoretical predictions (r¼0.45–0.64) for multiple yeast species. SelAC also provides estimates of the optimal amino
acid at each site. Finally, because SelAC is a nested approach based on clearly stated biological assumptions, future
modifications, such as including shifts in the optimal amino acid sequence within or across lineages, are possible.

Key words: Wright–Fisher, stabilizing selection, allele substitution, protein function, gene expression.

Introduction
Phylogenetic analyses play a critical role in most aspects of
biology, particularly in the fields of ecology, evolution, pa-
leontology, medicine, and conservation. Although the
scale and impact of phylogenetic studies have increased
substantially over the past two decades, the realism of the
mathematical models on which these analyses are based
has changed relatively little by comparison. The most pop-
ular models of DNA substitution used in molecular phy-
logenetics are simple nucleotide models that date back to
the early 1980s and 1990s, for example, F81, F84, HKY85,
TN93, and GTR (see Yang 2014, for an overview), and are
indifferent to the type of sequences they are fitted to. For
example, when evaluating protein-coding sequences these
models are inherently agnostic with regard to the different
amino acid substitutions and their impact on gene func-
tion and, as a result, cannot describe the behavior of nat-
ural selection at the amino acid or protein level.

Two important and independent attempts to address this
critical shortcoming were introduced by Goldman and Yang
(1994, commonly abbreviated as GY) and Muse and Gaut
(1994). These models were explicitly built for protein-coding
data, assuming that differences in the physicochemical prop-
erties between amino acids, or physicochemical distances for
short, could affect substitution rates. A number of researchers
have used physicochemical-based models to make inferences
about selection for such properties (e.g., see Hughes et al.
1990; Koshi and Goldstein 1997; Xia and Li 1998; Koshi
et al. 1999; McClellan and McCracken 2001; Woolley et al.
2003; Blazej et al. 2017; and Yang 2014 for a brief summary);
however, in terms of tree and/or branch length reconstruc-
tion, physicochemical-based codon models as originally intro-
duced have rarely been used for empirical data. Instead, the
often cited models of Goldman and Yang (1994) and Muse
and Gaut (1994) have served as the basis for an array of
simpler and, in turn, more popular x models that, starting
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with Yang and Nielsen (1998) and Nielsen and Yang (1998),
typically assume an equal fixation probability for all nonsy-
nonymous mutations. Although often attributed to GY, these
later and simpler models were the first to employ the single
term x to model the differences in fixation probability be-
tween nonsynonymous and synonymous changes at all sites.
Since their introduction, more complex models have been
developed that allow x to vary between sites or branches (as
cited in Anisimova 2012) and include selection on different
synonyms for the same amino acid (e.g., Yang and Nielsen
2008).

In Goldman and Yang (1994), Yang and Nielsen (1998),
Nielsen and Yang (1998), and later studies based on their
work, x is suggested to indicate whether a given site within
a protein sequence is under consistent “stabilizing” (x < 1)
or “diversifying” (x > 1) selection. Contrary to popular belief,
x does not describe whether a site is evolving under a con-
stant regime of stabilizing or diversifying selection, but instead
how a very particular selective environment changes over time.
Below we explain how the actual behavior of these models is
inconsistent with how “stabilizing” and “diversifying” selec-
tion are otherwise defined and understood (e.g., see Pellmyr
2002).

For example, when x < 1 synonymous substitutions
have a higher substitution rate than any possible nonsynon-
ymous substitutions. As a result, the model behaves as if the
resident amino acid i at a given site is favored by natural
selection. Even when x is allowed to vary between sites,
symmetrical aspects of the model means that for any given
site the strength of selection for the resident amino acid i over
its 19 alternatives is equally strong regardless of their physi-
cochemical properties. Paradoxically, natural selection for
amino acid i persists until a substitution for another amino
acid, j, occurs. As soon as amino acid j fixes, but not before,
selection now favors amino acid j equally over all other amino
acids, including amino acid i. This is now the opposite sce-
nario from when i was the resident. Thus, one reasonable
interpretation of x is that it represents the rate at which
the selective environment itself changes, and this change in
selection at a site perfectly coincides with the fixation of a
new amino acid. This change in the selective environment
also differs from noninstantaneous, compensatory changes at
other sites that results in reversals becoming less likely with
time (Pollock et al. 2012; Shah et al. 2015).

Similarly, when x > 1, synonymous substitutions have a
lower substitution rate than any possible nonsynonymous
substitutions from the resident amino acid. Again due to
the model’s symmetrical nature, the selection against the
resident amino acid i is equally strong relative to alternative
amino acids. The selection against the resident amino acid i
persists until a substitution occurs at which point selection
now favors amino acid i, as well as the other amino acids, to
the same degree i was previously disfavored. Of course, in
practice it is unlikely for the nonsynonymous rate to be
greater than the synonymous substitution rate in the absence
of a particular process (e.g., antagonistic coevolution). Given
these behaviors, x-based models are likely to only reasonably
approximate a narrow set of scenarios such as perfectly

symmetrical over/underdominance or positive/negative fre-
quency-dependent selection (Hughes and Nei 1988; Nowak
2006; Hughes 2007). Furthermore, x-based models implicitly
assume the substitution is on the same timescale as the shifts
in the optimal (or pessimal) amino acid. Although x is often
viewed as a gene-wide metric, rather than site-specific one, it
is not clear to what degree this averaging mitigates these
issues.

New Approaches
To address these fundamental shortcomings in x-based phy-
logenetic approaches, we present an approach where selec-
tion explicitly favors minimizing the cost–benefit function g
of a protein whose relative performance is determined by the
order and physicochemical properties of its amino acids. Our
approach, which we call selection on amino acids and codons,
or SelAC, is developed in the same vein as previous phyloge-
netic applications of the Wright–Fisher process (e.g., Muse
and Gaut 1994; Koshi and Goldstein 1997; Halpern and Bruno
1998; Koshi et al. 1999; Dimmic et al. 2000; Lartillot and
Philippe 2004; Rodrigue et al. 2005; Yang and Nielsen 2008;
Thorne et al. 2012; Rodrigue and Lartillot 2014). Similar to
Lartillot and Philippe (2004) and Rodrigue and Lartillot
(2014), we assume there is a finite set of rate matrices de-
scribing the substitution process and that each position
within a protein is assigned to a particular rate matrix cate-
gory. Unlike that work, we assume a priori there are 20 dif-
ferent families of rate matrices, 1 family for when a given
amino acid is favored at a site. The key parameters underlying
these matrices are shared across genes with their effects
scaled by each gene’s expression level. By combining a
cost–benefit approach with gene expression levels, SelAC
produces a large set of substitution matrices using a very
limited number of parameters.

Although natural selection on protein-coding regions can
take many forms, one general approach to describing its
effects is by relating a codon sequence to the “cost” of pro-
ducing the encoded protein and the functional benefit (or
potential harm) from translating its sequence. The gene-spe-
cific cost of protein synthesis can be affected by the amino
acids used, the direct and indirect costs of peptide assembly
by the ribosome, and the use of chaperones to aid in folding.
Importantly, these costs can be computed to varying degrees
of realism (e.g., Wagner 2005; Lynch and Marinov 2015). We
have previously presented models of protein synthesis costs
that, alternatively, take into account the cost of ribosome
pausing (Shah and Gilchrist 2011) or premature termination
errors (Gilchrist and Wagner 2006; Gilchrist 2007; Gilchrist
et al. 2009).

Protein function or “benefit” can be affected by the amino
acids at each site and their interactions. Linking amino acid
sequence to protein function is a daunting task; thus for
simplicity, we assume that for any given desired biological
function to be carried out by a protein, that 1) the biological
importance of this protein function is invariant across the
tree; 2) there is a single optimal amino acid sequence that
carries out this function best; and 3) the functionality of
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alternative amino acid sequences declines with their physico-
chemical distance from the optimum on a site by site basis.

Beyond fitting the phylogenetic data better than cur-
rently available nucleotide and codon models according
to model adequacy and Akaike information criterion cor-
rected for small sample bias (AICc; Burnham and Anderson
2002, p. 66), SelAC also makes inferences about other im-
portant biological processes. By comparing these inferences
to other empirical data, such as we do with protein synthe-
sis data, we can evaluate SelAC’s performance independent
of the data it is fitted to. Indeed, SelAC’s assumptions lead
to mechanistic and, thus, testable hypothesis about the
nature of and relationships between mutation, protein
function, gene expression, and rates of evolution. More im-
portantly, alternative hypotheses could be used in place of
ours and, in turn, phylogenetic and other types of data
could be used to evaluate the support of these alternative
models. Our hope is that by moving away from the more
phenomenological models we can better connect popula-
tion genetics, molecular biology, and phylogenetics allowing
each area to inform the others more effectively.

Results
The SelAC model requires the construction of gene and
amino acid-specific substitution matrices that use a submodel
nested within our substitution model. This requires only a
handful of genome-wide parameters such as nucleotide-spe-
cific mutation rates lij, which are scaled by effective popula-
tion size Ne, amino acid side chain physicochemical weighting
parameters ac , ap , and av , and a gamma distribution shape
parameter aG describing the distribution of site sensitivities G.
In addition to these genome-wide parameters, the model
requires a gene-specific functionality expression parameter
that describes the average rate at which the protein’s func-
tionality is produced by the organism or a gene’s “average
functionality production rate” w. By linking transition rates
qi;j to gene expression w, our approach allows use of the same
model for genes under varying degrees of stabilizing selection.
Specifically, we assume the strength of stabilizing selection for
an optimal sequence~a� is proportional to w, which we can
estimate for each gene.

We first evaluated the performance of our codon model by
simulating data sets and estimating the bias of the inferred
model parameters from these data. Overall, the simulation
results indicated that our SelAC model can reasonably re-
cover the known values of the generating model (fig. 1 and
supplementary fig. S3, Supplementary Material online). This
includes not only the parameters in SelAC, but also the op-
timal amino acids for a given sequence as well as the esti-
mates of the branch lengths. There are, however, a few
observations to note. First, the ability to accurately recover
the true optimal amino acid sequence~a� will largely depend
on the magnitude of the realized average protein synthesis
rate of the gene /, which is the target functionality rate w
divided by the functionality of the observed amino acid se-
quence Bð~aÞ. This is, of course, intuitive, given that w sets the
strength of stabilizing selection towards an optimal amino

acid at a site. However, the inclusion of between site variation
in selection via the shape parameter aG into SelAC generally
improves the quality of our estimates of w and our ability to
recover the optimal amino acids~a�. This is true even for the
gene with the lowest baseline w. Second, we found a strong
downward bias in estimates of aG, which actually translates
to greater variation among the rate categories. The choice of
a gamma distribution to represent site-specific variation in
sensitivity was based on mathematical convenience and
convention, rather than on biological reality. Furthermore,
given the fact that the density of the gamma distribution is
infinite at G¼ 0 when aG < 1, imputing site-specific G
values will be an issue in these scenarios. Nevertheless, we
suspect that this downward estimation bias of aG is in large
part due to the difficulty in determining the baseline w for a
given gene and the value of aG that globally satisfies the site-
specific variation in sensitivity across all genes, as indicated
by the slight upward bias in estimates of w (see supplemen-
tary fig. S5, Supplementary Material online).

In regard to model fit in an empirical setting, our results
clearly indicated that linking the strength of stabilizing selec-
tion for the optimal sequence to gene expression substantially
improves our model fit. Furthermore, including the shape
parameter aG for the random effects term G � Gamma
shape ¼ aG; rate ¼ aGð Þ to allow for heterogeneity in this

selection between sites within a gene improves the DAICc of
SelACþC over the simpler SelAC models by over 22,000
AICc units. Using either DAICc or AICw as our measure of
model support, the SelAC models fit extraordinarily better
than GTRþC, GY, or FMutSel (table 1). This is in spite of the
need for estimating the optimal amino acid at each position
in each protein, which accounts for 49,881 additional model
parameters. Even when compared with the next most pa-
rameter rich codon model in our model set, FMutSel (with
178 parameters), SelACþC model shows over 160,000 AICc
unit improvement over FMutSel. SelAC models also appeared
to outperform, based on likelihood and reported AIC and
AICc from each program, the 161 codon models in IQtree
(Nguyen et al. 2015). See; supplementary table S1,
Supplementary Material online for results.

We note our use of AICc, as calculated in Burnham and
Anderson (2002, p. 66) and as opposed to the standard AIC,
in the above model comparisons. At the outset of our study it
was unclear what the appropriate sample size n is when com-
paring models of sequence evolution. Building upon the work
of Jhwueng et al. (2014), our simulations suggest that using
the number of taxa times the number of sites as the sample
size correction performed best as a small sample size correc-
tion for estimating Kullback–Liebler (KL) distance in phylo-
genetic models (Supporting Materials). This also has an
intuitive appeal. In models that have at least some parameters
shared across sites and some parameters shared across taxa,
increasing the number of sites and/or taxa should be adding
more samples for the parameters to estimate. This is consis-
tent considering how likelihood is calculated for phylogenetic
models: the likelihood for a given site is the sum of the prob-
abilities of each observed state at each tip, which is then
multiplied across sites. It is arguable that the conventional
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approach in comparative methods is calculating AICc in the
same way. That is, if only one column of data (or “site”) is
examined, as remains remarkably common in comparative
methods, when we refer to sample size, it is technically the
number of taxa multiplied by number of sites, even though it
is referred to simply as the number of taxa.

With respect to estimates of gene expression SelAC, actu-
ally has two related measures. The first w represents the av-
erage rate at which the gene’s function is produced. The
second / represents the average rate at which a gene’s pro-
tein is produced. These two parameters are closely linked and
thus highly correlated because / ¼ w=B where B is the rel-
ative functionality of each taxa’s sequence. For simplicity, we
will focus on / as our measure of gene expression. SelAC’s /
values were strongly correlated with both empirical measure-
ments (Pearson’s r¼0.33–0.48) and theoretical predictions
(Pearson’s r¼0.45–0.64) of gene expression (fig. 2 and

supplementary figs. S1 and S2, Supplementary Material on-
line, respectively). These correlations are remarkable given
that they were uncovered using only codon sequences. The
estimate of the aG parameter, which controls the shape of the
site-specific, gamma-distributed, variation in sensitivity of the
protein’s functionality, indicated a moderate level of variation
in strength of selection among sites. Our estimate of
aG ¼1.36, produced a distribution of sensitivity terms G
ranged from 0.342 to 7.32, but with more than 90% of the
weight for a given site-likelihood being contributed by the
0.342 and 1.50 rate categories. In simulation, however, of all
the parameters in the model, only aG showed a consistent
bias, in that the maximum likelihood estimate (MLE) were
generally lower than their actual values (see Supporting
Materials). Other parameters in the model, such as the
Grantham weights, provide an indication as to the physico-
chemical distance between amino acids. Our estimates of
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FIG. 1. Summary of a five-gene simulation for a SelAC model where we assume aG ¼ 1, and thus, no site-specific sensitivity in the generating
model. The “known” parameters were based on fitting the SelAC model to the 106 gene data set and phylogeny of Rokas et al. (2003), with gene
choice being based on five evenly spaced points along the rank order of the gene-specific composite parameter w0 g . The points and associated
uncertainty in the estimates of the gene-specific average protein synthesis rate, or w (calculated from w0) (a), nucleotide mutation rates under the
UNREST model (b), proportion of correct optimal amino acids for a given gene (c), and estimates of the individual edge lengths are based the mean
and 2.5% and 97.5% quantiles across all 50 simulated data sets (d). Gene index on the x-axis refers to the arbitrary number assigned to the simulated
gene.
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these weights only strongly deviate from Grantham’s (1974)
original estimates in regard to composition weight, ac, which
is the ratio of noncarbon atoms in the end groups or rings to
the number of carbon atoms in side chains. Our estimate of
the composition weighting factor of ac¼ 0.459 is one-fourth
the value estimate by Grantham suggests that the substitu-
tion process is less sensitive to this physicochemical property
when shared ancestry and variation in stabilizing selection are
taken into account.

It is important to note that the nonsynonymous/synony-
mous mutation ratio, or x, which we estimated for each gene
under the FMutSel model strongly correlated with SelAC’s
gene expression parameter /. In fact, x showed similar,
though slightly reduced correlations, with the same empirical
estimates of gene expression described above (fig. 3) This
would give the impression that the same conclusions could
have been gleaned using a much simpler model, both in
terms of the number of parameters and the assumptions
made. However, as we discussed earlier, not only is this model
greatly restricted in terms of its biological feasibility, SelAC
clearly performs better in terms of its fit to the data and
biological realism.

For example, when we simulated the sequence for S. cer-
evisiae, starting from the ancestral sequence under both
GTRþC and FMutSel, the functionality of the simulated
sequence, defined as protein function in relation to the phys-
icochemical distance from each amino acid to the optimal,
moves away from the observed sequence. In contrast, SelAC
remains near the functionality of the observed sequence
(fig. 4b). This is somewhat unsurprising, given that both
GTRþC and FMutSel are agnostic to the functionality of
the gene, but it does highlight the improvement in biological
realism in amino acid sequence evolution that SelAC pro-
vides. We do note that the adequacy of the SelAC model
does vary among individual taxa, and does not always match
the observed functionality. For instance, our simulations of S.
castellii gene function is consistently higher than estimated
from the data (fig. 4c). We suspect this is an indication that
assuming a single set of optimal amino acid across all taxa is
too simplistic. However, we cannot rule out violations of
SelAC’s other model assumptions such as, a single set of

Grantham weights, a single aG, or reductions in protein func-
tionality B being solely a function of physicochemical distan-
ces d between sites.

Discussion
A central goal in evolutionary biology is to quantify the na-
ture, strength, and, ultimately, shifts in the forces of natural
selection relative to genetic drift and mutation. As data set
size and complexity increase, so does the amount of potential
information on these forces and their dynamics. As a result,
there is a need for more complex and realistic models to
accomplish this goal (Goldman et al. 1996; Thorne et al.
1996; Goldman et al. 1998; Halpern and Bruno 1998;
Lartillot and Philippe 2004). Although extremely popular
due to their elegance and computational efficiency, the utility
of x-based models in helping us reach this goal is substan-
tially more limited than commonly recognized. Because these
x models use a single substitution matrix, they are only ap-
plicable for situations in which the substitution process and
shifts in the selective environment are intrinsic to the se-
quence, such as with positive or negative frequency-depen-
dent selection; these models do not describe stabilizing or
diversifying selection as commonly envisioned (Endler 1986;
Pellmyr 2002).

Starting with Halpern and Bruno (1998), a number of
researchers have developed methods for linking heteroge-
nous or site-specific selection on protein sequence and phy-
logenetics (e.g., Yang et al. 1998; Koshi et al. 1999; Dimmic
et al. 2000; Koshi and Goldstein 2000; Robinson et al. 2003;
Lartillot and Philippe 2004; Thorne et al. 2012; Rodrigue and
Lartillot 2014). Halpern and Bruno (1998) calculated a vector
of 20 expected amino acid frequencies for each amino acid
site, making it the most general and most parameter rich of
these methods. This generality, however, comes at the cost of
being purely descriptive; there is no explicit biological mech-
anism proposed to explain the site-specific amino acid fre-
quencies estimated. By grouping together amino sites with
similar evolutionary behaviors, Lartillot and Philippe (2004)
and Rodrigue and Lartillot (2014) retained the descriptive

Table 1. Comparison of Maximum Likelihood Fits for SelAC and Commonly Used Models Based on Negative Log-Likelihood (�ln L), AIC, AICc,
and AICw from Analyses of 100 Selected Genes from Six Yeast Taxa (Salichos and Rokas 2013).

Parameters Model
Model �ln L Estimated AIC AICc DAICc Weight

SelAC1C 453,620.8 50,005 1,007,252 1,027,314 0 >0.999
SelAC 464,114.8 50,004 1,028,238 1,048,299 20,985 <0.001
SelACM1C 465,106.9 50,005 1,030,224 1,050,286 22,972 <0.001
SelACM 478,302.4 50,004 1,056,613 1,076,674 49,360 <0.001
FMutSel 597,140.7 178 1,194,637 1,194,638 167,324 <0.001
GY 612,670.4 111 1,225,563 1,225,563 198,249 <0.001
GTR1C 655,166.4 610 1,311,553 1,311,554 284,240 <0.001

NOTE.—The subscripts M indicate model fits where the most common or “majority rule” amino acid was fixed as the optimal amino acid a* for each site. As discussed in text,
despite the fact that a* for each site under M was not fitted by our algorithm, its value was determined by examining the data and, as a result, represent an additional parameter
estimated from the data and are accounted for in our table. Sample size used in the calculation of AICc is assumed to be equal to the size of the matrix (number of taxa x number
of sites¼ 6� 49; 881 ¼ 299; 286). For the comparison between the different SelAC and 192 other models fitted using IQTree (Nguyen et al. 2015), see supplementary table S1,
Supplementary Material online. In summary, the different SelAC models and FMutSel fitted the data better than any of the IQTree models.
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nature of Halpern and Bruno (1998) work while greatly re-
duced the number of model parameters needed.

SelAC follows in this tradition of using multiple substitu-
tion matrices, but includes some key advances. First, by

nesting a model of a sequence’s cost–benefit function C/B
within a broader model, SelAC allows us to formulate and test
a hierarchical, mechanistic models of stabilizing selection.
More precisely, our nested approach allows us to relax the
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FIG. 2. Comparisons between estimates of average protein translation rate /̂SelAC obtained from SelACþC and direct measurements of
expression for individual yeast taxa across the 100 selected genes from Salichos and Rokas (2013) measured during log-growth phase.
Estimates of /̂SelAC were generated by dividing the composite term w0 by B (~aij~a�). Gene expression was measured using either RNA-Seq
(a–c) or microarray (d–e). The equations in the upper left-hand corner of each panel represent the regression fit and the Pearson correlation
coefficient r.
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assumption that physicochemical deviations from the opti-
mal sequence ~a� are equally disruptive at all sites within a
protein. Indeed, SelAC results are consistent with the idea
that the strength of stabilizing selection against physicochem-
ical deviations from~a� varies between sites (DAICc¼20,983;
table 1). Second, because our substitution matrices are built
on a formal description of a sequence’s cost–benefit function
C/B, we are able to efficiently parameterize 20 different ma-
trices using a relatively small number of genome-wide param-
eters—for example, our physicochemical weightings, ac , ap ,
and av , and the shape parameter aG for the distribution of
selective strength G and one gene-specific expression param-
eter w. Although the C/B function on which SelAC currently
rests is very simple, nevertheless, it leads to a dramatic

increase in our ability to explain the sequence data we an-
alyzed. Importantly, because SelAC uses a formal descrip-
tion of a sequence’s C/B, replacing our assumptions with
more sophisticated ones in the future is relatively straight-
forward. Third, our use of nested models also allows us to
make biologically meaningful and testable predictions. By
linking a gene’s expression level to the strength of purifying
selection it experiences, we are able to provide coarse esti-
mates of gene expression. The anticorrelation between x
and gene expression indicates x is often just a proxy for the
strength, rather than nature, of natural selection on a
sequence.

Thus, we believe our cost–benefit approach to be a sub-
stantial advance of the more simplistic x models, is
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FIG. 3. Comparisons between xFMutSel, which is the nonsynonymous/synonymous mutation ratio in FMutSel, SelACþC estimates of protein
functionality production rates what (a), RNA-Seq-based measurements of mRNA abundance /RNA�seq (b), and ROC-SEMPPER’s estimates of
protein translation rates /ROC, which are based solely on S. cerevisiae’s patterns of codon usage bias (c), for S. cerevisiae across the 100 selected
genes from Salichos and Rokas (2013). As in figure 2, the equations in the upper right-hand corner of each panel provide the regression fit and
correlation coefficient.
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complementary to the work of others in the field (e.g., Thorne
et al. 2012; Rodrigue and Lartillot 2014), and, in turn, lays the
foundation for more realistic work in the future. For instance,
by assuming there is an optimal amino acid for each site,
SelAC naturally leads to a nonsymmetrical and, thus, more
cogent model of protein sequence evolution. Because the
strength of selection depends on an additive function of
amino acid physicochemical properties, an amino acid
more similar to the optimum has a higher probability of
replacing a more dissimilar amino acid than the converse
situation. Furthermore, SelAC does not assume the system
is always at the optimum or pessimum point of the fitness
landscape, as occurs when x < 1 or >1, respectively.

Importantly, the cost–benefit approach underlying
SelAC allows us to link the strength of selection on a protein
sequence to its gene’s expression level. Despite its well-recog-
nized importance in determining the rate of protein

evolution (e.g., Drummond et al. 2005, 2006), phylogenetic
models have ignored the fact that expression levels vary be-
tween genes. In order to link gene expression and the strength
of stabilizing selection on protein sequences, we simply as-
sume that the strength of selection on a gene is proportional
to the average protein synthesis rate of the gene.

One possible mechanism with some theoretical and em-
pirical support which generates a linear relationship between
the strength of selection and gene expression is the assump-
tion of compensatory gene expression (Brown and Elliot 1997;
Allison 2012; Lerman et al. 2012; Thiele et al. 2012; Zanger and
Schwab 2013; King et al. 2015; Allison and Goulden 2017).
That is, the assumption that any reduction in protein func-
tion is compensated for by an increase in the protein’s pro-
duction rate and, in turn, abundance. For example, a
mutation that reduces the functionality of the protein to
90% of the optimal protein, would require 1=0:9 ¼ 1:11 of
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FIG. 4. (a) Maximum likelihood estimates of branch lengths under SelACþC for 100 selected genes from Salichos and Rokas (2013). Tests of model
adequacy for S. cerevisiae (b) and S. castellii (c) indicated that, when these taxa are removed from the tree, and their sequences are simulated, the
parameters of SelACþC exhibit functionality B(~aobsj~a� ) that is far closer to the observed (dashed black line) than data sets produced from
parameters of either FMutSel or GTRþC.
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these suboptimal proteins to be produced relative to the
optimal protein in order to maintain the same amount of
that protein’s functionality in the cell. Because the energetic
cost of an 11% increase in a protein’s synthesis rate is pro-
portional to its target synthesis rate, our assumptions natu-
rally link changes in protein functionality and changes in gene
expression and its associated costs. Such a response has been
shown when error rates during protein production increases,
however, the generality of such a response has to be deter-
mined (Goldsmith and Tawfik 2009). Furthermore, our model
does not consider additional costs such as those imposed by
misfolded proteins (Drummond and Wilke 2008).
Nevertheless, the fact that our method allows us to explain
13–23% of the variation in gene expression measured using
RNA-Seq, suggests that our assumption of cell compensation
via increased expression is a reasonable starting point.

Furthermore, by linking expression and selection, SelAC
provides a natural framework for combining information
from protein-coding genes with very different rates of evolu-
tion; from low expression genes providing information on
shallow branches to high-expression genes providing infor-
mation on deep branches. This is in contrast to a more tra-
ditional approach of concatenating gene sequences together,
which is equivalent to assuming the same average function-
ality production rate w for all of the genes, or more recent
approaches where different models are fitted independently
to different genes. Our results indicate that including a gene-
specific w value vastly improves SelAC fits (table 1). Perhaps
more convincingly, we find that the target functionally pro-
duction rate w and the realized average protein synthesis rate
/ ¼ w=B are reasonably well correlated with laboratory
measurements and theoretical predictions of gene expression
(Pearson’s r¼0.34–0.64; fig. 2, supplementary figs. S1 and S2,
Supplementary Material online). The idea that quantitative
information on gene expression is embedded within intra-
genomic patterns of synonymous codon usage is well ac-
cepted; our work shows that this information can also be
extracted from comparative data at the amino acid level.

Of course, given the general nature of SelAC and the
complexity of biological systems, other biological forces be-
sides selection for reducing energy flux likely contribute to
intergenic variation in the magnitude of stabilizing selection.
Similarly, other physicochemical properties besides compo-
sition, volume, and charge likely contribute to site-specific
patterns of amino acid substitution. For example, Blazej et al.
(2017) have developed substitution matrices using various
physicochemical properties. Thus, a larger and more infor-
mative set of physicochemical weights might improve our
model fit and reduce the noise in our estimates of realized
protein synthesis rates /. Even if other physicochemical
properties are considered, the idea of a consistent, ge-
nome-wide physicochemical weighting of these terms seems
highly unlikely. Since the importance of an amino acid’s
physicochemical properties likely changes with its position
in a folded protein, one way to incorporate such effects is to
test whether the data supports multiple sets of physico-
chemical weights for either subsets of genes or regions within
genes, rather than a single set.

Both of these points highlight the advantage of the de-
tailed, mechanistic modeling approach underlying SelAC.
Because there is a clear link between protein expression, syn-
thesis cost, and functionality, SelAC can be extended by in-
creasing the realism of the mapping between these terms and
the coding sequences being analyzed. For example, SelAC
currently assumes the optimal amino acid for any site is fixed
along all branches. This assumption can be relaxed by allow-
ing the optimal amino acid to change during the course of
evolution along a branch. From a computational standpoint,
the additive nature of selection between sites is desirable
because it allows us to analyze sites within a gene largely
independently of each other. From a biological standpoint,
this additivity between sites ignores any nonlinear interac-
tions between sites, such as epistasis, or between alleles,
such as dominance. Thus, our work can be considered a first
step to modeling these more complex scenarios.

For example, our current implementation ignores any se-
lection on synonymous codon usage bias (CUB) (cf. Yang and
Nielsen 2008; Pouyet et al. 2016). Including such selection is
tricky because introducing the site-specific cost effects of
CUB, which is consistent with the hypothesis that codon
usage affects the efficiency of protein assembly or C, into a
model where amino acids affect protein function or B, results
in a cost–benefit ratio C=B with epistatic interactions be-
tween all sites. These epistatic effects can likely be ignored
under certain conditions or reasonably approximated based
on an expectation of codon-specific costs (e.g., Kubatko et al.
2016). Nevertheless, it is difficult to see how one could identify
such conditions without modeling the way in which codon
and amino acid usage affects C=B.

This work also points out the potential importance of
further investigation into model choice in phylogenetics.
For likelihood models, use of AICc has become standard.
However, how one determines the appropriate number of
data points in a model is more complicated than generally
recognized. Common sense suggests that data set size is in-
creased by adding taxa and/or sites. In other words, a data set
of 1,000 taxa and 100 sites must have more information on
substitution models than a data set of 4 taxa and 100 sites.
Our simple analyses support the hypothesis that the number
of observations in a data set (number of sites � number of
taxa) should be taken as the sample size for AICc, but this
conclusion likely only applies when there is sufficient inde-
pendence between taxa. For instance, one could imagine a
phylogeny where one taxon is sister to a polytomy of 99 taxa
that have zero length terminal branches. Absent measure-
ment error or other intraspecific variation, one would have
100 species but only two unique trait values, and the only
information about the process of evolution comes from what
happens on the path connecting the lone taxon to the poly-
tomy. Although this is a rather extreme example, it seems
prudent for researchers to use a simulation-based approach
similar to the one we take here to determine the appropriate
means for calculating the effective number of data points in
their data.

There are still significant shortcomings in the approach
outlined here. Most worrisome are biological
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oversimplifications in SelAC. For example, at its heart, SelAC
assumes that suboptimal proteins can be compensated for,
at a cost, simply by producing more of them. However, this is
likely only true for proteins reasonably close to the optimal
sequence. Different enough proteins will fail to function en-
tirely: the active site will not sufficiently match its substrates,
a protein will not properly pass through a membrane, and so
forth. Yet, in our model, even random sequences still permit
survival via an increased rate of protein production. Another
deficiency is the assumption of site independence and un-
changing optimal amino acids through time, neither of
which matches reality (Pollock et al. 2012; Shah et al.
2015). We assume single nucleotide changes only, despite
evidence from Kosiol et al. (2007) and Whelan and
Goldman (2004) that better fits can be accomplished by
allowing instantaneous mutations of multiple nucleotides
simultaneously. Like the other oversimplifications previously
discussed, these assumptions can be relaxed through further
extension of this model.

A deeper potential issue comes from the nature of model
fitting itself. Because SelAC, like all models, is built on very
particular assumptions, it is likely these assumptions are vio-
lated in many, if not most, cases. Although all models are
incomplete descriptions of reality and, thus, wrong (Box
1976), our aim with SelAC is to provide a model that is “less
wrong” (Asimov 1989). Because SelAC’s assumptions result in
a model that is more consistent with the data, our analyses
supports this idea. Whereas “less wrong,” caution should be
taken when interpreting SelAC’s model parameters since the
model itself is admittedly incomplete. In addition, other bio-
logical mechanisms could result in similar, if not identical,
mathematical representations (Rabosky and Goldberg 2015;
Beaulieu and O’Meara 2016) which, in turn, illustrates one
limit to comparative sequence analysis.

There are also deficiencies in our implementation. Though
reasonable to use for a given topology with 10s of species, it is
currently too slow for practical use for large tree searches. Our
work serves as a proof of concept, or of utility for targeted
questions where a more realistic model may be of use (e.g.,
placement of particular taxa). Future work will encode SelAC
models into a variety of mature, popular tree-search pro-
grams. SelAC also represents a challenging optimization prob-
lem: the nested models reduce parameter complexity vastly,
but there are still numerous parameters to optimize, includ-
ing the discrete parameter of the optimal amino acid at each
site, which requires evaluating the fit of each of the 20 ca-
nonical amino acids. One way to avoid the use of discrete
parameters at the expense of more of them would be to have
SelAC estimate the optimum physicochemical values on a per
site basis rather than a specific amino acid. Biologically such a
model would be more realistic (as it is the properties that
selection “sees,” not the identity of the amino acid itself).
Whereas estimating the optimal physicochemical properties
for each site would increase the number of parameters esti-
mated, it could speed up model fitting if estimating these
values requires less than 20 evaluations per site. This scenario
seems more likely when the number of physicochemical
properties considered is small.

In spite of these difficulties, SelAC represents an important
step in uniting phylogenetic and population genetic models
(Higgs 2008). Most work in this area use a given tree to make
inferences about the nature or distribution of selection coef-
ficients (e.g., Hughes et al. 1990; Xia and Li 1998; McClellan
and McCracken 2001; Woolley et al. 2003; Blazej et al. 2017).
Whereas the work of Koshi et al. (1999), Dimmic et al. (2000),
Koshi and Goldstein (2000), Robinson et al. (2003), Lartillot
and Philippe (2004), Thorne et al. (2012), and Rodrigue and
Lartillot (2014) do involve tree inferences, are all models of
constant, stabilizing selection, SelAC can be generalized fur-
ther to include diversifying selection. Specifically, by letting
SelAC’s sensitivity term G, which we now assume is � 0, to
take on negative values, SelAC will behave as if there is a
pessimal, rather than optimal, amino acid for the given site.
In this diversifying selection scenario, amino acids with phys-
icochemical qualities more dissimilar to the pessimal amino
acid are increasingly favored, potentially resulting in multiple
fitness peaks.

The ability to extend our model and, in turn, sharpen our
thinking about the nature of natural selection on amino
acid sequences illustrates the value of moving from descrip-
tive to more mechanistic models in general and phyloge-
netics in particular. How frequently diversifying selection of
this nature occurs is an open, but addressable, question.
Regardless of the frequency at which diversifying selection
occurs, another question of interest to evolutionary biolo-
gists is, “How often does the optimal/pessimal amino se-
quence change along any given branch?” Due to its
mechanistic nature, SelAC can also be extended to include
changes in the optimal/pessimal sequence over a phylogeny
using a hidden Markov modeling approach (Tuffley and
Steel 1998; Penny et al. 2001; Whelan 2008; for an explicit
shift the optimal sequence, see Tamuri et al. 2009).
Extending SelAC in these ways, will allow researchers to
explicitly model shifts in selection on protein sequences
and, in turn, quantify their frequency and magnitude thus
deepening our understanding of biological evolution. Such
approaches would be challenging using nonmechanistic and
parameter rich models which infer up to 19 different
parameters per site category (Halpern and Bruno 1998;
Tamuri et al. 2012, 2014; Rodrigue and Lartillot 2014).

In summary, SelAC allows biologically relevant population
genetic parameters to be estimated from phylogenetic in-
formation while also dramatically improving fit and accu-
racy of phylogenetic models. By explicitly modeling the
optimal/pessimal sequence of a gene, SelAC can be ex-
tended to include shifts in the optimal/pessimal sequence
over evolutionary time. Moreover, it demonstrates that
there remains substantially more information in the coding
sequences used for phylogenetic analysis than other meth-
ods can access. Given the enormous amount of efforts
expended to generate sequence data sets, it makes sense
for researchers to continue developing more realistic models
of sequence evolution in order to extract the biological
information embedded in these data sets. The cost–benefit
model we develop here is just one of many possible paths of
mechanistic model development.
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Materials and Methods

Overview
We model the substitution process as a classic Wright–Fisher
process that includes the forces of mutation, selection, and
drift (Fisher 1930; Kimura 1962; Wright 1969; Iwasa 1988; Berg
and L€assig 2003; Sella and Hirsh 2005; McCandlish and
Stoltzfus 2014). For simplicity, we ignore linkage effects and,
as a result of this and other assumptions, sequences evolve in
a site independent manner.

Because SelAC requires 20 families of 61� 61 matrices, the
number of parameters needed to implement SelAC would,
without further assumptions, be extremely large (i.e., on the
order of 74,000 parameters). To reduce the number of param-
eters needed, whereas still maintaining a high degree of bio-
logical realism, we construct our gene and amino acid-specific
substitution matrices using a submodel nested within our
substitution model, similar to approaches in Gilchrist
(2007), Shah and Gilchrist (2011), and Gilchrist et al. (2015).

One advantage of a nested modeling framework is that it
requires only a handful of genome-wide parameters such as
nucleotide-specific mutation rates (scaled by effective popu-
lation size Ne), amino acid side chain physicochemical weight-
ing parameters, and a shape parameter describing the
distribution of site sensitivities. In addition to these
genome-wide parameters, SelAC requires a gene-specific
functionality expression parameter w which describes the
average rate at which the protein’s functionality is produced
by the organism or a gene’s “average functionality production
rate” for short. Currently, w is fixed across the phylogeny,
though relaxing this assumption is a goal of future work.
The gene-specific parameter w is multiplied by additional
model terms to make a composite term w0, which scales
the strength and efficacy of selection for the optimal amino
acid sequence relative to drift (see Implementation). In terms
of the functionality of the protein encoded, we assume that
for any given gene there exists an optimal amino acid se-
quence ~a� and that, by definition, a complete, error free
peptide consisting of~a� provides one unit of the gene’s func-
tionality. We also assume that natural selection favors geno-
types that are able to synthesize their proteome more
efficiently than their competitors and that each savings of
an high energy phosphate bond per unit time leads to a
constant proportional gain in fitness A0 (which was q in
our previous work; Gilchrist 2007). SelAC also requires the
specification (as part of parameter optimization) of an opti-
mal amino acid a* at each position within a coding sequence.
This requirement of one a* per site makes our~a� the largest
category of parameters SelAC estimates. Despite the need to
specify a* for each site, because we use a submodel to derive
our substitution matrices, SelAC estimates a relatively small
number of the parameters when compared with more gen-
eral approaches where the fitness of each amino acid is
allowed to vary freely of any physicochemical properties
(Halpern and Bruno 1998; Lartillot and Philippe 2004;
Rodrigue and Lartillot 2014).

As with other phylogenetic methods, SelAC generates esti-
mates of branch lengths and nucleotide-specific mutation

rates. In addition, the method can also be used to make
quantitative inferences on the optimal amino acid sequence
of a given protein as well as the realized average synthesis rate
of each protein used in the analysis. The mechanistic basis of
SelAC also means it can be easily extended to include more
biological realism and test more explicit hypotheses about
sequence evolution.

Mutation Rate Matrix l
We begin with a 4�4 nucleotide mutation matrix that
describes mutation rates between different bases and, in
turn, different codons. For our purposes, we rely on the gen-
eral unrestricted model (UNREST from Yang 1994) because it
imposes no constraints on the instantaneous rate of change
between any pair of nucleotides. More constrained models,
such as the Jukes–Cantor, Hasegawa–Kishino–Yano, or the
GTR model, could also be used.

The 12 parameter UNREST model defines the relative rates
of change between a pair of nucleotides. Thus, we arbitrarily
set the G! T mutation rate to 1, resulting in 11 free muta-
tion rate parameters in the 4�4 mutation nucleotide muta-
tion matrix. The nucleotide mutation matrix is also scaled by
a diagonal matrix p whose entries, pi;i, correspond to the
equilibrium frequencies of each base. These equilibrium nu-
cleotide frequencies are determined by analytically solving
p� Q ¼ 0. We use this Q to populate a 61� 61 codon
mutation matrix l, whose entries li,j when i 6¼ j describes
the mutation rate from codon i to j and li;i ¼ �

P
jli;j. We

generate this matrix using a “weak mutation” assumption,
such that evolution is mutation limited, codon substitutions
only occur one nucleotide at a time. As a result, the rate of
change between any pair of codons that differ by more than
one nucleotide is zero.

Although the overall model does not assume equilib-
rium, we still need to scale our mutation matrices l by a
scaling factor S. As traditionally done, we rescale our time
units such that at equilibrium, one unit of branch length
represents one expected mutation per site (which equals
the substitution rate under neutrality). More explicitly, S
¼ �

P
i2codonsli;ipi;i

� �
where the final mutation rate ma-

trix is the original mutation rate matrix multiplied by 1=S.

Protein Synthesis Cost–Benefit Function g
SelAC links fitness to the product of the cost–benefit function
of a gene g and the organism’s average target synthesis rate of
the functionality provided by gene w. As a result, the average
flux energy an organism spends to meet its target function-
ality provided by the gene is g� w. Compensatory changes
that allow an organism to maintain functionality even with
loss of one or both copies of a gene are widespread. There is
evidence of compensation for protein function. Metabolism
with gene expression models (ME-models) link those factors
to successfully make predictions about response to perturba-
tions in a cell (Lerman et al. 2012; King et al. 2015). For ex-
ample, an ME-model for E. coli successfully predicted gene
expression levels in vivo (Thiele et al. 2012). Here we assume
that for finer scale problems than entire loss (e.g., a 10% loss of
functionality) the compensation is more production of the
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protein. The particular type of dosage compensation as-
sumed by SelAC in response to stress (e.g., reduced function-
ality) is commonly assumed in microbial ecology (Allison
2012; Allison and Goulden 2017). Our assumption is also
consistent with the Michaelis–Menten enzyme kinetics.
Moreover, there is evidence that mutations can influence
expression level, though this does not always match our ex-
pression compensation assumption (Brown and Elliot 1997;
Zanger and Schwab 2013). In order to link genotype to our
cost–benefit function g ¼ C=B, we begin by defining our
benefit function B.

Benefit
Our benefit function B measures the functionality of the
amino acid sequence~ai encoded by a set of codons~ci, that
is, að~ciÞ ¼~ai relative to that of an optimal sequence~a�. By
definition, Bð~a�j~a�Þ ¼ 1 and Bð~aij~a�Þ < 1 for all other
sequences. We assume all amino acids within the sequence
contribute to protein function and that this contribution
declines as an inverse function of physicochemical distance
from each amino acid to the optimal one. Formally, we as-
sume that

B ~aj~a�ð Þ ¼ 1

n

Xn

p¼1

ð1þ Gpdðap; a
�
pÞÞ

 !�1

; (1)

where n is the length of the protein, dðap; a
�
pÞ is a weighted

physicochemical distance between the amino acid encoded
at a given position p and and the optimal amino acid for that
position a�p. There are many possible measures for physio-
chemical distance; we use Grantham (1974) distances by de-
fault, though others may be chosen. For simplicity, we assume
all nonsense mutations are lethal by defining the physico-
chemical distance between a stop codon and a sense codon
as1. The term Gp describes the sensitivity of the protein’s
function to physicochemical deviation from the optimum at
site position p. We assume that Gp � Gamma
shape ¼ aG; rate ¼ aGð Þ in order to ensure EðGpÞ ¼ 1.

Given the definition of the Gamma distribution, the variance
in Gp is equal to shape=rate2 ¼ 1=aG. We note that at the
limit of aG !1, the model becomes equivalent to as-
suming uniform site sensitivity where Gp ¼ 1 for all posi-
tions p. Furthermore, B (~aij~a�) is inversely proportional to
the average physicochemical deviation of an amino acid
sequence ~ai from the optimal sequence ~a� weighted by
each site’s sensitivity to this deviation. B (~aij~a�) can be
generalized to include second and higher order terms of
the distance measure d.

Cost
Protein synthesis involves both direct and indirect assembly
costs. Direct costs consist of the high energy phosphate bonds
�P of ATPs or GTPs used to assemble the ribosome on the
mRNA, charge tRNA’s for elongation, move the ribosome
forward along the transcript, and terminate protein synthesis.
As a result, direct protein assembly costs are the same for all
proteins of the same length. Indirect costs of protein assembly

are potentially numerous and could include the cost of amino
acid synthesis as well the cost and efficiency with which the
protein assembly infrastructure such as ribosomes,
aminoacyl-tRNA synthetases, tRNAs, and mRNAs are used.
When these indirect costs are combined with sequence-spe-
cific benefits, the probability of a mutant allele fixing is no
longer independent of the rest of the sequence (Gilchrist et al.
2015) and, as a result, model fitting becomes substantially
more complex. Thus for simplicity, in this study we ignore
indirect costs of protein assembly that vary between geno-
types and define

C ~cið Þ ¼ Direct energetic cost of protein synthesis;
¼ A1 þ A2n

where A1 and A2 represent the direct cost, in high energy
phosphate bonds, of ribosome initiation and peptide elonga-
tion, respectively, where A1 ¼ A2 ¼ 4 � P.

Defining Physicochemical Distances
Assuming that functionality declines with an amino acid a;i’s
physicochemical distance from the optimum amino acid a*
at each site provides a biologically defensible way of mapping
genotype-to-protein function that requires relatively few free
parameters. In addition, SelAC naturally lends itself to model
selection since one could compare the quality of SelAC fits
using different mixtures of physicochemical properties.
Following Grantham (1974), we focus on using composition
c, polarity p, and molecular volume v of each amino acid’s side
chain residue to define our distance function, but the model
and its implementation can flexibly handle a variety of prop-
erties. We use the Euclidian distance between residue prop-
erties where each property c, p, and v has its own weighting
term, ac , ap , av , respectively, which we refer to as “Grantham
weights.” Because physicochemical distance is ultimately
weighted by a gene’s specific average protein synthesis rate
w, another parameter we estimate, there is a problem with
parameter identifiability. The scale of gene expression is af-
fected by how we measure physicochemical distances which,
in turn, is determined by our choice of Grantham weights. As
a result, by default we set av ¼ 3:990� 10�4, the value orig-
inally estimated by Grantham, and recognize that our esti-
mates of ac and ap and w are scaled relative to this choice for
av. More specifically,

dðai;a
�Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ac c aið Þ�c a�ð Þ½ �2þap p aið Þ�p a�ð Þ½ �2þav v aið Þ�v a�ð Þ½ �2

q
:

Linking Protein Synthesis to Allele Substitution
Next, we link the protein synthesis cost–benefit function g of
an allele with its fixation probability. First, we assume that
each protein encoded within a genome provides some ben-
eficial function and that the organism needs that functional-
ity to be produced at a target average rate w. Again, by
definition, the optimal amino acid sequence for a given
gene, ~a�, produces one unit of functionality, that is,
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Bð~a�Þ ¼ 1. Second, we assume that the actual average rate a
protein is synthesized / is regulated by the organism to en-
sure that functionality is produced at rate w. As a result, it
follows that / ¼ w=Bð~aj~a�Þ and the energetic burden of a
suboptimal amino acid increases the more it decreases
the protein’s functionality, B. In other words, the average
production rate of a protein~a with relative functionality
Bð~aÞ < 1 must be 1=Bð~aj~a�Þ times higher than the pro-
duction rate needed if the optimal amino acid sequence
~a� was encoded since Bð~a�j~a�Þ ¼ 1. For example, a cell
with an allele ~a where Bð~aj~a�Þ ¼ 9=10 would have to
produce the protein at rate / ¼ 10=9� w ¼ 1:11w.
Similarly, a cell with an allele ~a where Bð~aj~a�Þ ¼ 1=2
will have to produce the protein at / ¼ 2w. In contrast,
a cell with the optimal allele ~a� would have to produce
the protein at rate / ¼ w.

Third, we assume that every additional high energy
phosphate bond, �P, spent per unit time to meet the
organism’s target function synthesis rate w leads to a slight
and proportional decrease in fitness W. This assumption,
in turn, implies

Wi ~cð Þ / exp �A0gð~ciÞw½ �:

where A0 describes the proportional decline in fitness with
every �P wasted per unit time. Because A0 shares the same
time units as w and / and only occurs in SelAC in conjunc-
tion with w, we do not need to explicitly identify our time
units. Instead, we recognize that our estimates of w share an
unknown scaling term.

Correspondingly, the ratio of fitness between two geno-
types is,

Wi

Wj
¼ exp �A0gð~ciÞw½ �

exp �A0gð~cjÞw
� � ¼ exp �A0 gð~ciÞ � gð~cjÞ

� �
w

� �
:

Given our formulations of C and B, the fitness effects be-
tween sites are multiplicative and, therefore, the substitution
of an amino acid at one site can be modeled independently of
the amino acids at the other sites within the coding sequence.
As a result, the fitness ratio for two genotypes differing at
multiple sites simplifies to

Wi

Wj
¼ exp

�
� A0 A1 þ A2nð Þ

n

� 	
X
p2P

d ai;p; a
�
p


 �
� d aj;p; a

�
p


 �h i
Gpw

�
;

where P represents the codon positions in which~ci and~cj

differ. Fourth, we make a weak mutation assumption, such
that alleles can differ at only one position at any given
time, that is, jPj ¼ 1, and that the population is evolving
according to a Wright–Fisher process. As a result, the
probability a new mutant, j, introduced via mutation
into a resident population i with effective size Ne will go
to fixation is,

ui;j ¼
1� Wi=Wj

� �b

1� Wi=Wj

� �2Ne

¼
1� expfC d ai; a

�ð Þ � d aj; a
�� �� �

Gpwbg
1� expfC d ai; a�ð Þ � d aj; a�

� �� �
Gpw2Neg

;

where C¼�ðA0=nÞ A1 þ A2nð Þ, and b = 1 for a diploid
population and 2 for a haploid population (Kimura 1962;
Wright 1969; Iwasa 1988; Berg and L€assig 2003; Sella and
Hirsh 2005). Finally, assuming a constant mutation rate be-
tween alleles i and j, li,j when i the substitution rate from
allele i to j can be modeled as,

qi;j ¼
2

b
li;jNeui;j;

where given the substitution model’s weak mutation assump-
tion, Nel� 1. In the end, each optimal amino acid has a
separate 61�61 substitution rate matrix Qa, which incorpo-
rates selection for the amino acid (and the fixation rate matrix
this creates) as well as the common mutation parameters
across optimal amino acids. This results in the creation of
20 Q matrices, one for each amino acid and each with
3,721 entries that are based on a relatively small number of
model parameters (1–11 mutation rates, 2 free Grantham
weights, the cost of protein assembly, A1 and A2, the gene-
specific target functionality synthesis rate w, and optimal
amino acid at each position p, ap*). These model parameters
can either be specified a priori and/or estimated from
the data.

Given our assumption of independent evolution among
sites, it follows that the probability of the whole data set is the
product of the probabilities of observing the data at each
individual site. Thus, the likelihood L of amino acid a being
optimal at a given site position p is calculated as

L QajDp;T
� �

/ P DpjQa; T
� �

: (2)

In this case, the data, Dp, are the observed codon states at
position p for the tips of the phylogenetic tree with topology
T. For our purposes we take T as given, but it could be esti-
mated as well. The pruning algorithm of Felsenstein (1981) is
used to calculate L QajDp; T

� �
. The log of the likelihood is

maximized by estimating the genome scale parameters that
consist of 11 mutation parameters, which are implicitly scaled
by 2Ne=b, and 2 Grantham distance parameters, ac and ap,
and the sensitivity distribution parameter aG. Because A0 and
w always co-occur and are scaled by Ne, for each gene we
estimate a composite term w0 ¼ A0wNeb and the optimal
amino acid for each position ap* of the protein. When esti-
mating aG, the likelihood then becomes the average likeli-
hood which we calculate using the generalized Laguerre
quadrature with k¼ 4 points (Felsenstein 2001).

Finally, we note that because we infer the ancestral state of
the system, our approach does not rely on any assumptions
of model stationarity. Nevertheless, as our branch lengths
grow the probability of observing a particular amino acid a
at a given site approaches a stationary value proportional to
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WðaÞ2Ne�b and any effects of mutation bias (Sella and Hirsh
2005).

Implementation
All methods described above are implemented in the new R
package, selac available through GitHub (https://github.
com/bomeara/selac) and has been posted on CRAN. Our
package requires as input a set of fasta files that each contain
an alignment of coding sequence for a set of taxa, and the
phylogeny depicting the hypothesized relationships among
them. In addition to the SelAC models, we implemented the
GY codon model of Goldman and Yang (1994), the FMutSel
mutation-selection model of Yang and Nielsen (2008), and
the standard GTR nucleotide model that allows for C-distrib-
uted rates across sites. These likelihood-based models repre-
sent a sample of the types of popular models often fit to
codon data.

For the SelAC models, the starting guess for the optimal
amino acid at a site comes from “majority” rule, where the
initial optimum is the most frequently observed amino acid
at a given site (ties resolved randomly). Our optimization
routine utilizes a four stage hill climbing approach. More
specifically, within each stage a block of parameters are opti-
mized, whereas the remaining parameters are held constant.
The first stage optimizes the block of branch length param-
eters. The second stage optimizes the block of gene-specific
composite parameters w0 ¼ A0wNeb. The third stage opti-
mizes SelAC’s parameters shared across the genome ac and
ap, and the sensitivity distribution parameter aG. The fourth
stage estimates the optimal amino acid at each site a*. This
entire four stage cycle is repeated up to six more times, using
the estimates from the previous cycle as the initial conditions
for the new one. The search is terminated when the improve-
ment in the log-likelihood between cycles is less than 10�8 at
which point we consider the ML solution found and the
search is terminated. For optimization of a given set of param-
eters, we rely on a bounded subplex routine (Rowan 1990) in
the package NLoptR (Johnson 2012) to maximize the log-
likelihood function. To ensure the robustness of our results,
we perform a set of independent analyses with different sets
of naive starting points with respect to the gene-specific com-
posite w0 parameters, ac, and ap and were able to repeatedly
reach the same log-likelihood (ln L) peak in our parameter
space. Confidence in the parameter estimates can be gener-
ated by an “adaptive search” procedure that we implemented
to provide an estimate of the parameter space that is some
predefined likelihood distance (e.g., 2 ln L units) from the
MLE, which follows Beaulieu and O’Meara (2016) and
Edwards (1984).

We note that our current implementation of SelAC is slow,
and is best suited for data sets with relatively small number of
taxa (i.e., 10s not 100s). This limitation is largely due to the size
and quantity of matrices we create and manipulate to calcu-
late the log-likelihood of an individual site. Ongoing work will
address the need for speed, with the eventual goal of imple-
menting SelAC in popular phylogenetic inference toolkits,
such as RevBayes (Hoehna et al. 2016), PAML (Yang 2007),
and RAxML (Stamatakis 2006).

Simulations
We evaluated the performance of our codon model by sim-
ulating data sets and estimating the bias of the inferred model
parameters from these data. Our “known” parameters under
a given generating model were based on fitting SelAC to the
106 gene data set and phylogeny of Rokas et al. (2003). The
tree used in these analyses is outdated with respect to the
current hypothesis of relationships within Saccharomyces, but
we rely on it simply as a training set that is separate from our
empirical analyses (see Analysis of Yeast Genomes and Tests
of Model Adequacy). Bias in the model parameters were
assessed under two generating models: one where we as-
sumed a model of SelAC with uniform sensitivity across sites
(i.e., Gp ¼ 1 for all sites, i.e., aG ¼ 1Þ, and one where we
used the Gamma distribution joint shape and rate parameter
aG estimated from the empirical data. Under each of these
two scenarios, we used parameter estimates from the corre-
sponding empirical analysis and simulated 50 five-gene data
sets. For the gene-specific composite parameter w0 the
“known” values used for the simulation were five evenly
spaced points along the rank order of the estimates across
the 106 genes. The MLE estimate for a given replicate were
taken as the fit with the highest log-likelihood after running
five independent analyses with different sets of naive starting
points with respect to the composite w0g parameter, ac, and
ap. All analyses were carried out in our selac R package.

Analysis of Yeast Genomes and Tests of Model
Adequacy
We focus our empirical analyses on the large yeast data set
and phylogeny of Salichos and Rokas (2013). As a model
system, the yeast genome is an ideal system to examine our
phylogenetic estimates of gene expression and its connection
to real world measurements of these data within individual
taxa. The complete data set of Salichos and Rokas (2013)
contains 1,070 orthologs, where we selected 100 at random
for our analyses. We also focus our analyses on Saccharomyces
sensu stricto and their sister taxon Candida glabrata, and we
used the phylogeny depicted in figure 1 of Salichos and Rokas
(2013) for our fixed tree. We fit the two SelAC models de-
scribed above (i.e., SelAC and SelACþC), as well as two co-
don models, GY and FMutSel, and a standard GTRþC
nucleotide model. The FMutSel model assumes that the
amino acid frequencies are determined by functional require-
ments of the protein, whereas the other models make no
assumptions about amino acid frequencies. In all cases, we
assumed that the model was partitioned by gene, but with
branch lengths linked across genes.

We also compared SelAC models with 195 codon models
in IQtree (Nguyen et al. 2015). This is popular software imple-
menting various (e.g., Muse and Gaut 1994; Goldman and
Yang 1994; Schneider et al. 2005; Kosiol et al. 2007) models of
evolution, including codon models. Most analyses within a set
of software tools focus on differences in log-likelihood values
between models. As a result, some software tools sometimes
fail to include solely data-dependent terms, which function as
constants, in their calculations. Failure to include these terms
can make model comparison between software packages
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problematic. For simplicity, no constants are dropped in the
log-likelihood calculations for SelAC. Furthermore, whereas
there are no identical models in SelAC and IQtree, similar
models have similar likelihoods, suggesting the log-likelihood
values between SelAC and IQtree are comparable. We note,
however, that minor differences in model implementation
can lead to small differences in log-likelihood (for example,
how missing data are handled, as SelAC treats it as an absence
at that site for that taxon, whereas some other software
integrates across all possible states).

For SelAC, we compared our estimates of /0 ¼ w0=B,
which represents the average protein synthesis rate of a
gene, to estimates of gene expression from empirical data.
Specifically, we examined gene expression data for five of the
six species measured during log-growth phase. Gene expres-
sion in this context corresponds to mRNA abundances, which
were measured using either microarrays (C. glabrata and S.
castellii, or RNA-Seq (S. paradoxus, S. mikatae, and S. cerevi-
siae). We obtained expression data for the remaining species,
S. kudriavzevii, which was measured at the beginning of the
stationary phase from the Gene Expression Omnibus.
Saccharomyces, however, only enter the stationary growth
phase in response to severe stress, such as starvation. In ad-
dition, only 56% of the genes examined with SelAC had ex-
pression measurements available. For these reasons, we
excluded S. kudriavzevii from our comparisons of empirical
gene expression.

For further comparison, we also predicted the average
protein synthesis rate for each gene / by analyzing gene
and genome-wide patterns of synonymous codon usage us-
ing ROC-SEMPPR (Gilchrist et al. 2015) for each individual
genome. Although, like SelAC, ROC-SEMPPR uses codon level
information, it does not rely on any interspecific comparisons
and, unlike SelAC, uses only the intra and intergenic frequen-
cies of synonymous codon usage as its data. Nevertheless,
ROC-SEMPPR predictions of gene expression / correlates
strongly (Pearson’s r¼0.53–0.74) with a wide range of labo-
ratory measurements of gene expression (Gilchrist et al.
2015).

Although one of our main objectives was to determine the
improvement of fit that SelAC has with respect to other
standard phylogenetic models, we also evaluated the ade-
quacy of SelAC. Model fit, measured with assessments such
as the AIC, can tell which model is least bad as an approxi-
mation for the data, but it does not reveal whether a model is
actually doing a good job of representing the data. An ade-
quate model does the latter, one measure of which is that
data generated under the model resemble real data
(Goldman 1993). For example, Beaulieu et al. (2013) assessed
whether parsimony scores and the size of monomorphic
clades of empirical data were within the distributions of sim-
ulated data under a new model and the best standard model;
if the empirical summaries were outside the range for each, it
would have suggested that neither model was adequately
modeling this part of the biology.

In order to test adequacy for a given gene we first remove a
particular taxon from the data set and the phylogeny. A
marginal reconstruction of the likeliest sequence across all

remaining nodes is conducted under the model, including
the node where the pruned taxon attached to the tree. The
marginal probabilities of each site are used to sample and
assemble the starting coding sequence. This sequence is then
evolved along the branch, periodically being sampled and its
current functionality assessed. We repeat this process 100
times and compare the distribution of trajectories against
the observed functionality calculated for the gene. For com-
parison, we also conducted the same test, by simulating the
sequence under the standard GTRþC nucleotide model,
which is often used on these data but does not account for
the fact that the sequences are protein coding, and under
FMutSel, which includes selection on codons but in a funda-
mentally different way as our model.

The Appropriate Estimator of Bias for AIC
As part of the model set described above, we also included a
reduced form of each of the two SelAC models, SelAC and
SelACþC. Specifically, rather than optimizing the amino
acid at any given site, we assume the most frequently ob-
served amino acid at each site is the optimal amino acid a*.
We refer to these “majority rule” models as SelACM and
SelACM þ C and note that these majority rule formulations
greatly accelerate model fitting.

Since these majority rule models assume that the optimal
amino acids are known prior to fitting of our model, it is
tempting to reduce the count of estimated parameters in
the model by the number of parameters estimated using
majority rule. Whereas using majority rule does not necessar-
ily provide the most likely parameter estimate, it nevertheless
uses the data to generate the estimate and represents a pa-
rameter estimated from the data. Thus, despite having be-
come standard behavior in the field of phylogenetics, this
reduction is potentially statistically inappropriate. Because
the difference in the number of parameters K when counting
or not counting the number of nucleotide sites drops out
when comparing nucleotide models with AIC, this statistical
issue does not apply to nucleotide models. It does, however,
matter for AICc, where K and the sample size n combine in
the penalty term. This also matters in our case, where the
number of estimated parameters for the majority rule esti-
mation differs based on whether one is looking at codons or
single nucleotides.

In phylogenetics two variants of AICc are used. In compar-
ative methods (e.g., Butler and King 2004; O’Meara et al. 2006;
Beaulieu et al. 2013) the number of data points, n, is taken as
the number of taxa. More taxa allow the fitting of more
complex models, given more data. However, in DNA evolu-
tion, which is effectively the same as a discrete character
model used in comparative methods, the n is taken as the
number of sites. Obviously, both cannot be correct. This un-
certainty was highlighted by Posada and Buckley (2004): they
chose to use number of sites, but mentioned in their discus-
sion that sample size also depends on the number of taxa.
Sullivan and Joyce (2005) also mention that although the
number of sites is often taken as sample size, whether that
is appropriate in phylogenetics is not entirely clear. One ap-
proach incorporating both number of taxa and sites in
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calculating AICc is the program SURFACE implemented by
Ingram and Mahler (2013), which uses multiple characters
and taxa. Although its default is to use AIC to compare
models, if one chooses to use AICc, the number of samples
is taken as the product of number of sites and number of taxa.

Recently, Jhwueng et al. (2014) performed an analysis that
investigated what variant of AIC and AICc worked best as an
estimator, but the results were inconclusive. Here, we have
adopted and extended the simulation approach of Jhwueng
et al. (2014) in order to examine a large set of different penalty
functions and how well they approximate the remaining por-
tion of the KL divergence between two models after account-
ing for the deviance (i.e., �2 In L) (see Supplementary
material online for more details).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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