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Abstract: In our current work, we have reported the first cobalt-catalyzed cross-coupling of arylboronic
acid with alkyl/aryl phosphites under mild conditions. The reaction was carried out in the presence
of zinc powder as an additive and ter-pyridine as a ligand. The use of non-precious cobalt salt makes
the protocol advantageous, as it is inexpensive and more abundant than the previously used methods
where precious metal salts (Pd and Pt) were used. The reaction has a wide substrate scope and the
products were obtained in good yields.

Keywords: cross-coupling reactions; terpyridine; arylboronic acid; alkyl/aryl phosphonates;
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1. Introduction

Organophosphorus compounds have great significance due to their extensive use in various
fields such as medicine, agriculture, polymer science, and material chemistry [1–25]. The wide
application of organophosphorus compounds varies from their use as catalysts in various organic
transformations, to being important additives in lubricants [5,6]. Organophosphorus compounds are
also important building blocks for nucleic acid chemistry and are associated with increased biological
activity due to the presence of the C-P bond [1–11]. Hence, there is growing interest in developing new
methodologies for the synthesis of the C-P bond. In addition to the classical methods documented in
the literature [12–25], several new transition-metal-catalyzed approaches have been developed, mainly
for the synthesis of triarylphosphine compounds via cross-coupling reactions of trialkylphosphine with
different aryl sources in the presence of metals such as Ni-, Cu-, and Pd. [13–15] Among the various
aryl partners, arylboronic acid is a popular choice for various C-C and C-heteroatom bond formation
reactions via different cross-coupling methodologies. However, despite the extensive use of arylboronic
acid in a variety of other cross-coupling reactions [26–28], it has not been used quite as often in the
literature for the C-P bond formation and only a couple of reports have been published so far. In 2008,
Stawinski and his group published one of the first palladium-catalyzed cross-coupling reactions of
aryl boronic acid with dialkyl phosphites [29]. The method showed a moderate to good yield of the
product, but the substrate scope was limited. Moreover, the reaction was done under microwave
irradiation in the presence of DMF as solvent and p-benzoquinone as oxidant. More recently, Zhao
et al. reported a copper-catalyzed Chan–Lam-type reaction of arylboronic acid with H-phosphonate
diesters. This reaction was carried out in the presence of 1,10-phenanthroline as the ligand. However,
while the reaction resulted in moderate to high yields of the products, it was still limited to certain
dialkyl phosphites. Only a poor reaction yield was observed with the dibenzyl phosphite [30]. Most
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of the reactions were reported with diethyl phosphite, and some of these reactions suffered poor
product yields. Additionally, the protocol requires the use of ligand (1,10-phenanthroline) for the
catalysis [30]. Later, Zhao et al. reported the nickel-catalyzed cross-coupling of arylboronic acid with
secondary phosphine oxide for the synthesis of triarylphosphine oxides [31]. While moderate to high
yields of the products were obtained, the reaction was performed under high catalyst loadings, as
well as elevated temperature (100 ◦C). Hence, it is of great interest to find an efficient, inexpensive,
and more versatile, non-precious metal-based catalytic system for the synthesis of valuable C-P bond
formation. Among other metals, cobalt has been widely used as a highly efficient metal for various
C-C and C-N cross-coupling reactions, as reported by Gosmini, Oshima, and others [32–34]. It has
been found, in the literature, that the cobalt-catalyzed reactions were more specific compared to their
Pd and Ni counterparts [32–35]. Moreover, it is evident in the literature that the cobalt-catalyzed
cross-coupling reactions followed an alternative mechanism. For example, the oxidative coupling for
the cobalt-catalyzed reaction occurred through a single-electron transfer [36,37], hence avoiding the
side reactions that are commonly observed in the Pd and Ni-catalyzed reactions. Hence, high efficiency,
cost effectiveness, and milder reaction conditions makes cobalt-catalyzed reactions a powerful tool
for C-C and C-heteroatom bond formation. Additionally, our group focuses on exploring a simpler
catalytic system for organic transformation [38]; in our continuing effort, a series of simpler ligands
were also tested during the optimization of C-P bond formation in the current work.

In the present work, we are pleased to disclose a simple, inexpensive, and efficient method for the
synthesis of aryl phosphonates. The reaction has been performed in the presence of cobalt salt and
zinc metal under mild reaction conditions in the presence of ter-pyridine as the ligand. To the best of
our knowledge, this is the first cobalt-catalyzed C-P bond formation report so far.

2. Result and Discussion

Initially, we optimized the reaction by choosing a cobalt-based catalytic system for the
cross-coupling reaction of phenylboronic acid with diethyl phosphite. The test reaction was carried
out with CoCl2 (8 mol%) in the presence of Cs2CO3 (1 equiv) and ligand 1 (10 mol%) in acetonitrile at
room temperature. No inert atmosphere was maintained while carrying out the reaction. The reaction
proceeded with a poor yield (36%) and no further improvement was observed by increasing the
reaction time up to 24 h. However, it was promising to see that the product formation was taking
place. The reaction was also exposed to higher temperatures, ranging from 50 to 78 ◦C, but no increase
in yield was observed. We then continued the screening of different bases such as K2CO3, Et3N, and
DIPEA (entries 1–5, Table 1), but not much improvement was observed. However, when Zn powder
(1 equiv) was added to the reaction, a drastic improvement in the yields was observed (entry 2 vs.
entry 4, Table 1). We then continued to screen other cobalt-catalyst and ligands to optimize the reaction
conditions further. The effect of different cobalt salts and ligands has been summarized in Table 1. It
was found that the reaction proceeded with a good yield (84%, entry 12, Table 1) with cobalt (II) iodide
(8 mol%) as the catalyst in the presence of zinc powder, and ligand 4. When Co(NO3)2 was used as the
catalyst (entry 11, Table 1), the reaction yield dropped to 61%. The use of Co(OAc)2 did not improve
the reaction yield either (entry 13, Table 1) and only 56% of the cross-coupling product was obtained.
When Co(acac)2 was used to carry out the reaction, 63% of the product was obtained.
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Table 1. Optimization of the reaction conditions a.

Entry Ligand Cobalt Source Additive Base Yield%

1 1 CoCl2 - Cs2CO3 19
2 1 CoCl2 - K2CO3 32
3 1 CoCl2 Zn DIPEA 34
4 1 CoCl2 Zn K2CO3 38
5 1 CoCl2 Zn Et3N 44
6 1 CoCl2 Zn - 42
7 2 CoCl2 Zn - 56
8 3 CoCl2 Zn - 65
9 4 CoCl2 Zn - 79
10 5 CoCl2 Zn - 60
11 4 Co(NO3)2 Zn - 61
12 4 CoI2 Zn - 84
13 4 Co(OAc)2 Zn - 56
14
15

4
4

CoBr2
Co(acac)2

Zn
Zn

-
-

91
63

a All reactions were carried out at room temperature with Boronic acid (0.20 mmol), Co salt (8 mol%), ligand
(10 mol%), additive (20 mol%), and dialkylphosphite (0.20 mmol) in dry acetonitrile for 24 h.

However, when the reaction was carried out with cobalt (II) bromide (8 mol%), as the catalyst in
the presence of zinc powder and ligand 4, an excellent yield (91%) was obtained (entry 14, Table 1).
It was also found that the reaction gave poor yields in the absence of zinc powder. We have also
screened various ligands (entry 6–10, Table 1) and it was found that the presence of ter-pyridine (ligand
4, entry 9, Table 1) effectively influenced the reaction outcome. The presence of a ligand increased
the reaction yield significantly, as compared to the yield with no ligand. The reaction only worked
moderately well when pyridine (ligand 1), 2-picolylamine (ligand 2), di-(2-picolyl)amine (ligand 3),
and 2,2′-dipyridylamine (ligand 5) were used as ligands (as shown in Table 2), which clearly shows
the crucial role of the ligand in this catalytic system. The reaction was also carried out with different
catalyst loadings and it was found that the reaction worked best with 8 mol% of CoBr2. Further, a
decrease in the catalyst loading adversely affected the reaction profile. For further optimizations, the
effect of solvents on the reaction was observed, and after screening solvents such as THF, toluene,
dimethylformamide, and 1,4-dioxane, acetonitrile, it was found that the reaction worked best with
toluene as the solvent.

Table 2. Screening of various ligands for the C-P bond formation reaction a.

Entry Ligand % Yield

1 Pyridine (ligand 1) 54
2 2-picolylamine (ligand 2) 56
3 di-(2-picolyl)amine (ligand 3) 65
4 ter-pyridine (ligand 4) 79
5 2,2′-dipyridylamine (ligand 5) 60

a All reactions were carried out at room temperature with Boronic acid (0.20 mmol), Co salt (8 mol%), ligand
(10 mol%), additive (20 mol%), and dialkylphosphite (0.20 mmol) in dry acetonitrile for 24 h.

With these optimized conditions in hand, the substrate scope for this reaction was tested by
reacting a variety of arylboronic acids with diethyl phosphite. The reaction was carried out with
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boronic acid (0.20 mmol) reacting with diethyl phosphite (0.20 mmol) in the presence of 8 mol% of the
cobalt-catalyst, ter-pyridine (10 mol%), and zinc powder (20 mol%).

The effect of different groups on the arylboronic acid has been screened (Table 3) and it was found
that both the presence of the electron-withdrawing group, as well as the electron-donating group,
worked efficiently under the optimized reaction conditions. The presence of the trifluoromethyl group
on the boronic acid decreased the reaction yield significantly (entry 9, Table 3). In the presence of
ortho-substitutent, the reaction worked very well, with high yields in almost all cases (entries 2 and 7,
Table 3). The reaction had good tolerance with a variety of functional group such as methoxy, nitro,
and trifloromethyl (entries 3, 5, and 9, Table 3).

Table 3. Substrate scope for the cross-coupling reaction between boronic acids (6a–6j) and diethyl
phosphite (7b) a.

Entry R Product Yield%

1 H (6a) 8a 91
2 2-methyl (6b) 8b 89
3 4-methoxy (6c) 8c 87
4 4-ethynyl (6d) 8d 78
5 3-nitro (6e) 8e 66
6 4-fluoro (6f) 8f 65
7 2-fluoro (6g) 8g 82
8 2,6-difluoro (6h) 8h 63
9 4-trifluoromethyl (6i) 8i 45

10
11
12
13

1-Naphthyl (6j)
4-nitro (6k)
4-cyano (6l)

4-pyridyl (6m)

8j
8k
8l

8m

76
74
68
57

a All reactions were carried out at room temperature with aldehyde (0.20 mmol), Co salt (8 mol%), ligand (10 mol%),
Zn powder (20 mol%), and dialkylphosphite (0.20 mmol) in dry acetonitrile for 24 h.

After screening various boronic acids, a series of dialkyl/diaryl phosphites were also tested to see
the scope of the reaction under the same optimized reaction conditions (Table 4). Additionally, we
were pleased to find that the reaction worked very well with all the phosphite derivatives. The yields
were high in alkyl and aryl phosphites. Diphenyl and dibenzyl phosphite gave good yields with
the arylboronic acid, unlike copper-catalyzed reaction, where dibenzyl phosphonate ester resulted in
moderate to poor yields [13].
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Table 4. Results of screening different dialkyl/diaryl phosphites a.

Entry R R′ Product Yield%

1 H (6a) Me (7a) 9a 79
2 4-methoxy (6c) Me (7a) 9b 78
3 3-nitro (6e) Me (7a) 9c 81
4 H (6a) iPr (7c) 10a 79
5 4-methoxy (6c) iPr (7c) 10b 62
6 3-nitro (6e) iPr (7c) 10c 71
7 H (6a) Ph (7d) 11a 84
8 4-methoxy (6c) Ph (7d) 11b 74
9 3-nitro (6e) Ph (7d) 11c 56
10 H (6a) Bn (7e) 12a 89
11 4-methoxy (6c) Bn (7e) 12b 78
12 3-nitro (6e) Bn (7e) 12c 67
13 4-trifluoro(methyl) (6i) Bn (7e) 12d 59

a All reactions were carried out at room temperature with aldehyde (0.20 mmol), Co salt (8 mol%), ligand (10 mol%),
Zn powder (20 mol%), and dialkylphosphite (0.20 mmol) in dry acetonitrile for 24 h.

A plausible mechanism has been proposed in Scheme 1. While an elaborated study is required
to fully understand the mechanism of the reported methodology, it is anticipated [39] that the active
catalyst was generated when cobalt (II) salt was generated in the presence of the zinc powder and
ligand 4. It is also anticipated that the active catalyst A then undergoes oxidative addition with the
dialkyl phosphite (B) to generate the intermediate C, which, upon reaction with boronic acid, leads to
the formation of intermediate D. The elimination of boronic acid from intermediate D then leads to the
formation of intermediate E. Finally, the C-P bond forms by reductive elimination, which leads to the
regeneration of active catalyst A. Alternatively, the addition of arylboronic acid to Co(0) in order to
give Co(II) might be a possibility, which will be followed by transmetallation with the deprotonated
phoshite, and finally, the reductive elimination leads to the formation of the cross-coupling product [31].
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Scheme 1. Proposed mechanism for the Co-Zn catalyzed cross-coupling.

3. Materials and Methods

3.1. General Information

All experiments were carried out using dry solvents. The boronic acid, dialkyl phosphites, DIPEA,
triethylamine, pyridine, 2,2′-dipyridylamine, 2-picolylamine, di-(2-picolyl)amine, and ter-pyridine, as
well as the cobalt salts, were purchased from Sigma Aldrich. Silica gel for column chromatography
and thin layer chromatography (TLC) plates (Silica gel 60 F254) were ordered from EMD/Merck.
The analytical thin layer chromatography was eluted in the Ethylacetate/Hexane (30:70) solvent system.
An ultra-violet lamp, iodine chamber, and PMA solution spray was used to visualize the product
spots on thin layer chromatography (TLC). 1H-NMR and 13C-NMR spectra were recorded on Bruker
Advance 400 and 100 MHz, respectively, and were referenced to residual protic solvent (CDCl3 1H
[7.26 ppm] and CDCl3 13C [77.00 ppm]. Mass analyses were performed on the Joel GC-MS instrument
(EI). The products were fully characterized using 1H-NMR, 13C-NMR, 31P-NMR, and GC-MS, and the
relevant data has been provided in this section. All reagents were used as received from commercial
sources without further purification.

3.2. General Procedure for the Synthesis of Aryl Phosphonates

The phenyl boronic acid (6a, 0.20 mmol) was added to a 25 mL round bottom flask (oven-dried
overnight), followed by the addition of the cobalt (II) bromide (8 mol%), ter-pyridine (ligand 4,
10 mol%), and zinc powder (20 mol%). At this point the solvent, dry acetonitrile (6 mL), was added
to the reaction mixture, followed by the addition of diethyl phosphite (7b, 0.20 mmol) which was
added sequentially. The reaction vessel was covered with the septum and the reaction was stirred at
room temperature. The reaction was allowed to run for 24 h at the same temperature. At this time,
the reaction progress was monitored using TLC. The reaction was monitored at 4 h intervals and
was ultimately left stirring at room temperature overnight. After completion, the reaction mixture
was quenched and extracted with ethyl acetate and water. The organic layer was collected, and the
aqueous layer was again extracted with ethyl acetate three more times. The combined organic layer
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was further washed with sodium bicarbonate and brine solution. The organic layer was then dried
over sodium sulfate, and filtered and evaporated using rotavap. The crude compound obtained was
further purified using column chromatography (EA:hexane 30:70). The pure product (8a) was obtained
as thick oil with a 91% yield. The 1-H and 13-C data for the products obtained matched those reported
previously [29,40,41].

3.2.1. Compound 8a: Diethyl Phenylphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.54 (d, J = 7.0 Hz, 2H), 7.39 (t, J = 7.2 Hz, 2H), 7.32 (t, J = 7.0 Hz,
1H), 4.22 (m, 4H, CH2), 1.62 (td, JCH3-CH2 = 7.2 Hz, JCH3P = 1.0 Hz, 6H). 13C-NMR (100 MHz, CDCl3): δ
131.6 (d, J = 3.0 Hz, C4), 130.9 (d, J = 8.0 Hz, 2C), 128.4 (d, J = 14.0 Hz, 2C), 125.1 (d, J = 178.4 Hz, C1),
64.3 (d, JCH2 = 7.8 Hz, 2C), and 18.1 (d, JCH3 = 6.4 Hz, 2C). GC-MS m/z: [M + H]+ Calcd for C10H16O3P
215.0832; Found 215.0815.

3.2.2. Compound 8b: Diethyl 2-Methylphenylphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.44 (d, J = 8.0 Hz, 1H), 7.21 (d, J = 6.8 Hz, 1H), 7.09–7.02 (m, 2H)
3.84 (m, 4H, CH2), 1.32 (t, JCH3-CH2 = 7.4 Hz, 6H). 13C-NMR (100 MHz, CDCl3): δ 135.6 (d, J = 4.4 Hz,
C4), 132.2 (d, J = 8.0 Hz, C3, C6), 128.4 (d, J = 3.2 Hz, C5), 126.4 (d, J = 4.8 Hz, C2), 123.1 (d, J = 183.6 Hz,
C1), 65.8 (d, JCH2 = 6.8 Hz, 2C), 24.1 (d, JCH3 = 7.2 Hz, 2C), and 19.5. GC-MS m/z: [M + 1]+) calculated
for C11H18O3P 228.0654; Found 229.0217.

3.2.3. Compound 8c: Diethyl 4-Methoxyphenylphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.48 (d, J = 9.6 Hz, 2H), 7.22 (d, J = 10.0 Hz, 2H), 4.14 (m, 4H,
CH2), 3.59 (s, 3H), 1.68 (t, JCH3-CH2 = 6.4 Hz, 6H). 13C-NMR (100 MHz, CDCl3): δ 165.2 (d, J = 4.6 Hz,
C4), 133.4 (d, J = 2.8 Hz, C2, C6), 128.2 (d, J = 174.6 Hz, C1), 125.2 (d, J = 6.4 Hz, C3, C5), 70.1 (d,
JCH2 = 6.2 Hz, 2C), and 53.2, 18.1 (d, JCH3 = 7.8 Hz, 2C).

3.2.4. Compound 8d: Diethyl 4-Ethylphenylphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.31 (d, J = 7.8 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 3.62 (m, 4H, CH2),
2.06 (m, 2H), 1.28 (t, JCH3-CH2 = 7.4 Hz, 6H), 1.22 (t, J = 6.8 Hz, 3H). 13C-NMR (100 MHz, CDCl3): δ
132.6 (d, J = 3.0 Hz, C4), 131.1 (d, J = 4.2 Hz, C2, C6), 127.1 (d, J = 4.0 Hz, C3, C5), 125.1 (d, J = 183.6 Hz,
C1), 62.1 (d, JCH2 = 7.2 Hz, 2C), 22.1 (d, JCH3 = 6.8 Hz, 2C), 19.5, and 15.1.

3.2.5. Compound 8e: Diethyl 3-Nitrophenylphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.68 (s, 1H), 7.61 (d, J = 7.4 Hz, 1H), 7.54 (d, J = 5.6 Hz, 1H), 7.32 (t,
J = 7.2 Hz, 1H), 3.78 (m, 4H, CH2), 1.29 (t, JCH3-CH2 = 8.0 Hz, 6H). 13C-NMR (100 MHz, CDCl3): δ 162.4
(d, J = 12.0 Hz, C5), 154.6 (d, J = 4.0 Hz, C4), 152.2 (d, J = 6.4 Hz, C6 ), 134.1 (d, J = 6.8 Hz, C2), 128.3 (d,
J = 6.8 Hz, C3), 123.1 (d, J = 179.6 Hz, C1), 70.3 (d, JCH2 = 9.2 Hz, 2C), and 23.1 (d, JCH3 = 7.2 Hz, 2C).

3.2.6. Compound 8f: Diethyl 4-Fluorophenylphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.72 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 7.6 Hz, 2H), 3.99 (m, 4H, CH2),
1.48 (t, JCH3-CH2 = 8.4 Hz, 6H). 13C-NMR (100 MHz, CDCl3): δ 142.4 (d, J = 176.0 Hz, C4), 138.6 (d,
J = 3.0 Hz, C2, C6), 132.9 (d, J = 6.0 Hz, C3, C5), 123.1 (d, J = 183.6 Hz, C1), 68.3 (d, JCH2 = 8.4 Hz,
2C), and 20.1 (d, JCH3 = 7.2 Hz, 2C). GC-MS m/z: [M + 1]+) calculated for C10H15FO3P 232.0811;
Found 232.0656.

3.2.7. Compound 8h: Diethyl 2,6-Difluorophenylphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.32 (d, J = 6.4 Hz, 1H), 7.11 (d, J = 6.4 Hz, 1H), 7.02 (t, J = 7.8 Hz,
1H), 4.06 (m, 4H, CH2), 1.62 (t, JCH3-CH2 = 4.4 Hz, 6H). 13C-NMR (100 MHz, CDCl3): δ 176.6 (d,
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J = 4.4 Hz, C2, C6), 132.2 (d, J = 8.0 Hz, C3, C5), 126.1 (d, J = 174.2 Hz, C1), 125.6 (d, J = 6.0 Hz, C4),
61.8 (d, JCH2 = 5.4 Hz, 2C), and 22.6 (d, JCH3 = 6.8 Hz, 2C).

3.2.8. Compound 9a: Dimethyl Phenylphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.38 (d, J = 7.6 Hz, 2H), 7.31 (t, J = 7.0 Hz, 2H), 6.98 (t, J = 7.2 Hz,
1H), 3.84 (d, J = 11.0 Hz, 6H, CH3). 13C-NMR (100 MHz, CDCl3): δ 137.6 (d, J = 4.4 Hz, C4), 134.2 (d,
J = 10.2 Hz, C2, C6), 129.2 (d, J = 12.6 Hz, C3, C5), 125.4 (d, J = 182.8 Hz, C1), and 55.8 (d, J = 6.0 Hz,
2C). GC-MS m/z: [M]+) calculated for C8H11O3P 186.0446, found 186.0432.

3.2.9. Compound 9b: Dimethyl 4-Methoxyphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.22 (d, J = 7.2 Hz, 2H), 7.16 (t, J = 7.2 Hz, 2H), 6.77 (t, J = 6.8 Hz,
1H), 3.92 (d, J = 11.2 Hz, 6H, CH3), 3.45 (s, 3H). 13C-NMR (100 MHz, CDCl3): δ 132.2 (d, J = 4.0 Hz,
C4), 130.6 (d, J = 10.6 Hz, C2, C6), 127.4 (d, J = 11.8 Hz, C3, C5), 125.2 (d, J = 188.2 Hz, C1), 55.8 (d,
J = 6.0 Hz, 2C), and 52.4

3.2.10. Compound 9c: Dimethyl 3-Nitrophenylphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.68 (s, 1H), 7.61 (d, J = 7.4 Hz, 1H), 7.54 (d, J = 5.6 Hz, 1H), 7.32 (t,
J = 7.2 Hz, 1H), 3.62 (d, J = 11.2 Hz, 6H, CH3). 13C-NMR (100 MHz, CDCl3): δ 162.4 (d, J = 12.0 Hz,
C5), 154.6 (d, J = 4.0 Hz, C4), 152.2 (d, J = 6.4 Hz, C6 ), 134.1 (d, J = 6.8 Hz, C2), 128.3 (d, J = 6.8 Hz, C3),
123.1 (d, J = 179.6 Hz, C1), 70.3 (d, JCH2 = 9.2 Hz, 2C), and 23.1 (d, JCH3 = 7.2 Hz, 2C).

3.2.11. Compound 10a: Diisopropyl Phenylphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.58 (d, J = 7.8 Hz, 3H), 7.31 (t, J = 7.2 Hz, 2H), 4.69–4.51 (m, 2H),
1.31 (d, J = 6.3 Hz, 6H), 1.12 (d, J = 6.3 Hz, 6H).13C-NMR (100 MHz, CDCl3): δ 142.4 (d, J = 12.8 Hz, C5),
138.4 (d, J = 5.2 Hz, C2, C4), 135.6 (d, J = 6.8 Hz, C6 ), 128.3 (d, J = 6.8 Hz, C3), 123.1 (d, J = 181.6 Hz,
C1), 69.8 (d, JCH2 = 9.2 Hz, 2C), and 24.2 (d, JCH3 = 7.2 Hz, 2C).

3.2.12. Compound 10b: Diisopropyl 4-Methoxyphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.51 (d, J = 7.4 Hz, 2H), 7.44 (d, J = 7.6 Hz, 2H), 4.48–4.36 (m, 2H),
3.90 (s, 3H), 1.37 (d, J = 7.2 Hz, 6H), 1.21 (d, J = 7.8 Hz, 6H). 13C-NMR (100 MHz, CDCl3): δ 156.4 (d,
J = 6.8 Hz, C4), 143.8 (d, J = 6.4 Hz, C3, C5 ), 132.3 (d, J = 6.8 Hz, C2, C6), 123.1 (d, J = 179.6 Hz, C1),
71.4 (d, JCH2 = 10.2 Hz, 2C), 52.8 (d, J = 8.2 Hz, OCH3), and 24.2 (d, JCH3 = 7.2 Hz, 2C).

3.2.13. Compound 10c: Diisopropyl 3-Nitrophenylphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.39 (s, 1H), 7.61 (d, J = 7.4 Hz, 1H), 7.54 (d, J = 5.6 Hz, 1H),
7.22 (t, J = 7.0 Hz, 1H), 4.59–4.66 (m, 2H), 1.34 (d, J = 6.3 Hz, 6H), 1.19 (d, J = 6.3 Hz, 6H). 13C-NMR
(100 MHz, CDCl3): δ 161.3 (d, J = 11.0 Hz, C5), 158.6 (d, J = 4.4 Hz, C4), 151.0 (d, J = 6.8 Hz, C6), 132.4
(d, J = 7.2 Hz, C2), 129.1 (d, J = 6.2 Hz, C3), 125.4 (d, J = 178.2 Hz, C1), 70.5 (d, JCH2 = 10.0 Hz, 2C), and
23.5 (d, JCH3 = 7.2 Hz, 2C).

3.2.14. Compound 11a: Diphenyl Phenylphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.76 (m, 3H), 7.54 (m, 2H), 7.31–7.23 (m, 4H), 7.11–7.06 (m, 6H).
13C-NMR (100 MHz, CDCl3): δ 160.8 (d, J = 12.0 Hz), 156.4 (d, J = 4.4 Hz), 150.6 (d, J = 6.4 Hz), 142.6 (d,
J = 8.0 Hz), 141.6 (d, J = 6.6 Hz), 138.2 (d, J = 7.0 Hz), 135.7 (d, J = 8.4 Hz), 132.7 (d, J = 8.0 Hz), 128.3 (d,
J = 6.2 Hz,), and 123.1 (d, J = 189.6 Hz).

3.2.15. Compound 11b: Diphenyl 4-Methoxyphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.56 (dd, J1 = 13.2 Hz, J2 = 8.7 Hz, 2H), 7.21–7.19 (m, 5H), 7.17–7.08
(m, 5H), 6.93 (m, 2H), 3.65 (s, 3H). 13C-NMR (100 MHz, CDCl3): δ 159.4 (d, J = 12.2 Hz), 155.2 (d,
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J = 4.8 Hz), 150.4 (d, J = 7.4 Hz), 142.3 (d, J = 7.4 Hz), 138.6 (d, J = 8.4 Hz), 132.5 (d, J = 8.6 Hz),
129.4 (d, J = 7.4 Hz), 127.2 (d, J = 7.0 Hz), 124.6 (d, J = 174.6 Hz), 122.1 (d, J = 8.4 Hz), and 54.3 (d,
JCH2 = 10.4 Hz, OCH3).

3.2.16. Compound 11c: Diphenyl 3-Nitrophenylphosphonate

1H-NMR (300 MHz, CDCl3) δ 7.83 (m, 4H), 7.21–7.19 (m, 4H), 7.17–7.08 (m, 3H), 6.93 (m, 3H).
13C-NMR (100 MHz, CDCl3): δ 166.5 (d, J = 12.2 Hz), 156.8 (d, J = 4.8 Hz), 151.8 (d, J = 6.4 Hz), 132.1 (d,
J = 7.2 Hz), 130.4 (d, J = 7.0 Hz), 128.7 (d, J = 6.2 Hz), 127.9 (d, J = 6.8 Hz), 125.9 (d, J = 7.1 Hz), 123.9 (d,
J = 186.6 Hz), 122.6 (d, J = 7.4 Hz), and 119.6 (d, J = 7.2 Hz).

3.2.17. Compound 12a: Dibenzyl Phenylphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.72 (m, 4H), 7.21–7.14 (m, 9H), 6.98 (dd, J1 = 9.2 Hz, J2 = 3.4 Hz,
2H), 5.09–4.91 (m, 4H); 13C-NMR (100 MHz, CDCl3): δ 161.0 (d, J = 3.2 Hz), 155.6 (d, J = 4.6 Hz), 153.4
(d, J = 4.2 Hz), 145.3 (d, J = 8.0 Hz), 137.4 (d, J = 8.0 Hz), 133.7 (d, J = 10.0 Hz), 128.5 (d, J = 8.4 Hz),
128.2 (d, J = 7.8 Hz), 127.9 (d, J = 6.4 Hz), 119.0 (d, J = 189.8 Hz), 114.1 (d, J1 = 14.0 Hz), and 67.4 (d,
J = 50.0 Hz).

3.2.18. Compound 12b: Dibenzyl 4-Methoxyphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.65 (d, J = 12.4 Hz, 3H), 7.18–7.08 (m, 8H), 6.93 (dd, J1 = 9.4 Hz,
J2 = 4.0 Hz, 3H), 4.76–4.51 (m, 4H); 13C-NMR (100 MHz, CDCl3): δ 163.0 (d, J = 4.0), 154.6 (d, J = 7.2
Hz), 152.8 (d, J = 7.2 Hz), 147.6 (d, J = 7.2 Hz), 140.4 (d, J = 7.2 Hz), 138.2 (d, J = 7.6 Hz), 133.5 (d,
J = 8.0 Hz), 134.3 (d, J = 10.0 Hz), 130.2 (d, J = 6.2 Hz), 129.1 (d, J = 5.6 Hz), 124.9 (d, J = 8.0 Hz), 121.0
(d, J = 181.4 Hz), 113.1 (d, J = 12.8 Hz), and 59.4 (d, J = 22.0 Hz), 58.4.

3.2.19. Compound 12c: Dibenzyl 3-Nitrophenylphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.55 (m, 3H), 7.20–7.17 (m, 7H), 7.03 (m, 2H), 6.78 (dd, J1 = 8.0
Hz, J2 = 4.2 Hz, 2H), 5.11–5.01 (m, 4H); 13C-NMR (100 MHz, CDCl3):δ 161.0 (d, J = 3.8 Hz), 152.6 (d,
J = 7.0 Hz), 151.0 (d, J = 7.8 Hz), 145.6 (d, J = 5.6 Hz), 142.2 (d, J = 8.0 Hz), 135.1 (d, J = 8.2 Hz), 132.1 (d,
J = 8.2 Hz), 130.1 (d, J = 6.8 Hz), 129.7 (d, J = 6.2 Hz), 123.4 (d, J = 6.8 Hz), 122.4 (d, J = 180.8 Hz), 112.1
(d, J = 11.0 Hz), and 58.4 (d, J = 7.6 Hz).

3.2.20. Compound 12d: Dibenzyl 4-(Trifluoromethyl)phenylphosphonate

1H-NMR (400 MHz, CDCl3): δ 7.48 (m, 3H), 7.16–7.07 (m, 8H), 6.73 (dd, J1 = 10.0 Hz, J2 = 5.2 Hz,
3H), 4.98–4.75 (m, 4H); 13C-NMR (100 MHz, CDCl3): δ 168.2 (d, J = 5.2 Hz), 155.2 (d, J = 5.6 Hz), 153.3
(d, J = 8.4 Hz), 149.7 (d, J = 6.0 Hz), 144.3 (d, J = 7.4 Hz), 139.0 (d, J = 8.6 Hz), 135.1 (d, J = 8.8 Hz), 132.4
(d, J = 7.0 Hz), 129.4 (d, J = 5.8 Hz), 125.2 (d, J = 7.8 Hz), 123.4 (d, J = 183.5 Hz), 115.1 (d, J = 11.2 Hz),
and 59.4 (d, J = 7.8 Hz).

4. Conclusions

In conclusion, we have reported the first cobalt-catalyzed cross-coupling of arylboronic acid
with alkyl/aryl phosphites under mild conditions in the presence of zinc powder. Moderate to
high yields of the products were observed in almost all the cases screened. This new protocol
is advantageous because it uses a non air-sensitive ligand, and is an inexpensive and non-toxic
cobalt-catalyst. The ligands involved are much simpler and less bulky than the ones that are employed
in Pd, Cu, or –Ni catalyzed reactions; hence, the proposed method provides a better alternative for
such transformations. The reaction also has a great substrate scope with arylboronic acid, as well
as with different dialkyl/diaryl phosphites, which broadens its scope and can make it a widely used
method. Further studies regarding the exact mechanistic pathway and future scope of this catalyst
system are still under way.
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