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Small changes in a protein’s core packing produce changes in function, and even small
changes in function bias species fitness and survival. Therefore individually deleterious
mutations should be evolutionarily coupled with compensating mutations that recover
fitness. Co-evolving pairs of mutations should be littered across evolutionary history.
Despite longstanding intuition, the results of co-evolution analyses have largely
disappointed expectations. Regardless of the statistics applied, only a small majority of
the most strongly co-evolving residues are typically found to be in contact, andmuch of the
“meaning” of observed co-evolution has been opaque. In a medium-sized protein of 300
amino acids, there are almost 20 million potentially-important interdependencies. It is
impossible to understand this data in textual format without extreme summarization or
truncation. And, due to summarization and truncation, it is impossible to identify most
patterns in the data. We developed a visualization approach that eschews the common
“look at a long list of statistics” approach and instead enables the user to literally look at all
of the co-evolution statistics simultaneously. Users of our tool reported visually obvious
“clouds” of co-evolution statistics forming distinct patterns in the data, and analysis
demonstrated that these clouds had structural relevance. To determine whether this
phenomenon generalized, we repeated this experiment in three proteins we had not
previously studied. The results provide evidence about how structural constrains have
impacted co-evolution, why previous “examine the most frequently co-evolving residues”
approaches have had limited success, and additionally shed light on the biophysical
importance of different types of co-evolution.
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INTRODUCTION

Proteins are the molecular machines responsible for carrying out practically every chemical reaction in a
living organism. Their complexity is immense and yet, the standard method for describing them is as a
simple catalog of the parts they contain. The 3-dimensional structures of only a relative handful of proteins
have been determined, and so for them, somewhatmore detailed information is available. However, for the
vast majority, researchers are left trying to study the inner workings of molecular machines every bit as
complex as a car engine, using nothing more than a list of their parts, with no assembly diagram.
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Fortuitously, even without an assembly diagram, evolution has
frequently left important clues about function scattered
throughout the parts catalog. Since the basic biological needs
of life are similar across the entirety of the phylogenetic tree,
evolution has tended to reuse the same proteins, with minor
modifications to carry out the same functions in many different
organisms. For example, the molecular machine responsible for
breaking down complex sugars into simple sugars is similar
across all species, from bacteria to humans. The same idea
extends to molecular machinery for a variety of other
biochemical processes. While random mutations have
introduced changes to the machinery in each variety of
organism across evolutionary history, the shape and
functioning of the machines have remained largely similar
(Orengo et al., 1997; Altschul et al., 1997).

It is these collections of molecular machines with largely similar
shape and function, but with changed parts lists, that provide protein
researchers with some of the most useful insights into how proteins
work (Steipe et al., 1994). By statistically analyzing what parts are
allowed to change, what parts can be substituted, and when various
partsmust be swapped for differing assemblies simultaneously or not
at all, protein scientists can infer which pieces of the machines work
together and which pieces are independent. Because proteins are 3-
dimensional machines and the parts must fit together, pieces that
must work together can imply structural relationships, and so ideas
about working assemblies can be constructed even from just lists of
parts (Perrier et al., 1998). Identifying co-evolving parts of proteins
via statistical means extracts information not just from a specific
protein in a specific evolutionary context, but also from all the
similar proteins across all the known organisms, presenting an
abundance of data (Durbin et al., 1998; Krogh, 1998; Ray et al., 2009).

The remaining challenge is that this abundance of data that can be
inferred by statistically comparing the parts lists, or protein sequences
as they are called, is staggering. A typical proteinmay have 300 amino-
acid residue building blocks from which it is composed. Each of these
building blocks can have one of 20 shapes (or be absent), and they can
fold up and interact in a nearly uncountable variety of ways. As a
result, even if only pairwise combinations of residues are considered as
possible sub-assemblies, when co-evolution is considered, the
collection of available data grows from a 300-item parts list to a
nearly 20-million-item long list of potentially cooperating
combinations of parts. Of course, the amino-acid parts of proteins
interact in groups much larger than pairs, so the real size of the data is
orders of magnitude larger.

For years, researchers have been trying to define better statistics
for co-evolution, and one of the tests commonly applied, is whether
the predicted co-evolving residue pairs are in proximity. It is a
reasonable intuition that parts of an assembly that affect each other
are probably near each other. Therefore, to determine whether
one’s approach for identifying co-evolution is valid, checking the
proximity of things that most confidently co-evolve, seems like a
reasonable first-pass test (Halperin et al., 2006).

Unfortunately, repeated attempts to predict residue proximity
from different estimates of co-evolution have had only limited
success. The most successful have either been restricted to specific
proteins, placed cumbersome restrictions on the sequences
analyzed, or applied complex models from which biological

understanding is hard to extract (Halperin et al., 2006; Gomes
et al., 2012; Ovchinnikov et al., 2014; Jia et al., 2020). Machine
Learning has demonstrated that co-evolution data, in its entirety,
does contain information about structure (Schaarschmidt et al.,
2018; Salmanian et al., 2020; Li et al., 2021). In particular
AlphaFold and AlphaFold2 have shown that deep learning
that incorporates covariation in homologous sequences can
significantly improve the prediction of tertiary structure
(Senior et al., 2020; Jumper et al., 2021). However, these
powerful Machine Learning tools for structure prediction
provide minimal insight into where the information that they
employ is hiding. And, current attempts to unravel this mystery
are focusing on tightly-constrained, tractable subsets of the
problem such as nonadditive triangular couplings (Werner
et al., 2021). Overall, co-evolution has empowered useful
predictions, but a broad view of what information lives in co-
evolution data, and where it lives in that data, has remained
disappointingly elusive.

The core of the problem with inferring a relationship between
co-evolution data and structural information, is that there is
simply too much data. The fingerprints implicated in specific
contexts, such as those of the structural necessities of neighboring
residues fitting each other, exist amongst millions of other related
fingerprints, and extracting useful information from noisy
protein sequence data is a daunting task (Lee and Kim, 2009).
While sophisticated approaches such as deep learning
demonstrate that the information is present, simple techniques
for reducing the data down to interesting subjects for analysis,
such as picking the statistically most strongly co-evolving pairs of
residues and discarding the rest, have not been successful
(Halperin et al., 2006; Gomes et al., 2012; Li et al., 2021).

Applying a simple visualization approach (Ray, 2004)1 to “all
of” of the co-evolution data for a protein however—even with
quite limited family data available—demonstrates an interesting
phenomenon. When co-evolution data is filtered using a weak
statistical significance threshold, visually salient features appear,
and the residues implicated by these features appear to have
structural relationships: they are almost ubiquitously closer than
expected for residues with similar sequential separation in a
protein. As the threshold of statistical significance is made
more stringent however, the visually salient groups disappear.
Moreover, the few residue pairs remaining at the most stringent
thresholds often display no structural relationship (Ozer, 2008).
An example of this phenomenon in the adenylate kinase (ADK)
family (Berry and Phillips Jr., 1998) is shown in Figure 1.

Put another way, those patterns of co-evolution that appear to
be the most necessary—those that would appear at the top of a list
sorted by significance—don’t appear to be related to structure
(Ozer and Ray, 2006), while those scattered further down in the
list—their concerted relationships only observable by literally
looking at the patterns they make—seem to be implicated in
protein structure.

To determine whether this result was an anomaly, or whether
visually-salient patterns of weak co-evolution actually provided

1www.stickwrld.org.
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signals of structural information, we tested similarly visually-
salient patterns of co-evolution in other proteins. Our results
suggest that the community intuition—co-evolution contains
information about structure—and many of the simple
approaches for detecting that co-evolution, have been right all
along, but that counter-intuitively, the information resides in
patterns of more-weakly co-evolving residues rather than the
residue pairs that display the strongest co-evolution signal.

METHODS

Experimental Design in Brief
In our study we applied our visualization tool StickWRLD (Ray,
2004; Ozer and Ray, 2006, 2007; Ray et al., 2014) to identify co-
evolutionary changes in protein families that fell into visually

interesting groups. This work was performed by a user with
StickWRLD experience, using protein families with which he had
no prior experience. Inter-residue distances between the
“interesting” residue pairs in a protein data bank (PDB)
Berman et al. (2000) structure from each family were
determined. To confirm the visual salience of the residue-
residue correlations selected by this user, static images from
his StickWRLD sessions were shown to a group of 32
university students and their selections of “interesting” groups
recorded. To further confirm that visual salience was a property
of the protein families and sequences rather than random noise or
an artifact, the same 32 students were asked to make selections in
randomized StickWRLD images as well. Finally, to confirm that
the bias towards unexpectedly-short inter-residue distances was a
property of the selected residue pairs rather than a general
property of residues with similar sequential separation along

FIGURE 1 | StickWRLD presents the user with an interactive interface to a (pseudo) radial-layout node-link diagram of residue co-evolution statistics. The family
(residue identity) position-specific scoring matrix (PSSM) is arranged sequentially around the periphery of a cylinder and edges connecting co-evolving residues are
drawn between their corresponding PSSM positions. These diagrams can contain as much or as little of the complete set of co-evolution statistics as the user desires,
and can be rapidly “dithered” around any given set of parameters to see how small changes in parameter choice change the displayed subset of residue-pair
statistics. In this figure, diagrams show StickWRLD visualizations for the correlated mutations within adenylate kinase, extracted solely from the Pfam (Punta et al., 2012)
sequence alignments. They are arranged in order of decreasing statistical significance. The visually salient “clouds” or clusters of edges visible in (D) are indicative of
structural contacts, despite the fact that at p ≤ 0.1 they are well within the noise floor. Tr > = 0.15 for all images. The start of the arrow in subfigure (A) indicates the
N-terminal of the protein and it points in the direction of increasing sequence coordinates. (A) The most significant correlations, with p ≤ 0.005, have no obvious visual
pattern. (B) As the significance is weakened, here p ≤ 0.010, more correlations appear. (C)When correlations with p as poor as 0.050 are shown, distinct patterns begin
to appear in the cloud of minimal-significance correlations. (D) Even when the significance is only p ≤ 0.100, the cloud of weak correlations remains visually focused
around certain areas in the diagram.
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the sequences, the observed inter-residue distances were
compared to the entire list of inter-residue distances for
residues with each pair’s separation along the protein sequence.

StickWRLD
StickWRLD was originally conceived as a hypothesis-generating
tool for exploring patterns of co-evolution in RNA and protein
families, with the intent of enabling better sequence-homology
searches (Ray, 2004; Ozer and Ray, 2006). As a result it provides
many more analytical and presentation capabilities than were
used in this study. In general terms, StickWRLD visualizes the
residue distribution found in each position of a sequence
alignment and the joint distribution of residue pairs between
positions of the alignment. It presents a view of the amino-acid
utilization of the a family of proteins with similar function. At
each sequential position in order of assembly, it shows the
distribution of parts observed to be used. It projects into this
view, information regarding when pairs of positions are
interdependent, as evidenced by simultaneous changes across
evolutionary history.

As used here, StickWRLD presents the user with an interactive
interface to what is essentially a radial layout of the protein
sequence positions, and projects weighted node-links into this
layout to convey information regarding the frequency with which
different pairs of amino acids apparently co-evolve.

The display differs from a strictly 2D/planar radial
presentation such as Circos (Krzywinski et al., 2009) by using
the third dimension to enable each sequential radial position to
encode all 20 possible amino acids, and the co-evolution node-
links connect the individual amino acid identities rather than just
the columns. This departure from a planar 2D presentation
enables the interface to display (potentially) every possible
node-link between every possible pair of amino acid identities
across the entire protein family, and for the user to explore this
large volume of data in its entirety.

The individual sub-nodes for each individual amino acid in a
sequence position are scaled to the population density of that
amino acid in that position of the protein family. The node-links
between amino-acid identities at different positions are scaled to
the unexpected (Ray, 2004) population of sequences sharing
those two amino acids. We call the unexpected population Tr,
or the Total residual, as it is the difference between the observed
population sharing the two amino acids, and the expected
population that would share them if the amino acids selected
by the protein family at those positions were independent.

StickWRLD enables the user to filter the displayed subset of
node-links based on Tr, statistical significance, and a number of
other parameters. The filter parameters can be changed easily
using increment-decrement buttons or simple sliders, enabling
the user to rapidly “dither” between different filter settings to see
how the displayed information changes.

Protein Family Selection
Having noted a surprising consistency in the visual salience of the
“interesting clouds” that we previously observed in ADK, and
with evidence that the co-evolving residues in three such patterns
were all closer than expected, we undertook to determine if

patterns of similar visual salience in other proteins were also
signatures of structural proximity.

A student familiar with both protein biophysics and
StickWRLD selected three protein families from Pfam (Punta
et al., 2012) that met the following criteria: Proteins in the families
were less than 500 amino acids in length; At least 50 members in
the Pfam seed-sequence list for the family; The seed sequences
had no large (> 25% of the sequences and > 25% of the family
length) gaps; The family displayed similar “interesting clouds” at
similar levels of our Tr threshold and statistical significance to the
patterns we had previously identified in ADK (Tr ≥ 0.1, p ≤ 0.1);
At least one protein structure needed to be available in the Protein
Data Bank.

Without consulting the content of the protein structure files,
the student selected the Chain G of the gelsolin family (PF00626)
(Silacci et al., 2004), the P-II family (PF00543) (Cheah et al.,
1994), and the X8 domain family (PF07983) (Barral et al., 2004),
with corresponding PDB entries 1NM1, 1HWU, and 2JON for
further analysis.

The student loaded the seed sequence alignment for each
selected family into StickWRLD and explored the
interdependencies until “interesting clouds” appeared, then
recorded the residue pairs involved in these clouds
(Supplementary Material). A static view of the StickWRLD
display with these parameters was saved.

The columnar order of each protein family was then
randomized, the resulting alignments loaded into StickWRLD
and static images again saved with the same parameters as before.
It is important to note that this maintains exactly the same set
(number and size) of nodes and node-links as appear in the
original images, but randomizes their placement in the radial
layout.

The PDB structures were then analyzed to determine the
expected inter-residue distance for each possible sequential-
separation in that protein structure, and to determine the
inter-residue distances of any residue pairs that corresponded
to those pairs selected from the StickWRLD exploration of the
sequence family.

Confirmation of the Visual Salience of
“Interesting Clouds”
The static images of StickWRLD displays for each of the protein
families, as well as their randomized counterparts were presented
as printed copies to 32 undergraduate and graduate-level
computer-science students with no experience with protein
science. The students were instructed to select “visually
interesting regions” in each display by circling them on the
page, and their answers were recorded.

RESULTS

Weak Patterns of Co-evolution Consistently
Implicate Structure
In two out of three of the new Pfam protein families analyzed in
this study (gelsolin and X8, results shown in Figure 2), as well as
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in an additional cloud detected in adenylate kinase, all but one of
the residue pairs were closer than expected in the protein
structures.

Ozer (2008) and Ozer and Ray (2007) provide an extensive
analysis of the performance of Tr and significance across the
entire Pfam and PDB databases for selecting close residue pairs.
At the Tr and significance thresholds chosen (noted in the
subfigure captions) the correlations displayed in these
diagrams are only expected to be in contact approximately
20–30% more frequently than randomly-chosen residue pairs.

The residues selected in gelsolin chain G fall in the visually
salient triangular and square patterns of interdependencies visible
in Figure 2A. Those selected in X8 were in the dense triangular

grouping in the lower left of the StickWRLD diagram shown in
Figure 2C. The distances between the residues in each pair that
occur in their relevant PDB structures are plotted in Figures
2B,D respectively. A single residue pair in the group selected in
ADK fell above the expectation.

In the case of P-II we observed a different, seemingly
incongruous result, as shown in Figure 3. In P-II, the user
selected the residue pairs involved in the striking trapezoidal
cluster shown in Figure 3A. Unlike with gelsolin and X8, as seen
in Figure 3B, almost half of the selected residue pairs fall above
the expected distance.

Examination of the protein structure for P-II (PDB ID
1HWU) however, suggests an explanation: Functional P-II is a

FIGURE 2 | At similar thresholds of Tr and P as seen in ADK, other protein families display similar “clouds” of weakly co-evolving residue pairs, and similar areas of
visually-random or node-link-free space. These residues linked by these weak co-evolution statistics are universally closer than the expected distance for residues of
similar sequential separation in their protein structures. The start of the arrows in each image indicates the N-terminal of each protein and it points in the direction of
increasing sequence coordinates. It should be noted that there are fewer distances plotted in the inter-residue distance plots than in the StickWRLD diagram of co-
evolving residues, because the inter-residue distance plot shows distances for only those residue pairs that occur in each specific PDB file, while the StickWRLD diagram
shows all co-evolution across each PFam family. (A) Correlated evolution statistics in the gelsolin domain family visualized as node-links in StickWRLD. Tr > = 0.12, p < =
0.05. (B)Residue pairs selected by a user as interesting in the StickWRLD diagram, plotted against the inter-residue distance distribution for the gelsolin Pfam family, with
distances as found in Chain A of the 1NM1 PDB structure. (C) Correlated evolution statistics in the X8 family visualized as node-links in StickWRLD. Tr > = 0.1, p < =
0.001. (D) Residue pairs selected by a user as interesting in the StickWRLD diagram, plotted against the inter-residue distance distribution for the X8 Pfam family, with
distances as found in the 2JON PDB structure.
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homotrimer. Three identical copies of the protein assemble, as
shown in Figure 4, into a near-symmetric triangular barrel
(Machado Benelli et al., 2002).

Within a subunit (orange), the unexpectedly-long correlations
span from the pair of short beta sheets at the top (12 to 1 o’clock),

to regions of the protein at the far left (7 o’clock, 9 o’clock areas)
of the image. However, the corresponding sequence regions of the
blue subunit are at the upper right (2 o’clock).

Much as it is challenging for NMR experiments to differentiate
between intramonomer and intermonomer contacts without
additional data (O’Donoghue and Nilges, 2002; Sgourakis
et al., 2011), simple co-evolution analysis cannot differentiate
between co-evolution occurring within a single subunit or
between neighboring subunits. It is, however, suggestive that
the residues that co-evolve in the neighboring subunit are
closer than the expected distance within a single subunit.

Consistency of Visual Salience
When the cohort of 32 computer science (CS) students was
presented with the static StickWRLD images shown here, their
selections for “visually interesting” regions were essentially
identical to those selected by the student of protein biophysics.
There were small differences in the exact boundaries of their
selections, and because we asked them to select regions instead of
individual node-links their results are difficult to compare
precisely with the results from our experienced student.
However, qualitatively, the selections made by 30 out of 32 CS
students were consistent with the results from the biophysics
student. The two CS students whose results differed, each
independently selected different empty regions of the figures
because they felt that the absence of anything in those regions
was the most interesting feature.

These results have been mimicked in audience-participation
sessions in conference presentations to groups of artists,
statisticians, and biologists.

When presented with the randomized StickWRLD diagrams
(not shown), the cohort of CS students produced results with little
consistency in terms of selected interdependencies. There were no

FIGURE 3 | In P-II, an unmistakable cluster of co-evolving residues appears at similar Tr and P thresholds, but the distances between the implicated residues are
scattered both above and below the expected distance for residues of similar sequential separation. The start of the arrow in subfigure (A) indicates the N-terminal of the
protein and it points in the direction of increasing sequence coordinates. (A) Correlated evolution statistics in the P-II family visualized as node-links in StickWRLD. Tr > =
0.11, p < = 0.005. (B) Residue pairs selected by a user as interesting in the StickWRLD diagram, plotted against the inter-residue distance distribution for the P-II
Pfam family, with distances as found in Chain B of the 1HWUPDB structure. The unexpectedly long inter-residue distances found for several of the cloud picks, appear to
be due to the actual related pairs occurring in neighboring chains of the P-II multimer (Figure 4), rather than entirely within a single monomer subunit.

FIGURE 4 | The structure of the homotrimeric functional P-II signal
transduction protein, one unit of the trimer shown in orange, one in white, and
one in blue. Links are shown in one subunit between the residues selected as
co-evolving in the Pfam family PF00543 seed alignment. The blue helices
at the upper right are the blue subunit’s copy of the orange helices to the
trimeric structure’s left. The unexpectedly distant residue pairs seen in
Figure 3may be due to the co-evolution being between the blue subunit and
orange subunit, rather than entirely within the orange (or any other single)
subunit.
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consistent regions selected, though some selections overlapped.
Several students did indicate one or more specific individual
(always the brightest in the image) interdependencies as their
selection. However, perhaps the most interesting result was that
while none of the students showed the slightest hesitation to
indicate that some portion of the real diagrams was interesting,
most were reluctant to make any selection from the randomized
diagrams, and several outright refused. One paper was marked
“This is stupid”.

DISCUSSION

Our results suggest something interesting: while patterns of
frequently co-evolving residues are implicated in protein
function, it appears that patterns of infrequently co-evolving
residues are implicated in protein structure. This makes
evolutionary sense. Evolution favors systems that are robust to
mutational insults. Therefore if a pair of residues is observed to
co-evolve with great frequency, this is strong evidence for that
pair of residues being required to maintain function (fitness).
Structure however is under less evolutionary pressure than
function, and so evolution may accept a variety of structurally-
compensating mutations to correct for the destabilizing effects of
mutation at a residue whose function is purely structural.

If a structural-residue mutation can be compensated for by
several different mutations, at several different residues, none of
those correlated mutations will occur with great frequency. As a
result, none are likely to attain strong statistical significance. This
is exactly what we see in our “interesting clouds”: infrequently-
occurring groups of co-mutations that occur in proximity to each
other, and which apparently contain structural information.

This observation has profound implications for fields such as
protein engineering. Improving the activity and stability of
engineered proteins has traditionally relied on building
proteins that are “like what nature most-often chooses to do”.
However, determining what information to include when
engineering a protein has been challenging. Identifying the
most frequently used residues, or consensus, from multiple
sequence alignments (MSAs) has long been assumed to be the
best way to determine the ideal residue composition of a protein.
More recently it has been shown that proteins engineered using
the consensus as a guide are sometimes less active than any of the
wild-type proteins (Dagan et al., 2013; Risso et al., 2014). This
deficit occurs because the consensus ignores co-dependencies
between residues that are required for function or structural
stability. Our results demonstrate that it is not sufficient to simply
look at the top of the list of the most-frequently co-evolving
residues to identify candidates for improving this engineering
effort.

It is interesting to note that many of the residue pairs
implicated in the observed “interesting clouds”, are not within
the canonical 8 Å distance typically assumed to be the cutoff
distance for residue contacts. This again has important
implications for protein engineering efforts. Not only does it
suggest a requirement to look beyond 8 Å when considering the
impact of a design change, it also suggests that a larger range of

weakly-stabilizing co-mutations are available in the engineer’s
palette of design choices. Because a typical protein may be biased
towards its native structure by as little as the energy of a few
hydrogen bonds (~ 5 − 15kcal/mol) (Pace, 1975), and increasing
protein stability beyond its native state has been shown to
negatively impact activity (Schreiber et al., 1994; Beadle and
Shoichet, 2002; Dagan et al., 2013), the protein engineer must
walk a narrow energetic path when introducing changes into a
protein sequence. The energetic impact of interactions with
residues within the 8 Å sphere of immediate contacts is large
because of their direct interactions, and there are only a few of
them available by which an engineer can modulate the effects of a
mutation’s impact on stability. Widening the search window of
candidates for compensating mutations, and including many
with more subtle contributions to the stabilizing energy, can
provide the engineer with additional design flexibility.

We have evidence in other research for the importance of this
weakly co-evolving, more distant variety of interaction between
protein residues. We have previously designed various mutants of
Triosephosphate Isomerase (TIM) and assayed them for structure
and function. A pure consensus version of the TIM (cTIM),
which in fact included many of the most-strongly co-evolving
residue pairs, was found to be poorly folded and nearly inactive. A
modified version of cTIM (ccTIM) which restored additional
more weakly-co-evolving residue pairs was stable and as active as
wild-type TIM (Mohan, 2017). In a different experiment, a
collaborator examined the pattern of co-evolution between the
WW domain of dystrophin and its binding partner β-
dystroglycan (Huang et al., 2000). Of the five residues in
dystrophin that were selected as members of the interesting
weakly co-evolving group between the proteins, two are
members of the seven known inter-protein contacts (Huang
et al., 2000), two others are sequentially adjacent to a
crystallographic-contact residue, and the last is separated from
a crystallographic contact by only one residue (Supplementary
Material).

Taken together, these results suggest there is information in
the patterns of weakly co-evolving residues that occur in proteins,
even where the statistical significance of any individual co-
evolution signal is so poor as to be discarded as beneath the
noise floor.

Presented together in an appropriate explorable visualization
interface, the human visual system is capable of integrating these
individually insignificant contributions and identifying
meaningful subsets of the co-evolution signals which display a
relationship to protein structure and stability. These findings have
both practical applications in improving the available design
space for protein engineering, as well as utility in shedding
light on the question of why strongly co-evolving residue pairs
have disappointed expectations for predicting structural contacts.

Caveats and Limitations
Our results present a variety of acknowledged limitations: While
we found 49 closer-than-expected (out of n = 50 tested) co-
evolving residue pairs, this result is derived from a total of four
protein families. We do not know whether this generalizes to all
proteins, or whether it is restricted to only proteins with specific
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characteristics such as size or a particular predominant
secondary structure. In addition, in any given protein there
are vastly more structural interactions than appear as
“interesting clouds”, and we neither know whether additional
interactions may become visible with different parameter
choices, or if what can be seen is limited to specific types of
structural interactions. We also have yet to define a concrete set
of criteria by which “interesting clouds” could be algorithmically
selected. Users anecdotally claim that they select such clouds
based on a convolution of node-link weight, density, consistency
of direction and consistency of end-points, but the specifics
remain under investigation. Finally we do not claim that our
algorithmic approach for identifying interactions (P and Tr) is
ideal. Better statistical or algorithmic approaches such as
Machine Learning can almost certainly provide significantly
better lists of residues that co-evolve. In this brief research
report we argue only that our Visual Analytics approach
provides interesting insight into the biological origin of
different patterns of co-evolution, with potentially important
implications for understanding and using such lists of co-
evolving residues.
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