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Abstract

We present primary results from the Sequencing Quality Control (SEQC) project, coordinated by 

the United States Food and Drug Administration. Examining Illumina HiSeq, Life Technologies 

SOLiD and Roche 454 platforms at multiple laboratory sites using reference RNA samples with 

built-in controls, we assess RNA sequencing (RNA-seq) performance for junction discovery and 

differential expression profiling and compare it to microarray and quantitative PCR (qPCR) data 

using complementary metrics. At all sequencing depths, we discover unannotated exon-exon 

junctions, with >80% validated by qPCR. We find that measurements of relative expression are 

accurate and reproducible across sites and platforms if specific filters are used. In contrast, RNA-

seq and microarrays do not provide accurate absolute measurements, and gene-specific biases are 

observed, for these and qPCR. Measurement performance depends on the platform and data 

analysis pipeline, and variation is large for transcript-level profiling. The complete SEQC data 

sets, comprising >100 billion reads (10Tb), provide unique resources for evaluating RNA-seq 

analyses for clinical and regulatory settings.

Technological advances have made deep RNA sequencing feasible, expanding our view of 

the transcriptome1 and promising to permit quantitative profiling with large dynamic range.2 

Recent comparisons of RNA-seq with established technologies for differential expression 

analysis have found good overall agreement between RNA-seq, qPCR and microarrays. In 

general, RNA-seq has provided increased detection sensitivity and opened new avenues of 

research in transcriptome analyses, such as the study of gene fusions, allele-specific 

expression and novel alternative transcripts. However, it has been shown that RNA-seq data 

exhibit measurement noise, which is a direct consequence of the random sampling process 

inherent to the assay. Assessments of RNA-seq have been limited to individual sequencing 
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platforms and experiments, which may explain the variation of conclusions by study (see 

Supplementary Table 1 and Supplementary Notes section 2.4 for discussion)3–6 Moreover, 

new platforms and protocols for RNA-seq have emerged in recent years. With the 

widespread adoption of RNA-seq, including the completion of large projects, such as 

ENCODE,7 TCGA8 and ICGC,9 a comprehensive multi-site cross-platform analysis of 

RNA-seq performance is timely. Reproducibility across laboratories, in particular, is a 

crucial requirement for any new experimental method in research and clinical applications, 

and can only be tested in extensive comparisons of different sites and platforms. As in 

phase-I of the MicroArray Quality Control project (MAQC-I),10 which tested agreement 

across sites and platforms for gene-expression microarrays, the FDA has coordinated the 

Sequencing Quality Control project (SEQC/MAQC-III), a large-scale community effort to 

assess the performance of RNA-seq across laboratories and to test different sequencing 

platforms and data analysis pipelines.

Here we report a multi-site cross-platform analysis of RNA-seq measurement performance 

in a controlled setting. We sequenced commercially available reference RNA samples 

spiked with synthetic RNA from the External RNA Control Consortium. Two distinct 

samples were assessed individually and also combined in known ratios. This allowed us to 

examine how well truths built into the study design, such as known relationships between 

samples within and across sites, could be recovered from measurements. With no 

independent ‘gold standard’ feasible, these ‘known truths’ support an objective assessment 

of performance. To this end, we examined a multitude of properties, including 

complementary metrics of reproducibility, accuracy and information content. Such a multi-

dimensional characterization is critical for the development of more powerful analyses of 

the underlying biological mechanisms in complex data sets because often there is a trade-off 

between one desirable property and another, such as accuracy versus precision. Analyses 

focusing on measurement quality metrics51, spike-in controls and limits of detection52 and 

the effects of analytic pipeline choice53 are presented in separate studies.

The SEQC project also involved studies assessing RNA-seq in several research applications 

(Fig. 1a), including a performance analysis of neuroblastoma outcome prediction54, a 

comparative investigation of toxicogenomic samples testing chemicals with different modes 

of action,55 and a comprehensive survey of tissue-specific gene expression in rat.47 In total, 

>100 billion reads (10 terabases) of RNA-seq data were produced and studied, which to our 

knowledge represents the largest effort to date to generate and analyze comprehensive 

reference data sets. A rigorous dissection of sources of noise and signal indicates that, given 

appropriate data treatment and analysis, RNA-seq can be highly reproducible, particularly in 

differential gene-expression analysis.

RESULTS

Study design

We used the well-characterized reference RNA samples A (Universal Human Reference 

RNA) and B (Human Brain Reference RNA) from the MAQC consortium,10 adding spike-

ins of synthetic RNA from the External RNA Control Consortium (ERCC).11 We then 

mixed A and B in known ratios, 3:1 and 1:3, to construct samples C and D, respectively 
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(Supplementary Fig. 1). All samples were distributed to several independent sites for RNA-

seq library construction and profiling by Illumina’s HiSeq 2000 and Life Technologies’ 

SOLiD 5500 instruments. In addition, vendors created their own cDNA libraries, which 

were distributed to each test site to examine ‘site effects’ independent of the library 

preparation process (Fig. 1b). To support an assessment of gene models, three sites also 

independently sequenced samples A and B using the Roche 454 GS FLX platform, 

providing longer reads. In total, for samples A to D, 108 libraries were sequenced on a 

HiSeq 2000, another 68 libraries on SOLiD, and 6 libraries on a Roche 454.

To compare technologies, we also examined expression profiles of the same reference 

samples generated from Affymetrix HGU133Plus2.0 microarrays in the MAQC-I study, and 

profiled and analysed these samples on several current microarray platforms (Methods). 

Besides RNA-seq and microarrays, we also considered qPCR-based protocols: we examined 

843 TaqMan assays from the MAQC-I study, and in addition performed 20,801 PrimePCR 

reactions.

Read depth dependency of gene detection and junction discovery

Because efficient quantitative expression profiling takes advantage of known gene models3 

the choice of a reference annotation can considerably affect results, including performance 

assessments. Our data showed that the number of reads mapped to known genes depends on 

the accuracy and completeness of the gene models. Among all 23.2 billion reads that could 

be mapped to genes other than those encoding mitochondrial or ribosomal RNAs, 85.9% 

were mapped to RefSeq,12 whereas 92.9% mapped to GENCODE,13 and 97.1% to NCBI 

AceView14 (Fig. 2a). This is not a property of the samples examined (A, B, C and D), as a 

similar trend is seen when adding all reads from the SEQC neuroblastoma project 

(Supplementary Notes Section 1.2). The higher read fraction unique to AceView is 

genuinely due to the higher accuracy of its gene models (Fig. 2a), as AceView annotated 

exons cover fewer bases than does GENCODE (191 Mb versus 203 Mb; Supplementary 

Notes Section 1.2).

As the data constitute the deepest sequencing of any set of samples yet reported and include 

a total of 12 billion mapped HiSeq 2000 RNA-seq fragments, we examined how well the 

known genes could be detected as a function of aggregate read depth, taking all replicate 

libraries, sites and samples together. We report read depth as the number of sequenced 

fragments because the mapping and counting of paired ends are highly correlated; single-

ended reads can thus be used when the additional long-range information from read pairs is 

not required. At a sequencing depth of 10 million aligned fragments, about 35,000 of the 

55,674 genes annotated in AceView14 were found by at least one read. Some of these are 

due to background noise, for instance, from genomic DNA contamination (Supplementary 

Notes). For a comparison of alternative pipelines, annotations and the effect of read depth, 

we next focused on genes with strong support (16 or more reads). At this stringency, we 

found that about 20,000 genes were detected at a sequencing depth of 10 million aligned 

fragments, which covered the majority of strongly expressed genes. Detection increased to 

>30,000 genes at 100 million fragments, and finally to >45,000 at about one billion 

fragments. Although the number of additional known genes detected successively decreased 
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for each doubling of read depth, additional genes were still being detected even at high read 

depths of >1 billion fragments, indicative of low expression levels per cell or small numbers 

of cells expressing these genes (Fig. 2c for HiSeq 2000 and Supplementary Figure 2 for 

SOLiD).

We examined the detection of exon-exon junctions as a function of read depth for RefSeq, 

GENCODE and AceView annotation (Fig. 2d). In general, with each doubling of the read 

depth, many additional known junctions were detected for the more comprehensive 

annotations, even at high read depths exceeding one billion reads. As samples A and B in 

the study are very different, we expected to see more transcriptional complexity when 

combining samples. Indeed, combining biologically distinct samples contributes more to 

exploring the complex transcriptome space than merely increasing read depth (Fig. 2d)47,54. 

The number of additional known junctions decreased fastest for RefSeq, which provides the 

least complex annotation (Supplementary Figure 3), with practically all annotated junctions 

observed at the highest read depth. In contrast, the AceView database is the most 

comprehensive and has the highest number of junctions supported by reads from this study, 

reaching over 300,000 junctions at the maximum read depth, more than three times the 

number detected at 10 million reads. Although GENCODE and AceView have similar total 

numbers of genes and similar footprints on the genome, considerably fewer annotated genes 

and junctions in GENCODE were supported by the observed reads (Fig. 2b and 

Supplementary Figure 4). Therefore, all subsequent analyses presented in this manuscript 

are based on AceView, unless stated otherwise.

We next analyzed the reproducibility of detecting genes and junctions across measurement 

sites, platforms and analysis pipelines, as a key strength of RNA-seq is its inherent ability to 

identify splice sites de novo. To test this ability of RNA-seq to discover junctions, we first 

examined the HiSeq 2000 data because of the greater read length and depth. We considered 

three independent pipelines for de novo discovery of junctions independent of existing gene 

models: NCBI Magic,14 r-make (which uses STAR15) and Subread.16 All pipelines reported 

millions of junctions, with r-make predicting about 50% more than Subread and Magic, 

although almost all junctions found by Subread or Magic were also found by r-make. We 

also observed substantial but 12% lower agreement with TopHat2, regardless of whether it 

was run with or without gene model guided alignment17 (Supplementary Figure 5a), giving 

a total of 1,110,550 junctions consistently found by all five analysis variants. In total, 2.6 

million previously unannotated splice junctions were called by at least one of the five 

analysis pipelines, yet only 820,727 (32%) were consistently predicted by all the methods 

(Supplementary Figure 5b), illustrating the considerable difficulty of reliably detecting 

splice junctions de novo with current analysis tools.

We then examined whether unannotated junctions were independently discovered in both 

HiSeq 2000 and SOLiD data, as junctions only found by a single platform or library 

preparation protocol could be technical artifacts (Supplementary Figure 6). Junction 

discoveries from the SOLiD data reflected the lower read length and lower read depth as 

expected (simulation results in Supplementary Table 2). In particular we discovered 87,117 

unannotated potential junctions in the SOLiD data, of which 74,561 (86%) were also 

independently discovered from HiSeq 2000 reads using the Subread aligner. The number of 
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these new junctions found in each of the four samples (Fig. 2e) followed the order expected 

corresponding to sample complexity: B<A<D<C.

We then used the built-in truths of the benchmark measurements to examine the accuracy of 

the sample-specific levels of support of the unannotated junctions in terms of their ability to 

capture the expected A/B sample mixing ratio and yield titration order consistency. For 

example (Fig. 1c), if a gene is more strongly expressed in sample A than in sample B (‘A > 

B’) then we expect A > C > D > B because C = ¾ A + ¼ B and D = ¼ A + ¾ B, and we 

expect the inverse order if B > A. This consistency test is affected both by systemic 

distortions reducing accuracy and random variations reducing reproducibility. Another 

complementary test assesses the A/B mixing ratio recovery in the samples C (3:1) and D 

(1:3), which can be examined in a plot of log2(C/D) vs log2(A/B). Deviations from the ideal 

line (Fig. 1d) are also affected by systemic distortions, which reduce accuracy, and by 

random variations, which reduce reproducibility. Because both tests only reflect 

reproducibility for genes with similar expression levels in samples A and B, we also require 

a clear differential signal as assessed by the mutual information, a measure of information 

content (Online Methods).

We observed that requiring a consistent titration order and the correct A/B mixing ratio 

clearly enriched for junctions with higher expression levels (Fig. 2f), which were the easiest 

to measure and quantify. A comparison with junctions detected in Roche 454 data confirmed 

that the more abundant junctions could reliably be detected across different sequencing 

platforms (Supplementary Figure 7).

For an examination of how well junctions discovered by RNA-seq could be independently 

confirmed by a different technology, we performed qPCR with primer pairs designed to 

specifically validate 173 detected junctions. We randomly selected 136 well-supported 

junctions that had been discovered de novo by all three RNA-seq analysis pipelines in both 

HiSeq 2000 and SOLiD data. These junctions were chosen so that they log-uniformly 

covered a range of ~10–3,000 supporting reads, and so that half of them met all consistency 

tests. In addition, we also tested 13 known AceView junctions as positive controls and 24 

unannotated junctions that had only been discovered by a single analysis pipeline in the 

HiSeq 2000 or SOLiD data, despite having support by many reads (~300–3,000). Only five 

assays were non-informative (Online Methods). Notably, in the remaining assays, all of the 

13 positive controls and all of the 133 well-supported junctions were reliably identified by 

qPCR, with the numbers of supporting RNA-seq reads largely reflecting estimates of 

expression levels by qPCR (slope 0.95, Pearson (Spearman) correlation 0.74 (0.77), N = 

146), even for junctions with low read numbers or not meeting all consistency tests 

(Supplementary Figure 8). Moreover, 18 of the 22 pipeline specific junctions (>80%) could 

be confirmed at least qualitatively. For the most comprehensive surveys of potential new 

junctions, one may therefore want to consider all discovered junctions, although it makes 

sense to prioritize well-supported junctions found consistently (Fisher p < 4×10−4).

In the complete data set comprising SEQC samples A, B, C and D, we consistently detected 

~44,000 known genes (Fig. 2g) and ~310,000 known exons across pairs of replicate sites 

(Supplementary Figure 9), constituting about 79% and 47% of all known genes and exons, 
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respectively. Nearly 200,000 splice junctions were seen consistently (Fig. 2h), making up 

about 50% of all known junctions. This corresponds to about 90%of all detected known 

genes, 87% of detected known exons and 83% of detected known junctions, consistent with 

the explanation that larger features aggregating more reads are easier to measure 

reproducibly. The fluctuations in the detection of sequence features stemmed largely from 

sequencing depth–dependent sampling noise, which was reflected in the very similar intra- 

and inter-site agreements in the detection of known genes (Fig. 2g), exons (Supplementary 

Figure 9) and junctions (Fig. 2h). Considering the low technical variance in addition to the 

unavoidable sampling noise, these results emphasize the value of biological replicates.

Improving differential expression analysis reliability

Studies on microarrays have shown that results of typical statistical differential expression 

tests thresholded by p-value need to be filtered and sorted by effect strength (fold-change) in 

order to attain robust comparisons across platforms and sites.10 We thus sought to identify 

corresponding requirements for RNA-seq, examining the reproducibility of rank ordered 

lists of differentially expressed genes (DEGs), as well as the False Discovery Rate reflecting 

the information content of the measurements. Because the same samples were profiled at all 

sites, the number of true DEGs is zero when comparing the same sample between any two 

sites. Any DEGs found for self–self comparisons thus represent technical differences and 

can be considered ‘false positives’ (shown as dots in Fig. 3a). We examined the number of 

inter-site A versus A ‘false positives’ relative to the number of DEGs in A versus B 

comparisons, giving an empirical estimate of the False Discovery Rate (eFDR). We tested 

several RNA-seq data analysis pipelines for the six HiSeq 2000 sites, focusing on the set of 

23,437 genes present on the Affymetrix HGU133Plus2.0 microarrays for comparison.

We found that unfiltered data for both RNA-seq and microarrays show many DEGs, both for 

false positives (A versus A) and the likely ‘real’ DEGs in the A versus B comparison (Fig. 

3a), with the ratio of false positives versus true positives unacceptably high for both 

platforms (Fig. 3b). Also, we observed that different analysis pipelines vary in these 

measures of performance (Figs 3a–e). Next, we applied the |log2 fold-change|>1 filter 

advocated in the MAQC study on microarrays,10 and for microarrays observed a reduction 

in the eFDR to below 1.5%, save for one outlier site (Figs 3c,d). Notably, we found that 

applying pipeline-dependent filters for p-value, fold-change and expression-level (lowest 

third of all examined AceView genes, Supplementary Tables 3 and 4) successfully reduced 

the RNA-seq eFDR across sites without sacrificing sensitivity compared to the arrays (Fig. 

3d). We note that results for SOLiD were very similar (Supplementary Figures 10 and 11), 

with expression level thresholds reflecting the lower read depth for that platform.

After applying these filters, we found that most (but not all) RNA-seq pipelines achieved 

high inter-site reproducibility of differential expression calls with up to 95% concordance in 

DEGs (Fig. 3e and Supplementary Figure 12). This concordance between sites was highest 

for the most strongly expressed genes. Moreover, the filters resulted in a good agreement of 

differential expression calls across platforms (for example, A versus B on HiSeq 2000 

compared with A versus B on SOLiD, Supplementary Figures 13 and 14), suggesting that 
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differential expression analyses from different platforms can be combined—for example, to 

extend existing studies with additional samples.

Relative but not absolute expression measures satisfy tests

After an examination of the reliability of differential expression analysis of genes, we next 

examined the quantification of RNA using four consistency tests exploiting ground truths 

built into the study design (Fig. 4). First, we considered titration-order consistency as 

introduced in Figure 1c. This metric is affected both by systemic distortions reducing 

accuracy and random variations reducing reproducibility. The majority of genes (59%) 

titrated correctly (Fig. 4a), with little disagreement between platforms (Supplementary Table 

5). Genes with large differential expression performed best, with all genes showing 

consistent titration in several HiSeq 2000 and SOLiD sites, and no contradiction regarding 

the direction of change (blue curve). For the second built-in truth, we examined the A/B 

mixing ratio recovery (Fig. 1d) as another test reflecting accuracy and reproducibility. We 

observed the correct ratio for the majority of genes (Fig. 4b), with better agreement at higher 

expression levels (top 25%). Notably, the scatter of genes marked as titrating in this plot 

indicates that consistent titration does not guarantee a reliable recovery of the mixing ratio 

(and vice versa).

The third and fourth built-in truths leveraged the ERCC spike-ins.11 These analyses 

complement work examining fold-change recovery for these synthetic RNAs52. Across 

platforms, we observed that with sufficiently high expression levels (log2[conc]>3), the 

expected ratios of ½, ⅔, 1 and 4 were accurately recovered using about 90 million mapped 

fragments (Fig. 4c), with high precision indicating good reproducibility. Finally, we 

examined the ERCC absolute titration levels, as the ERCC RNAs were spiked into the 

samples A and B before the C and D samples were created (Supplementary Figure 1). We 

observed, however, that the fraction of reads aligning to ERCC spike-ins for a given sample 

varied widely between libraries and platforms, with ranges of measured ERCCs between 1–

2.5% for HiSeq 2000 and 2.5–4.7% for SOLiD, with a clear ‘library effect’ observed for all 

sites and platforms, affecting reproducibility. (Fig. 4d and Supplementary Figure 15). 

Indeed, when using the vendor-prepared library as the cross-site control, we observed very 

consistent measurements of the percentages of reads mapping to ERCCs, which indicates a 

large degree of variation from the preparation of libraries even at the same site. The 

resulting lack of meaningful absolute expression level measurements is moreover not 

specific to the ERCC spike-ins, as similar variation and substantial platform specific 

differences could also be observed for human genes (Supplementary Figure 16).

In addition, when the 92 ERCC spike-in RNAs are compared to their nominal 

concentrations, some of them (e.g., ERCC-116) are systematically measured up to 10 times 

below or above their expected concentrations, perturbing even the order of the ERCC scale. 

These discrepancies are highly reproducible, suggesting that the bias is sequence dependent. 

Although marginal trends could be observed as functions of GC content and average 

sequence region unfolding probabilities (Supplementary Figures 17 and 18), these did not 

pass tests for statistical significance. No consistent trend could be observed as function of 

mRNA length (Supplementary Figure 19), and the majority of the deviations is not 
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explained by any of these co-variates, indicating a need for further investigations of such 

distortions and their possible sources. We observed, however, that the effect is also protocol 

dependent and is reduced in the absence of poly-A selection (Supplementary Figure 20). 

This is in line with results in other studies, further underscoring the impact of protocol 

choice on quantification51,52, where fragmentation time, poly-A enrichment by columns, 

beads, or ribo-depletion, hexamer or oligo-dT priming, library isolation by gel or beads, 

different ligation efficiency and RNA quality at the start of library preparation have all been 

shown to have an effect. Consequently, just as for microarrays, absolute measurements by 

RNA-seq using a particular protocol are well reproducible but not very accurate. This 

observation implies that the use of external spike-in controls to accurately infer absolute 

expression levels of a gene of biological interest will remain challenging as long as these 

deviations are not better understood and can thus be avoided or quantitatively modeled.

Relative gene expression measurements agree across platforms

Because we observed good performance for RNA-seq in consistency tests of relative 

expression levels, we then sought to compare alternative measurement platforms. We first 

examined the differential expression of 843 genes measured by TaqMan for samples A and 

B in the MAQC-I study. Although more strongly expressed than typical AceView genes, 

these genes nevertheless span a wide range of expression levels (Supplementary Figure 21). 

We found good and comparable agreement among different platforms (Fig. 5a, where 

Pearson and Spearman correlation coefficients are given; Supplementary Figure 22). The 

HiSeq 2000 and SOLiD sequencing platforms showed the highest correlation to one another. 

This is consistent with other comparisons of relative expression measures.4,6,18,19

For absolute expression levels, correlations to TaqMan were slightly better for RNA-seq 

than for microarrays (Spearman correlation 0.83 versus 0.79, p = 0.02), and the average 

trend follows a more linear shape (Supplementary Figure 23b). Although we observed that, 

on average, absolute expression levels agreed between different platforms, there were 

substantial deviations across the entire dynamic range for large numbers of individual genes. 

These deviations are systematic—that is, they are not a question of reproducibility, but 

rather reflect the accuracy of absolute expression measures. In particular, by comparing 

expression level estimates from HiSeq 2000 and SOLiD RNA-seq (Fig. 5b), we observed 

5,056 genes that were expressed according to one platform but not the other (9%). This 

effect is only partly due to the non-stranded nature of the Illumina protocol used here, and 

the presence of 11,066 genes antisense to genes annotated on the opposite strand (Fig. 5c).

As an independent additional test, we generated 20,801 PrimePCR measurements of the 

SEQC samples A, B, C and D. We again observed that more than a thousand genes (5%) 

were not considered expressed by one platform but were clearly expressed according to the 

other (Supplementary Figures 24 and 25). Although qPCR based methods have traditionally 

been used as a reference ‘gold’ standard owing to their high sensitivity and dynamic range, 

it is noteworthy in this context that specific primer selection and protocol calibration are 

challenging in their own right.20 PCR is affected by GC bias21, and considerable differences 

in expression level measurements from different PCR based assays can be observed (Fig. 

5d).
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Performance assessment is metric dependent

A major promise of RNA-seq is the extension of expression profiling to the discovery and 

quantification of alternative transcripts. For transcript-specific profiling, however, no large-

scale expression data from other technologies are available as an external reference point. 

The SEQC data represent an opportunity for the multi-platform comparison of transcript-

specific measurements.

To support a balanced performance study of gene-level and transcript-specific expression 

profiling, we combined multiple metrics for a robust characterization of platforms, sites and 

data processing options: (i) average measurement precision,3 which directly assesses 

reproducibility, (ii) titration order consistency22 and (iii) recovery of the expected A/B 

mixing ratio, providing two complementary assessments reflecting both measurement 

accuracy and reproducibility, as well as (iv) differential expression and (v) the mutual 

information of sample titration, which capture different aspects of information content 

(Online Methods). For a summary view, we first focused on genes with a clear directional 

signal—that is, those that allowed an ordered discrimination of the samples A to D, as 

indicated by the mutual information metric (v). We then counted how many of these genes 

also satisfied a second requirement, for each of the metrics (i)–(iv). Such an integration of 

tests through counting genes that fulfill multiple assay criteria allows a comprehensive 

consideration of all the genes instead of restricting comparisons to a common subset of 

genes always identified as expressed. This is necessary for a meaningful comparison of 

pipelines and platforms with varying degrees of sensitivity (Supplementary Fig. 26a,b). The 

resulting four combined assays for the respective metrics (i)–(iv) are complementary—that 

is, a gene satisfying one does not generally satisfy the others (Supplementary Figure 27). 

The average of the four assays then provides a consistency score for robust characterization 

of measurement performance (Supplementary Figure 28).

For gene-level profiling, pipelines showed similar performances on average (Fig. 6a). 

Providing known gene models always considerably improved results (cf. our results for 

standard and gene model guided TopHat2). Relatively lower scores for transcript-level 

profiling indicate that the discrimination of alternative transcripts is more difficult, which is 

also reflected in stronger effects of pipeline choice (Fig. 6b).

RNA-seq has sparked an interest in transcript-specific profiling and the development of 

advanced algorithms for estimating alternative transcript abundances. With known gene 

models, similar approaches can now also be applied for microarrays. We thus next focused 

on a test set of 782 genes with multiple alternative transcripts of varying complexity and 

specifically selected to represent the full subset of spliced genes in AceView (Online 

Methods). Covering 5,691 alternative transcripts, this test set allows a first comparison of 

transcript-specific expression level estimates from RNA-seq and high-resolution transcript-

level microarray data. We found that efficient transcript-specific measurements with good 

precision on microarrays for quantitative expression profiling (Fig. 6d, Supplementary 

Figures 28 and 29) could complement the power of RNA-seq in the discovery and 

identification of new alternative transcripts (Fig. 2). In other words, the novel transcripts 
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found by RNA-seq can lead to efficient measurements with good precision on microarrays, 

which can in turn aid in the confirmation and functional study of new transcript variants.

Finally, each metric showed a different and platform-specific response to signal strength 

(Supplementary Figures 30 and 31), which for RNA-seq increases with transcript expression 

level and read depth. The read depth at which average RNA-seq performance meets or 

exceeds that of another platform thus directly depends on the chosen metric and the 

distribution of expression strength and differential signal in the samples measured. As a 

result, it also depends on the set of tested genes, over which the average performance is 

being computed. We show results here for the mutual information metric (Supplementary 

Figure 32), which is of direct relevance for classifier performance. As expected, RNA-seq 

performance improved with increasing numbers of mapped fragments (Fig. 6e). In 

particular, Life Technologies’ SOLiD and Illumina’s HiSeq 2000 performed similarly well 

for comparable effective read depths (Supplementary Figure 33a). The choice of reference 

platform considerably affects the number of RNA-seq reads required for obtaining 

comparable mutual information per gene (Supplementary Figure 34). For some of the 

microarrays and data-processing methods tested, as few as 5 million mapped RNA-seq 

fragments were more than sufficient (HGU133plus2 with MAS5), whereas ~50 million 

mapped fragments were required for others (PrimeView with gcRMA/affyPLM). The choice 

of RNA-seq pipeline also had an effect, with some tools requiring up to twice as many 

aligned fragments (cf. TopHat2+Cufflinks,23 Supplementary Figure 35).

DISCUSSION

In a multi-site cross-platform study led by the US FDA, four well-characterized reference 

RNA sample mixtures with built-in truths were profiled to test RNA-seq reproducibility, 

accuracy and information content in a detailed analysis of >30 billion reads on the reference 

samples alone. To our knowledge, the data presented here provide the deepest molecular 

characterization of any RNA samples to date.

We leveraged this deep data set to test the reliability and power of RNA-seq in exploring the 

complexity of the transcriptome. We studied the detection of known splice junctions and the 

discovery of unannotated junctions. De novo junction discovery was robust across sites both 

at low and at high sequencing depths, even beyond 10 billion aligned fragments. Many 

unannotated splice junctions were detected by multiple platforms and pipelines, with 

concordance directly reflecting the junction expression level. Similar to observations by 

ENCODE at the gene level,7 we observed three distinct classes of expression levels for 

splice junctions: highly expressed known junctions, known and unannotated junctions at 

medium levels, and many unannotated junctions found only at low expression levels. 

Although it has been proposed that an abundance of weakly expressed transcripts may 

reflect biological noise,25 the lower expression of these junctions may alternatively be the 

reason that they have so far received less attention in traditional experiments. With 

alternative transcript expression being dependent on cell type and experimental conditions, 

deep RNA-seq will continue to play a key role in fully exploring the transcriptomic 

repertoire, including the construction of extensive maps of alternative transcripts3 

highlighting splicing variants as well as alternative start and polyadenylation sites.7 De novo 
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discovery constitutes a key strength of RNA-seq, and is reflected in the expansive 

transcriptional landscapes observed from different cells and tissues in the transcriptome re-

annotation projects for human and rat47,56 and the rich profiles collected in clinical and 

toxicogenomic applications in which many terabases of additional RNA-seq data were 

collected and analyzed54,55. Future studies can be conducted to identify novel alternative 

transcripts through full gene models, which allow the filtering of spurious junctions that 

cannot be explained by expression levels of alternative transcripts consistent with the 

distribution of reads that map to exons.

Our read-mapping results underscore how crucial comprehensive gene model annotations 

are to accurate expression profiling.3 The human genome now has >55,000 well-validated 

genes, and the majority of them are not protein coding.7 Almost all human multi-exon genes 

exhibit alternative splicing, and spliced human genes have on average over nine alternative 

transcribed forms.7,14 Additional genes and transcripts are still being discovered, even 

beyond the already expansive gene annotation from ENCODE.13 Notably, the NCBI 

AceView14 database, which has >50,000 genes annotated from cDNA evidence, holds by far 

the largest and most-extensively validated set of splice junctions, with >300,000 well 

supported by the RNA-seq data reported in this study alone. Transcripts that may explain a 

particular phenotype may be missed by less-extensive annotations, stressing that the most 

comprehensive annotation for expression profiling is vital to accurate clinical research54,57. 

The characterization and, particularly, the quantification of alternative transcripts, however, 

still require further research. Although expression profiling of alternative transcripts is 

feasible, reattributing measurements to a set of alternative transcripts requires knowledge of 

all the alternative transcript forms of a gene, and involves combining information across the 

transcripts. For genome-scale RNA-seq, this is particularly difficult because of the sampling 

noise from low read counts for many transcripts, with recent work observing 300 million 

sequenced fragments to be required for the detection of a specific human alternative splicing 

event with 80% power.28

This also highlights the value of targeted RNA-seq.29 Although simpler organisms such as 

C. elegans may be less affected by the difficulties of reliably attributing reads to alternative 

transcripts,24 analogous considerations will apply to research on mouse, rat and other 

complex transcriptomes. The need for longer-range information is a consequence of the fact 

that certain complex gene models cannot be resolved by the local information provided by 

either microarray probes or individual short RNA-seq reads alone. Although read pairs of 

size-controlled fragments can improve on this, they also limit the recovery of shorter 

transcripts. Full alternative transcript profiling will thus greatly benefit from longer RNA-

seq reads, which may eventually approach the full length of complex cDNAs. Combining 

deep RNA-seq for alternative transcript discovery with modern high-resolution microarrays 

for genome-scale quantification may provide an efficient approach for systematic transcript-

level expression profiling.18

Although none of the technologies we tested could provide reliable absolute quantification, 

relative expression measures agreed well across platforms, including RNA-seq, qPCR and 

microarrays. The majority of genes satisfied constraints based on the truths built into the 

study design. Going beyond earlier platform comparisons that considered individual 
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performance metrics,3–6,18,19,27 we combined complementary metrics for a robust 

characterization of measurement performance that can be combined with further assays such 

as tests for strandedness, considerations based on the ERCC spike-in response, and tests for 

the exclusion of non-specific background. Notably, the important but difficult task of 

estimating and removing background noise (Supplementary Figure 36b), typically improves 

accuracy at the expense of precision (Supplementary Figure 29).

Considering the substantial disagreements even between different types of qPCR-based 

assays, we conclude that there is no single ‘gold standard.’ Although our cross-platform 

comparisons reveal common trends, drastic systemic differences remain. Reference data sets 

such as the compendium presented here are invaluable for a systematic characterization of 

measurements, which is critical for reliable conclusions from large-scale experiments. 

Specifically, a closer examination of the varying amount of detected ERCCs per sample 

indicated substantial differences and inconsistencies even across libraries prepared from the 

same sample at the same site and sequenced by the same machine. This implies inherent 

limitations for the read out of absolute expression level estimates and absolute 

quantification.26 As the vendor-prepared libraries gave very uniform results across sites 

(Fig. 4d), the observed variations likely arose in library construction, and may partially be 

explained by platform-specific differences in kit chemistry and varying degrees of sample 

poly-adenylation26. Therefore, in RNA-seq experiments, multiple libraries per examined 

condition or sample should be profiled.

We show that filters can improve robustness of differential expression calls and consistency 

across sites and platforms. For RNA-seq, removing small fold-changes as well as excluding 

low-expression measurements reduced the false discovery rate considerably and, in general, 

gave an improvement over microarrays10 at similar sensitivity. These filters also achieved 

good inter-site agreement of lists of differentially expressed genes, with the performance of 

several (but not all) RNA-seq pipelines becoming comparable to that of microarrays (Fig. 

3e). Even though a direct comparison of absolute expression levels across platforms was not 

possible, the filters yielded good agreement of differential expression calls between 

platforms (for example, A versus B on HiSeq 2000 compared to A versus B on SOLiD, 

Supplementary Figures 13 and 14), suggesting that differential expression analyses from 

different platforms could be combined.

Importantly, the observed sensitivity of results to pipeline choice suggests that substantial 

improvements in short-read RNA-seq analysis are still required, particularly for transcript 

identification and quantification. The data we collected in this multi-center study can serve 

as a benchmark set for further advances. Some recent progress can be directly attributable to 

the impact of more-successful read mappers.16,54 In addition, although systematic and 

sample-specific variations in GC bias,30 sequence bias and non-specific signal 

(Supplementary Figure 36) can contribute to unwanted or missed differential expression 

calls, continued study of the confounding factors in RNA-seq can be expected to improve 

signal quality,3,19,30,31 just as methodological developments have improved microarray 

signal read out.32–38 Conversely, with several microarray designs tested here probing less 

than half of all known AceView genes, new microarray designs can take advantage of 
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updated gene annotations and models refined by RNA-seq,18 as we have shown here with 

pilot microarrays.

Already today, RNA-seq can be used as a versatile tool for relative expression profiling, 

with comparable or superior performance to microarrays in many applications given 

sufficient read depth and appropriate choice of analysis pipeline. An effective sequencing 

depth is clearly contingent on the experimental goals, with simple gene-level expression 

profiling only requiring 5–50 M single-ended reads for an appropriate analysis pipeline (cf. 

Supplementary Figures 11 and 34, Fig. 6e). A comprehensive characterization of alternative 

transcript expression benefits from the longer-range information of read pairs and requires 

considerably deeper sequencing. In our data set, at five million mapped fragments, >15,000 

AceView genes could already be detected with strong support (16 reads), including ~10,000 

RefSeq genes (Fig. 2c). Moreover, 10 million mapped fragments sufficed for differential 

expression analysis of the most strongly expressed genes in our study, reliably across sites 

(see Supplementary Figure 11 for adapted filter parameters). Other applications may require 

deeper sequencing, as is reflected by different metrics responding differently to an increase 

in reads for the samples and genes studied. Classifier performance, for instance, is directly 

related to the mutual information metric. Although 5 million mapped fragments easily gave 

a mutual information per gene comparable to that of HGU133Plus2.0 microarrays with 

MAS5, performance comparable to newer arrays and processing methods required about 50 

million mapped fragments in this study (Fig. 6e and Supplementary Figure 34), or even 

required considerably more, depending on the RNA-Seq analysis pipeline (cf. 

TopHat2+Cufflinks, Supplementary Figure 35). In addition, the required read depth is also 

dependent on the genome size, transcriptional complexity,24 cellular distribution of stored 

versus active RNAs, biological noise48 and the panoply of all other factors of cell biology 

and RNA dynamics. Our comprehensive multi-site cross-platform benchmark measurements 

under controlled settings thus complement and extend comparisons for individual biological 

experiments (Supplementary Table 1, Supplementary Notes Section 2.4 for further 

discussion).

In summary, the study and data collection presented here form an important milestone in the 

development and dissection of RNA-seq as a method for transcriptome profiling. The results 

based on data sets of this size and complexity and an array of independent measures as 

introduced by this study will contribute to a better understanding of the power and 

limitations of RNA-seq. This work is complemented by SEQC companion studies analyzing 

the application of RNA-seq to specific biological research and clinical questions47,51–57. 

The cumulative SEQC data sets with >100 billion reads (10 Tb) provide a key resource for 

testing future developments of RNA-seq, as required in clinical and regulatory settings.

METHODS

Study design and data

The SEQC (MAQC-III) main study design is based on the well-characterized MAQC-I 

RNA samples: the Universal Human Reference RNA (UHRR, from 10 pooled cancer cell 

lines, Agilent Technologies, Inc.) and the Human Brain Reference RNA (HBRR, from 

multiple brain regions of 23 donors, Life Technologies, Inc.).10 To these, two different 
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ERCC spike-in mixes were added11 (50 μl of ERCC mix was spiked into 2500 μl of total 

RNA) to give: Sample A – UHRR with ERCC spike-in mix E, and Sample B – HBRR with 

ERCC spike-in mix F. These were then combined in ratios of 3:1 and 1:3, respectively, to 

generate samples C and D (Fig. 1b and Supplementary Figure 1).

Each platform vendor designated three ‘official sites’ before samples were distributed, and 

these are marked with a star (*) below. Data produced by the official sites were used in all of 

the performed analyses. In addition, data produced by the non-official sites were 

incorporated in some analyses, e.g., the analysis of gene detection and junction discovery as 

a function of read depth (Figure 2, Supplementary Figures 2–4, 6, 7 and 37) and the study of 

sensitivity, specificity, and reproducibility of differential expression calls (Figure 3, 

Supplementary Figures 10–14 and 38–40).

Illumina HiSeq 2000 data were provided by 6 sites (Supplementary Tables 6 and 7): 1) 

Australian Genome Research Facility; 2) Beijing Genomics Institute*; 3) City of Hope; 4) 

Weill Cornell Medical College*; 5) Mayo Clinic*; and 6) Novartis, generating 100+100 nt 

read-pairs.

Life Technologies SOLiD 5500 data were provided by 4 sites (Supplementary Tables 8 and 

9): 1) Liverpool; 2) Northwestern University*; 3) Penn State University*; and 4) SeqWright 

Inc.*, generating 51+36 nt read-pairs, except for Liverpool which applied a protocol variant 

giving single 76 nt reads.

All official sites created four replicate measurements of each sample A to D, and also 

sequenced a vendor-prepared fifth replicate (Figure 1b). The other HiSeq 2000 sites 

sequenced four replicate libraries of each sample A to D. In Liverpool, one site-prepared 

library and one vendor-provided library of each of the samples A to D were sequenced.

For comparisons of gene-level expression profiling, samples A to D were also hybridized to 

a variety of commercial microarray platforms: 1) Affymetrix HuGene2.0 (one site: 

Stanford); 2) Affymetrix PrimeView (one site: Stanford); 3) Agilent 60k (one site: Boku 

University Vienna); and 4) Illumina Bead arrays (two sites: City of Hope, and University of 

Texas Southwestern Medical Center). In addition, MAQC-I Affymetrix HGU133Plus2.0 

data from six sites were reanalyzed. Providing another independent platform, 20,801 

PrimePCR measurements were also performed, with at least 10 qPCR reactions per assay to 

assure good specificity, efficiency, linear dynamic range, and background from negative 

controls (see Supplementary Notes Section 3.5 for more detail).

For comparisons of transcript-level profiling, exploring the potential of high-density 

microarrays for alternative transcript specific quantification, an Agilent 1M feature 

microarray was tested at Boku University Vienna. The microarray contained 1 million 

probes of length 60 nt, covering 782 AceView genes with 5,691 alternative transcripts, and 

including the ERCC spike-ins, averaging: 33 probes per exon (7x coverage, 9 nt spacing) 

and 55 probes per junction (about 1 nt spacing). The set of genes was selected to: 1) show 

expression in one of the samples in an SEQC RNA-seq pilot study; 2) have a similar average 

expression distribution as the full set of AceView genes in the pilot study; 3) have a similar 

differential expression distribution as the full set of AceView genes in the pilot study; and 4) 
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have a similar distribution of the number of transcripts per gene as the full set of genes 

annotated in AceView. These and similar microarrays can be ordered from Agilent, and the 

design of the test microarray is published together with this paper. Affymetrix also 

manufactures high-density transcriptome microarrays, which were released early 2013, not 

in time to be included in the SEQC study.

Roche 454 GS FLX data were provided by: 1) the Medical Genomes Project; 2) the New 

York University Medical Center; and 3) SeqWright Inc.. At each site, one replicate of 

samples A and B was sequenced (two runs).

Reads were mapped to a human reference and the ERCC spike-in sequences. Depending on 

the pipeline, genomic DNA (hg19) or transcript sequences were used as human reference. 

Unless otherwise stated, results for the gene model annotation of AceView 2010 are shown. 

Other annotations considered included RefSeq v104 and GENCODE v15.

The HiSeq 2000 sites produced on average 110 million read-pairs per replicate, for a total of 

2,200 million per site (Supplementary Tables 6 and 7). The official SOLiD sites produced 

on average 50 million read-pairs per replicate, for a total of 980 million per site 

(Supplementary Table 8). Liverpool generated 545 million single reads (Supplementary 

Table 9). The Roche 454 sites produced on average 1 million reads per replicate, for a total 

of about 2.1 million reads per site (Supplementary Table 10).

For the validation of junctions discovered by RNA-seq, for a random selection of 173 

junctions to test, qPCR measurements were performed with primers designed to specifically 

validate the particular junction, running 2 qPCR reactions per assay for all samples A…D 

(see Supplementary Notes Section 3.6 for more detail). Specificity was confirmed by 

analyses of PCR product lengths. This allowed the identification of non-specific assays, 

identifying the target but also picking up additional unintended targets due to unexpected or 

unavoidable cross-reactivity (giving a qualitative validation but no meaningful quantitative 

readout) and of non-informative assays, failing to pick up the target but picking up 

unintended targets. We provide information on RNA-seq read coverage flanking all 250 

candidate junctions considered for validation in file Supplementary Data 1. Supplementary 

Data 2 file provides the employed qPCR primer sequences, qPCR results and expression 

level estimates, as well as the corresponding RNA-seq expression level estimates for the 173 

performed assays.

Data processing – assessing expression estimates

A variety of tools/pipelines to process RNA-seq data were compared (see file 

Supplementary Protocol for used pipeline parameters):

TopHat2 std: TopHat v2.0.017 + CuffDiff v2.0.023.

TopHat2 G: TopHat v2.0.0 with-G parameter (providing the reference GTF file) + 

CuffDiff v2.0.0.

Magic: NCBI AceView MAGIC14.

BitSeq: SHRiMP2 v2.2.239 + BitSeq v0.4.240.
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Subread: Subread 1.3.016 The Subread pipeline uses the subjunc function to identify 

exon-exon junctions and the featureCounts41 function to obtain count summaries for 

each gene and spike-in transcript (see Supplementary Notes Section 3.1 for more detail)

r-make: Cornell’s r-make pipeline incorporating STAR15 (http://

physiology.med.cornell.edu/faculty/mason/lab/r-make/). For LifeTech reads, all 

alignments were processed in color space.

Applying consistency tests based on truths built into the study design to expression levels of 

individual junctions, we consider the number of reads hitting a specific exon-exon junction 

as indicator of expression level.

Except for r-make, which provides raw read counts, each pipeline already has a built-in 

approach to normalization. In order to analyze Agilent 1M microarray data, a variance 

stabilizing normalization (vsn)33 was used. Probe sequences-specific signals have been 

modeled using established methods, saturation effects detrended, and outlier probes 

downweighted.35–37 Transcript variant expression levels have been estimated using a 

hierarchical Bayesian approach similar to modern methods applied for RNA-seq data 

analysis (Stegle et al. in preparation) (see ‘Transcript quantification for Agilent high-density 

microarrays’ section).

CustomCDFs (v16, re-mapped to the latest AceView) were used for an analysis of the 

Affymetrix data (HGU133Plus2.0, PrimeView, and HuGene2.0),42 respectively covering 

24,623, 17,984, and 29,879 genes. PrimeView and HuGene2.0 data were analyzed using 

established methods (correction for probe sequence specific effects by gcRMA,34 

conservative normalization across arrays by vsn,33 and robust probe set summarization by 

affyPLM), whereas for the HGU133Plus2.0 microarrays, a combination of more recent tools 

that appeared to be more efficient were used (correction for probe specific saturation effects 

by Hook,36 conservative normalization across arrays by vsn,33 and factor based probe set 

summarization by FARMS35).

For Illumina Bead microarrays and Agilent 60K microarrays variance stabilization 

normalization (vsn33) was applied.

Discovery of transcriptome complexity at high read depth

The detection and discovery of junctions was performed by Subread using data from all 6 

HiSeq 2000 sites as well as all 4 SOLiD sites, and compared to results by r-make using data 

from all 6 HiSeq 2000 sites.

We applied consistency tests for the truths built into the study design to junction expression 

levels. The sample expression levels of almost ⅓ of all known AceView junctions (and 38% 

of all detected) follow the expected titration order while also correctly yielding the expected 

A/B mixing ratio and show a clear differential signal as assessed by the mutual information, 

a measure of information content (Supplementary Figure 37 and Supplementary Table 11). 

Of the well-supported new junctions, 5,189 passed these rigorous filters. Conservatively 

assuming a 1:3 ratio as in the AceView junctions, there may easily be three times as many 

new junctions, thereby adding over 15,000 likely new junctions to the already extensive 
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AceView annotation. Furthermore, considering that we essentially required junctions to be 

independently detected in by SOLiD, where 98% of junctions were detected by a single site 

(LIV) and thus corresponding to just about 1/65 of the total HiSeq 2000 sequencing volume, 

and detection power being about 2x lower (Supplementary Table 2), there may well be up to 

5,000×3×65×2 = 2 million new junctions to be discovered in samples A and B alone. Even 

more junctions than in samples A and B were discovered in the SEQC neuroblastoma 

study.15

Transcript quantification for Agilent high-density microarrays

Quantification of transcript expression from the probe level information was carried out 

using a linear mixed model independently for each gene and sample. Denoting the 

expression level of probe p as yp, we model the probe expression as the sum of effects from 

transcripts with a probe-match:

The Kronecker delta δt,p is one exactly if the probe p is matching the transcript t, and zero 

otherwise, whereas xt denotes the unknown abundance for transcript t. Further, we assume 

Gaussian additive and multiplicative error variances. Probe-level noise tends to exhibit a 

strong spatial correlation structure, which we account for by using a latent Gaussian process 

function.43 We employ a squared exponential covariance function where the probe distance 

in transcript space is used to parameterize the covariance.

Inference is performed by maximizing the joint marginal likelihood of all considered probes 

given with respect to the hidden transcript abundances (xt) and the noise covariance 

parameters. To mitigate the computational complexity of Gaussian process models (cubical 

scaling in the number of probes), we randomly choose probes for each gene selecting a 

subset of at most 700 probes, including probes falling onto junctions.

Discrete nature of RNA-seq data

With the discrete nature of RNA-seq data and considering that most analysis tools work on a 

log2 scale, consistent ways need to be found for dealing with not expressed features, which 

are supported by zero reads. As the lowest positive expression is just a single read, a 

common approach is the addition of a pseudo-count (e.g., 0.5 in voom46). An alternative 

well established for microarray data analysis is the application of asinh as a variance 

stabilizing transform assuming an additive-multiplicative error model. The transform is 

approximately linear for small values; for larger values it is well approximated by a 

logarithm. Another approach (natively applied e.g. in Magic14) is to use a threshold below 

which measurements are considered below detection sensitivity. Here that threshold has 

been set to the highest minimum read count of all measurement samples adjusted for library 

size (the total number of reads), and this threshold is then applied consistently as floor to all 

expression levels. We have applied this approach to improving consistency in our studies to 
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the data from each pipeline and platform (and thus we were not adding the pseudo-count of 

0.5 reads when using voom).

In order to identify genes, transcripts, and junctions with clear support of sequence reads, 

thresholds were applied: Support was considered sufficient when at least 16, 16, or 8 at 

reads were observed, respectively. For Figure 2b, expression above background level as 

determined by the Magic pipeline was additionally required for genes.

Sensitivity, specificity, and reproducibility of differential expression calls

In this part of the study the subset of 23,420 AceView genes (of the version frozen for the 

SEQC study) present on the MAQC-I Affymetrix HGU133Plus2.0 microarray was used.

As the array data were already processed and normalized with state-of-the-art methods (see 

‘Data processing’ sections) no further processing was required. For RNA-seq data, weighted 

trimmed mean of log fold-change normalization31 improved results (data not shown), in 

agreement with a recent performance comparison of normalization methods.44 For this 

normalization step, the TMM implementation provided in the Bioconductor R package 

edgeR45 was employed.

Several of the examined RNA-seq pipelines exploit multi-mapping reads. This increases 

power51 and, more generally, also allows the analysis of alternative transcripts. Those 

pipelines report expression-level estimates rather than read counts. For a uniform approach 

to differential expression analysis, RNA-seq data were therefore analyzed using an 

established approach supporting such pipelines. Precision-based weights were attached to 

normalized expression estimates on the log-scale to account for higher variability at low 

expression levels using voom46 of the limma package.32 The voom function has been 

developed to account for different variances as a function of signal intensity. For count data, 

such a variation is expected by theory, whereas for expression level estimates it is 

empirically justified. So we in general apply the voom model for expression level dependent 

variance to account for the different platform specific noise characteristics as a function of 

the expression level (Supplementary Figure 38).

Differential expression was then assessed for both microarray and sequencing platforms 

using the empirical Bayes moderated t-statistic of the limma package.32 A p-value threshold 

of 0.01 unadjusted for multiple testing was used, as suggested in the MAQC-I study.10 As 

the number of differentially expressed genes (DEGs) was similar for p<0.01 and the 

qBY
<5%, where qBY is the Benjamini-Yekutieli adjusted False Discovery Rate, downstream 

analysis is not qualitatively affected by this choice (Supplementary Figure 39 vs Figure 40).

An estimate of the empirical False Discovery Rate (eFDR) was computed by comparing the 

number of DEGs for intra-site A vs B and inter-site A vs A comparisons. For each A vs A 

analysis two eFDRs were calculated (using the A vs B comparison of the two sites 

considered in the matching A vs A comparison).

Further filters were applied in order to control the eFDR, with parameters chosen to give 

similar numbers of A vs B differential expression calls:
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• AFX: |log2(fold-change)| > 1

• MAGIC: |log2(fold-change)|> 1.7 and AveExp>32%

• r-make: |log2(fold-change)|>1.7 and AveExp>33%

• Subread: |log2(fold-change) |>1.7 and AveExp>32%

• BitSeq: |log2(fold-change)|>2 and AveExp>19%

• TopHat2-G |log2(fold-change)|>2 and AveExp>23%

When filtering for average log2 expression level (AveExp), the stated fraction of weakly 

expressed genes to remove also included in that percentage the genes that were not observed 

at all. This is to allow comparisons across different pipelines observing varying numbers of 

genes.

Metrics for a robust characterization of platforms, sites, and data processing options

The complementary metrics examined react differently to rescaling, shifts, and other 

consequences of data-processing. As a result, individual pipelines can show varying 

performance in specific assays. For a robust performance characterization we combine the 

complementary metrics.

Different analysis pipelines and platforms, however, identify varying numbers of targets 

(Supplement). With this number not constant, performance needs to be assessed in terms of 

actual counts or fractions of all genes, rather than fractions of observed genes. An increased 

sensitivity of some pipelines and platforms can be demonstrated by not limiting analysis 

only to genes observed by all pipelines and platforms.

1. We count a gene as preserving titration monotonicity, when A > B and, as expected 

A ≤ C ≤ D ≤ B or, conversely, for A < B.

2. A gene is considered precise for a sample, if the standard error across technical 

replicates is below 10%.

3. A deviation less than 10% from the expected behavior of

where the correction z of the known mixing coefficients k1 = 3z/{3z + 1} and k2 = 

z/{z + 3} arising out of different ratios of mRNA versus total RNA in the samples 

A and B has been determined by a non-linear robust fit (nlrob) from an independent 

RNA-seq library (library #5). The obtained value, 1.45±0.01 is very much in line 

with the experimental estimate22 of 1.43±0.10. The plots and statistics shown in the 

paper give the same picture with either value. To ensure pipeline independence, the 

experimental value 1.43 is being used.

4. For the purpose of this metric, we call a gene differentially expressed if it is 

significant at a Benjamini-Yekutieli corrected FDR of 5% in an empirical Bayes 

moderated t-test across the expression level estimates of samples A and B (limma).
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5. Finally, we calculate the mutual information of sample titration by extending the 

approach introduced for two state measurements.38 The mutual information 

between gene or transcript expression and titration requires modeling the 

probability of a measurement being from sample A, C, D, or B, under the constraint 

that these labels are ordered. To avoid a dependency of our assessment on choosing 

mutual information of sample titration as evaluation measure, we complemented 

this assay with three other alternative measures. For that purpose, we evaluated the 

mutual information for discriminating A vs B, and the mutual information for 

discriminating C vs D using an established approach.38 In order to add a further 

measure which does not depend on modeling assumptions, for all genes and 

transcripts, we also calculated a non-parametric estimate of the probability that the 

respective measurement fulfils the order constraint which is implied by the titration 

experiment. All four measures are illustrated in Supplementary Figure 41 for the 

official HiSeq 2000 and SOLiD sites and a number of different quantification 

pipelines. Although the complementary measures suggest different numbers of 

‘good’ transcripts and genes, they qualitatively agree with no exception on how 

they rank the different platforms and pipelines. This confirms that we can select the 

mutual information of sample titration to represent this class of information 

preserving measures to add an independent robust viewpoint for characterizing 

quantification performance in Figure 6.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The SEQC (MAQC-III) project and experimental design. (a) Overview of projects. We 

report on a group of studies assessing different sequencing platforms in real-world use cases, 

including transcriptome annotation and other research applications, as well as clinical 

settings. This paper focuses on the results of a multi-center experiment with built-in ground 

truths. (b) Main study design. Similar to the MAQC-I benchmarks, we analysed RNA 

samples A to D: Samples C and D were created by mixing the well-characterized samples A 

and B in 3:1 and 1:3 ratios, respectively. This allows tests for titration consistency (c) and 

the correct recovery of the known mixing ratios (d). Synthetic RNAs from the External 

RNA Control Consortium (ERCC) were both pre-added to samples A and B before mixing 

and also sequenced separately to assess dynamic range (samples E and F). Samples were 

distributed to independent sites for RNA-seq library construction and profiling by Illumina’s 

HiSeq 2000 (3 official + 3 inofficial sites) and Life Technologies’ SOLiD 5500 (3 official 

sites + 1 inofficial site). Unless mentioned otherwise, data presented shows results from the 

three official sites (italics). In addition to the four replicate libraries each for samples A to D 

per site, for each platform, one vendor-prepared library A5…D5 was being sequenced at the 

official sites, giving a total of 120 libraries. At each site, every library has a unique bar-code 

sequence and all libraries were pooled before sequencing, so each lane was sequencing the 

same material, allowing a study of lane specific effects. To support a later assessment of 

gene models, we sequenced samples A and B by Roche 454 (3x, no replicates, see 

Supplementary Notes Section 2.5). (c) Schema illustrating tests for titration order 

consistency. Four examples are shown. The dashed lines represent the ideal mixture of 

samples A and B (blue and red) expected for samples D and C (magenta and dark purple). 

(d) Schema illustrating a consistency test for recovering the expected sample mixing ratio. 

The yellow lines mark a 10% deviation from the expected response (black) for a perfect 
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mixing ratio. Both tests (c) and (d) will reflect both systemic distortions (bias) and random 

variation (noise).
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Figure 2. 
Gene detection and junction discovery. (a) The fraction of all reads aligned to gene models 

from different annotations, RefSeq, Encode and NCBI AceView (green). Reads aligning 

only to specific annotations are shown in dark green. (b) Known genes (left) and exon 

junctions (right) supported by at least 16 HiSeq 2000 or SOLiD reads are in green; genes or 

junctions annotated but not observed at this threshold are shown in grey. (c–e) show 

sensitivity as a function of read depth. (c) Known genes detected. We show the number and 

percentage of all AceView annotated genes detected for three RNA-seq analysis pipelines, 

Subread (yellow), r-make (cyan) and Magic (magenta). The x-axis marks cumulative aligned 

fragments from all replicates and sites. Vertical lines indicate boundaries between samples A 

through D. (d) Known junctions detected. The numbers and percentages of all exon-exon 

junctions (supported by 8 or more reads) are shown for different gene model databases (line 

style). Horizontal lines show the respective total numbers of annotated junctions. (e) 

Unannotated junctions supported by multiple platforms and pipelines. Subsets of 

unannotated junctions have expression levels with correct titration orders and mixing ratios 

(cf. Figs 1b–d and 4a,b). (f) Distribution of junction expression levels. Unannotated 

junctions, then unannotated junctions supported by multiple platforms and pipelines, and 

known junctions show increasing expression levels (colors). Subsets expressed with mutual 

information about the samples and correct titration order and mixing ratio display a further 

shift towards higher expression levels (dashed lines). (g, h) Intra- (blue) and inter-site 

reproducibility (orange) of detected known genes (g) and junctions (h). Pairwise agreement 

is shown by boxplots, where the second set of boxplots (upper group) indicates percentages.
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Figure 3. 
Sensitivity, specificity and reproducibility of differential expression calls. Robust cross-site 

analyses depend on pipeline choice and appropriate filter rules. Results are shown for five 

MAQC-III RNA-seq pipelines and the MAQC-I Affymetrix microarray platform (color). 

Panels (a and b) show results without filtering, panels (c to e) show results using appropriate 

filters. (a and c) Number of standardized differential expression calls. All possible pairwise 

inter-site A versus A comparisons (●) are shown next to all intra-site A versus B 

comparisons (x) as indicators for specificity and sensitivity. (b and d) Ratios of A versus A 

calls and A versus B calls give an estimate of the false discovery rate (eFDR). For all 

platforms and pipelines, differential expression calls identify thousands of differences in 

inter-site comparisons of identical samples. These can be controlled for microarray by 

additional filters for effect size. In addition, RNA-seq also requires filters for expression 

strength due to the high sampling fluctuations at lower read counts. These were set to give 

similar numbers of A versus B expression calls (b), improving the eFDR to <1.5% except 

for several outliers. (e) Inter-site reproducibility of differential expression calls. Comparing 

the identities and the directions of change for differentially expressed genes (DEGs) across 

sites, agreement is plotted for lists including the top-ranked genes as sorted by effect size (x-

axis). The observed response curves depend on pipeline and filter choice, showing more 

variation for shorter lists. The performance of several RNA-seq pipelines was comparable to 

that of differential expression profiling using the microarray measurements from the 

MAQC-I study, with the microarrays showing higher inter-site reproducibility when 

considering only the differentially expressed genes with the strongest fold change (left side 

of e).
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Figure 4. 
Built-in truths for assessing RNA-seq. (a) Titration order A, C, D, B. Log2 fold-change is 

related to cross-platform titration consistency. At sufficiently strong log2 fold-change, 

reliable titration is also found across platforms: The dark blue line represents the 22,074 

‘unmissable’ genes showing the correct titration order with no contradiction in at least 14 

HiSeq 2000 and 6 SOLiD samples. Most genes with high differential expression are in this 

class. (b) Known A/B mixing ratios in samples C and D. The yellow solid line traces the 

expected values after mRNA/total-RNA shift correction. The 1%, 10% and 25% most highly 

expressed genes are shown in red, cyan and magenta, respectively. On average, the most 

strongly expressed genes recover the expected mixing ratio best. Genes with inconsistent 

titration (cf. a) are colored grey. Black and grey symbols intermixing indicates that 

consistent titration (black) does not guarantee reliable recovery of the mixing ratio (and vice 

versa). (c) ERCC spike-in ratios can be recovered increasingly well at higher expression 

levels. From the response curves, one can calculate signal thresholds for the detection of a 

change.50 (d) Variation of the total amounts of detected ERCC spikes. The lack of reliable 

titration indicates that the considerable differences between libraries of a given site and 

protocol are random, implying limits for absolute expression level estimates, in general, and 

using spike-ins for the calibration of absolute quantification, in particular. The observed 
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variations likely arise in library construction, as the vendor-prepared libraries (colored cyan 

or grey) gave constant results across different sites. For (a) and (b), all 55,674 AceView 

genes tested.
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Figure 5. 
Cross-platform agreement of expression levels. (a) Comparison of log2 fold-change 

estimates for 843 selected genes. Good and similar concordances were observed between 

relative expression measures from the MAQC-III HiSeq 2000 and SOLiD sequencing 

platforms, MAQC-I TaqMan and the MAQC-III Affymetrix HuGene2 arrays (Pearson and 

Spearman correlation coefficients are shown; cf. Supplementary Figure 22). (b) Comparison 

of absolute expression levels from HiSeq 2000 and SOLiD in a rank scatter density plot. 

Expression level ranks for sample A are shown on the x-axis for HiSeq 2000, and on the y-

axis for SOLiD. Genes are represented by dots, and areas with several genes are shown in 

blue, with darker blue corresponding to a higher gene density in the area. Large cross-

platform deviations are seen even for highly expressed genes and these variations are 

systematic. The genes in the vertical ‘spur’, for instance, are not detected by SOLiD RNA-

seq but show strong expression levels in HiSeq 2000 RNA-seq, with an analog comparison 

to 20,801 qPCR measurements giving a similar picture (Supplementary Figure 25). The 

ERCC spike-ins are shown as red symbols (+). ERCC spike-in signals are systematically 

lower in the HiSeq 2000 data, which may be explained by their shorter poly-A tails and 

differences in the library construction protocols. (c) The same plot as (b) but removing the 

11,066 genes that can be affected by the non-stranded nature of the applied Illumina 

protocol. Although the actual number of genes in the vertical spur that are not detected by 

SOLiD but show strong expression levels in the HiSeq 2000 is now smaller, it is still 
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substantial. (d) Comparison of TaqMan and PrimePCR for 843 selected genes. Expression 

estimates vary considerably for individual genes, with some genes showing high expression 

in one platform but are not detected at all by the other.
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Figure 6. 
Multiple performance metrics for the quantification of genes and alternative transcripts. The 

y-axes show a Consistency Score. Secondary y-axes mark the percentage of the maximal 

possible score. Panels show the three official HiSeq 2000 and SOLiD sites and compare a 

few analysis variants: Green, TopHat2; magenta, TopHat2 guided by known gene models; 

cyan, Subread; yellow, BitSeq; blue, Magic. Panels a and b consider all AceView annotated 

genes. Panels c and d focus on a subset of expressed complex genes with multiple 

alternative transcripts where comparison to a high-resolution test microarray (rightmost bar) 

can be conducted. (e) Comparison of RNA-seq to four different microarrays and data-

processing methods (red bars) by plotting the mutual information (y-axes) at different read 

depths (x-axes). For the microarrays, the number of probes used is shown. The numbers 

given for RNA-seq state the number of fragments mapped to genes as well as the [total 

fragments]. SOLiD and HiSeq 2000 performed similarly well for comparable effective read 

depths (Supplementary Figure 33a). HiSeq 2000 data is plotted here. Each bar shows the 

minima and maxima across the three official sites. The read depth for which average RNA-

seq performance met or exceeded that of the array is marked by a cyan bar. The 

corresponding read depths varied widely from 5 M (HGU133plus2 with MAS5) to about 50 

M fragments (PrimeView with gcRMA/affyPLM), showing the strong effect of the 

reference gene set implied by the probes on the respective arrays and the employed 

microarray data-processing methods. Results are shown for the Subread pipeline. 

Alternative RNA-seq data analysis pipelines, however, can require up to double the number 
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of fragments (TopHat2+Cufflinks, Supplementary Figure 35). See Supplementary Figures 

33 and 34 for comparisons of other platforms and read depths.
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