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Abstract

Telocytes (TCs) were recently described as interstitial cells with very long prolongations named telopodes (Tps; www.telocytes.com). Establish-
ing the TC proteome is a priority to show that TCs are a distinct type of cells. Therefore, we examined the molecular aspects of lung TCs by
comparison with fibroblasts (FBs). Proteins extracted from primary cultures of these cells were analysed by automated 2-dimensional nano-
electrospray ionization liquid chromatography tandem mass spectrometry (2D Nano-ESI LC-MS/MS). Differentially expressed proteins were
screened by two-sample t-test (P < 0.05) and fold change (>2), based on the bioinformatics analysis. We identified hundreds of proteins up-
or down-regulated, respectively, in TCs as compared with FBs. TC proteins with known identities are localized in the cytoskeleton (87%) and
plasma membrane (13%), while FB up-regulated proteins are in the cytoskeleton (75%) and destined to extracellular matrix (25%). These iden-
tified proteins were classified into different categories based on their molecular functions and biological processes. While the proteins identified
in TCs are mainly involved in catalytic activity (43%) and as structural molecular activity (25%), the proteins in FBs are involved in catalytic
activity (24%) and in structural molecular activity, particularly synthesis of collagen and other extracellular matrix components (25%). Anyway,
our data show that TCs are completely different from FBs. In conclusion, we report here the first extensive identification of proteins from TCs
using a quantitative proteomics approach. Protein expression profile shows many up-regulated proteins e.g. myosin-14, periplakin, suggesting
that TCs might play specific roles in mechanical sensing and mechanochemical conversion task, tissue homoeostasis and remodelling/renewal.
Furthermore, up-regulated proteins matching those found in extracellular vesicles emphasize TCs roles in intercellular signalling and stem cell
niche modulation. The novel proteins identified in TCs will be an important resource for further proteomic research and it will possibly allow bio-
marker identification for TCs. It also creates the premises for understanding the pathogenesis of some lung diseases involving TCs.
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Introduction

Telocytes (TCs) are a novel defined cell type [1], resident in the stro-  in human lungs [22-24] (visit www.telocytes.com). TCs are charac-
mal space of several mammalian and human organs [2-21], including  terized by very long and thin prolongations called telopodes (Tps)
S — which suddenly emerge from a small cell body. Telopodes are tens to
#These authors had equal contributions to this article. hundreds of micrometres long and have many dilations (podoms)
Correspondence to: Xiangdong WANG, interconnected by thin regions (podomeres) throughout their length
M.D., Ph.D., Department of Pulmonary Medicine and [16]. The TCs interconnect with each other through point cell-to-cell
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cell niches [28, 29]. Although the specific function(s) of TCs are still
not established, it became increasingly clear that they have an inte-
grative role, possibly for stem cells [7, 25, 30, 31], involving a long-
distance communication confirmed by the presence of exosomes/ec-
tosomes [16].

Telocytes were characterized ultrastructurally, immunophenotypi-
cally, electrophysiologically and their gene and microRNA profile were
analysed [16, 31-35]. Telocytes are also involved in pathologies [5,
29, 36-41].

However, the protein expression profile for this type of cells has
not been reported yet. In a previous study, we reported the gene
expression profile of mice lung TCs compared to fibroblasts (FBs),
and the results showed that more than ~1000 genes were found up-
or down-regulated respectively [42]. Significantly improved technol-
ogy in quantitative MS-based proteomics permits the measurement
of relative protein loads in cell culture or tissue samples with unique
precision [43, 44].

To prevent further confusion between TCs and other interstitial
(stromal) cells, particularly with FBs and the so-called FBs-like cells,
we carried out a comprehensive study using iTRAQ-coupled 2D LC-
MS/MS analysis to identify and quantify the proteins. This study is
the first that allows major insight into proteome differences between
these cells in human lung and which identify the proteins that are spe-
cifically expressed in TCs.

Material and methods

Cell lines and tissue sampling

Human lung samples were obtained from the patients undergoing sur-
gery for lung cancer. The normal tissue was defined as being located at
a distance of at least 15 cm from the tumour tissue and verified by
light microscopy. The application of human tissue for research was
approved by the Ethical Evaluation Committee of Zhongshan Hospital,
Fudan University, Shanghai, China. Human lung fibroblast cell lines were
obtained from Chinese Academy of Science (Cat. no. GNHu28; Shang-
hai, China).

Primary cell culture and lysis of lung TCs

The methods of isolation and culture of lung TCs were previously
described by Zheng et al. [22]. Briefly, lung tissue was cut into small
pieces and harvested under sterile conditions and collected into sterile
tubes containing DMEM (Gibco, Grand Island, NY, USA), supplemented
with 100 Ul/ml penicillin and 0.1 mg/ml streptomycin (Sigma Chemical,
St. Louis, MO, USA), and the samples were brought to the cell culture
room immediately. Samples were further rinsed with sterile DMEM and
minced into fragments about 1 mm®, which were then incubated at
37°C for 4 hrs on an orbital shaker, with 1 mg/ml type Il collagenase
(Sigma-Aldrich, St. Louis, MO, USA) in PBS without Ca®* and Mg*.
Dispersed cells were separated from non-digested tissue by the filtra-
tion through a 40-um diameter cell strainer (BD Falcon, Franklin, NJ,
USA), harvested by centrifugation and resuspended in DMEM supple-
mented with 10% foetal calf serum (Gibco), 100 Ul/ml penicillin and
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0.1 mg/ml streptomycin. Cell density was counted in a haemocytometer
and viability was assessed using the Trypan blue. Cells were distributed
in 25 cm? culture flasks at a density of 1 x 10° cells/cm?® and main-
tained at 37°C in a humidified atmosphere (5% CO,) until becoming
semiconfluent (usually 4 days after plating). Culture medium was chan-
ged every 48 hrs. Cultured cells were examined by phase contrast
microscope, under an inverted Olympus phase contrast microscope
(1 x 51). Cells (1 x 10°) were placed in 10-cm dishes with 10 ml high
glucose DMEM (Gibco) complete medium, including 10% foetal calf
serum (Gibco), 100 Ul/ml penicillin and 0.1 mg/ml streptomycin (Sigma
Chemical) in a humidified atmosphere of 5% CO, at 37°C. Confluent
cells were trypsinized at day 5 and day 10 respectively. Approximately
10° cells from day 5 or day 10 were resuspended in a solution of
9.5 moles/litre urea, 1% dithiothreitol (DTT), 40 mg/ml protease inhibi-
tor cocktail, 0.2 mmoles/litre Na,VO; and 1 mmole/litre NaF. The mix-
ture was incubated and stirred by end-over-end rotation at 4°C for
60 min. The resultant suspension was centrifuged at 40,000 x g for
1 hr at 15°C. The supernatant was stored in small aliquots at —80°C,
and the protein concentration was determined using a modified Brad-
ford method.

Automated 2-D nano-ESI LC-MS/MS analysis of
peptides

Proteins extracted from primary cultures of TCs and FBs were analy-
sed by automated 2-dimensional nano-electrospray ionization liquid
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Fig. 1 Proteomic process flow chart illustrating the steps involved in the
differential analysis of TCs and FBs proteome in cell culture
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Table 1 Selected list of top 56 proteins identified with more than twofold change in TCs versus FBs at 5th day sorted by iTRAQ ratio and
presenting the number of peptides hits

Accession Protein name Peptides %Cov iTRAQ ratio Fold enrichment P
(95%) (95) FBs:TCs in TCs

MYH14_HUMAN Myosin-14 18 7.67 0.064 15.72 0.025

SODM_HUMAN Superoxide dismutase [Mn], 10 35.14 0.104 9.6 0.000
mitochondrial

ALDH2_HUMAN Aldehyde dehydrogenase, 5 10.06 0.164 6.1 0.000
mitochondrial

PTGIS_HUMAN Prostacyclin synthase 7 15.80 0.199 5.03 0.005

APOH_HUMAN Beta-2-glycoprotein 1 2 4.35 0.210 4.75 0.041

PPBT_HUMAN Alkaline phosphatase, 2 4.01 0.260 3.85 0.043
tissue-non-specific isozyme

PEPL_HUMAN Periplakin 4 2.85 0.284 3.52 0.032

AL1B1_HUMAN Aldehyde dehydrogenase X, 5 13.93 0.313 3.2 0.024
mitochondrial

THIM_HUMAN 3-ketoacyl-CoA thiolase, 12 33.50 0.329 3.04 0.036
mitochondrial

KAD2_HUMAN Adenylate kinase 2, mitochondrial 8 41.42 0.336 2.97 0.001

PLOD2_HUMAN Procollagen-lysine, 2-oxoglutarate 15 22.39 0.367 2.72 0.000
5-dioxygenase 2

AT1A1_HUMAN Sodium/potassium-transporting 17 18.77 0.375 2.67 0.000
ATPase subunit o-1

COX5B_HUMAN Cytochrome ¢ oxidase subunit 5B, 4 34.11 0.380 2.63 0.006
mitochondrial

DNJC3_HUMAN DnaJ homologue subfamily C 2 3.77 0.392 2.55 0.024
member 3

PRDX3_HUMAN Thioredoxin-dependent peroxide 6 23.83 0.395 2.53 0.028
reductase, mitochondrial

SUCA_HUMAN Succinyl-CoA ligase [GDP-forming] 5 17.63 0.399 2.51 0.008
subunit o, mitochondrial

COX5A_HUMAN Cytochrome ¢ oxidase subunit 5A, 6 58.67 0.408 2.45 0.000
mitochondrial

CH10_HUMAN 10 kD heat shock protein, 12 73.53 0.409 2.44 0.003
mitochondrial

CH60_HUMAN 60 kD heat shock protein, 60 62.30 0.414 2.42 0.003
mitochondrial

SQRD_HUMAN Sulphide:quinone oxidoreductase, 9 19.78 0.421 2.38 0.000
mitochondrial

ERP29_HUMAN Endoplasmic reticulum resident 7 28.74 0.422 2.37 0.001
protein 29

K2C1_HUMAN Keratin, type Il cytoskeletal 1 12 15.06 0.435 2.3 0.004
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Table 1. Continued

Peptides %Cov iTRAQ ratio Fold enrichment

Accession Protein name (95%) (95) FBs-TCs in TCs P
ERP44_HUMAN Endoplasmic reticulum resident 4 8.13 0.442 2.26 0.002
protein 44
CATA_HUMAN Catalase 5 12.90 0.460 2.18 0.007
ETFB_HUMAN Electron transfer flavoprotein 6 25.88 0.473 2.11 0.008
subunit B
SSBP_HUMAN Single-stranded DNA-binding 6 50.68 0.476 2.1 0.028
protein, mitochondrial
NLTP_HUMAN Non-specific lipid-transfer protein 9 12.43 0.477 2.1 0.010
PDIA3_HUMAN Protein disulphide-isomerase A3 45 52.48 0.480 2.08 0.019
IDHP_HUMAN Isocitrate dehydrogenase [NADP], 5 9.29 0.492 2.03 0.000
mitochondrial
SPTB2_HUMAN Spectrin B chain, brain 1 43 19.42 0.493 2.03 0.000
RT36_HUMAN 28S ribosomal protein S36, 2 30.10 0.494 2.02 0.036
mitochondrial
iTRAQ ratio Fold enrichment
Accession Protein name Peptides (95%) %Cav (95) FBs:TCs in FBs P
THIO_HUMAN Thioredoxin 5 51.43 2.006 2.01 0.008
KPYM_HUMAN Pyruvate kinase isozymes M1/M2 36 67.23 2.035 2.03 0.016
CD166_HUMAN CD166 antigen 4 11.32 2.055 2.06 0.006
WDR1_HUMAN WD repeat-containing protein 1 10 18.15 2.061 2.06 0.001
RS2_HUMAN 40S ribosomal protein S2 10 31.06 2.088 2.09 0.000
ACLY_HUMAN ATP-citrate synthase 11 11.08 2.089 2.09 0.000
FLNC_HUMAN Filamin-C 73 32.40 2.160 2.16 0.000
GSTO1_HUMAN Glutathione S-transferase omega-1 2 9.54 2.181 2.18 0.028
VAT1_HUMAN Synaptic vesicle membrane 12 31.81 2.183 2.18 0.015
protein VAT-1 homologue
CRTAP_HUMAN Cartilage-associated protein 2 3.74 2.273 2.27 0.049
SYVC_HUMAN Valyl-tRNA synthetase 3 2.37 2.276 2.28 0.010
VIME_HUMAN Vimentin 200 83.69 2.603 2.6 0.000
5NTD_HUMAN 5-nucleotidase 6 14.81 2.603 2.6 0.000
NEST_HUMAN Nestin 22 16.84 2.615 2.62 0.006
PLIN3_HUMAN Perilipin-3 9 26.50 2.625 2.63 0.000
ANXA6_HUMAN  Annexin A6 21 31.35 2.714 2.71 0.005
SERA_HUMAN D-3-phosphoglycerate dehydrogenase 4 8.07 2.773 2.77 0.017
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Table 1. Continued

iTRAQ ratio Fold enrichment
Accession Protein name Peptides (95%)  %Cov (95) FBs:TCs in FBs P
G3P_HUMAN Glyceraldehyde-3-phosphate 42 64.48 2.819 2.82 0.001
dehydrogenase

S10AD_HUMAN Protein S100-A13 5 44.90 2.823 2.82 0.000
RL15_HUMAN 60S ribosomal protein L15 2 7.84 3.130 3.13 0.006
LEG1_HUMAN Galectin-1 27 91.11 3.133 3.13 0.000
GDIR1_HUMAN Rho GDP-dissociation inhibitor 1 4 18.14 3.241 3.24 0.001
FSCN1_HUMAN Fascin 6 16.63 3.255 3.25 0.004
SCRN1_HUMAN  Secernin-1 2 5.80 3.734 3.73 0.019
CO6A3_HUMAN Collagen o-3(VI) chain 41 16.53 4.707 4.71 0.000

Table 2 Selected list of top 56 proteins identified with more than twofold change in TCs versus FBs at 10th day sorted by iTRAQ ratio and
presenting the number of petides hits

Peptides

iTRAQ ratio

Fold enrichment

Accession Protein name (95%) %Cov (95) FBs:TCs in TCs P
SODM_HUMAN Superoxide dismutase [Mn], 10 35.14 0.120 8.36 0.001
mitochondrial
PTGIS_HUMAN Prostacyclin synthase 7 15.8 0.123 8.12 0.001
MYH14_HUMAN Myosin-14 18 7.669 0.144 6.96 0.036
PLOD2_HUMAN Procollagen-lysine,2-oxoglutarate 15 22.39 0.211 4.74 0.000
5-dioxygenase 2
ANXA3_HUMAN Annexin A3 3 12.69 0.231 4.32 0.027
ICAM1_HUMAN Intercellular adhesion molecule 1 6 14.66 0.267 3.75 0.001
NAMPT_HUMAN Nicotinamide phosphoribosyltransferase 3 5.906 0.325 3.08 0.005
CYB5_HUMAN Cytochrome b5 4 32.09 0.333 3 0.004
EZRI_HUMAN Ezrin 19 314 0.352 2.84 0.002
MYH10_HUMAN ~ Myosin-10 45 19.59 0.419 2.38 0.007
FLNB_HUMAN Filamin-B 96 41.78 0.430 2.33 0.000
THIM_HUMAN 3-ketoacyl-CoA thiolase, mitochondrial 12 33.5 0.434 2.3 0.000
SQRD_HUMAN Sulphide:quinone oxidoreductase, ¢ 19.78 0.435 28 0.000
mitochondrial
PLAK_HUMAN Junction plakoglobin 3 4564 0.447 2.24 0.011
DHB4_HUMAN Peroxisomal multifunctional enzyme 11 25 0.456 2.19 0.030
type 2
KAD2_HUMAN Adenylate kinase 2, mitochondrial 8 41.42 0.484 2.07 0.000
572 © 2014 The Authors.
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Accession Protein name F;sl’;i?es %Cov (95) :;I;;Rs‘:\]%;a"o rnnI;iBgnrichmenl P
TAGL_HUMAN Transgelin 15 75.12 1.996 2 0.000
EHD2_HUMAN EH domain-containing protein 2 8 17.13 2.021 2.02 0.000
RL18A_HUMAN 60S ribosomal protein L18a 3 17.61 2.022 2.02 0.002
RL13A_HUMAN 60S ribosomal protein L13a 2 6.897 2.023 2.02 0.003
PTRF_HUMAN Polymerase | and transcript 17 42.82 2.024 2.02 0.036
release factor
VINC_HUMAN Vinculin 38 36.95 2.027 2.03 0.000
KPYM_HUMAN Pyruvate kinase isozymes M1/M2 36 67.23 2.054 2.05 0.004
GSTO1_HUMAN Glutathione S-transferase omega-1 2 9.544 2.059 2.06 0.008
LASP1_HUMAN LIM and SH3 domain protein 1 6 22.61 2.068 2.07 0.000
THIO_HUMAN Thioredoxin 5 51.43 2.072 2.07 0.017
CSRP1_HUMAN Cysteine and glycine-rich protein 1 8 21.76 2.105 2.11 0.003
GDIR1_HUMAN Rho GDP-dissociation inhibitor 1 4 18.14 2121 212 0.024
CNN2_HUMAN Calponin-2 9 37.86 2131 213 0.000
SEPT9_HUMAN Septin-9 3 5119 2.158 2.16 0.010
PROF1_HUMAN Profilin-1 23 75.71 2176 218 0.000
CO1A2_HUMAN Collagen o-2(1) chain 9 7.906 2.202 2.2 0.012
CD166_HUMAN CD166 antigen 4 11.32 2.203 2.2 0.009
CD44_HUMAN CD44 antigen 7 9.569 2.251 2.25 0.012
RL24_HUMAN 60S ribosomal protein L24 6 31.21 2.256 2.26 0.002
STMN1_HUMAN Stathmin 6 32.21 2.303 2.3 0.003
5NTD_HUMAN 5-nucleotidase 6 14.81 2.309 2.31 0.007
G3P_HUMAN Glyceraldehyde-3-phosphate 42 64.48 2.349 2.35 0.000
dehydrogenase

ANXA5_HUMAN Annexin A5 30 54.37 2.409 2.41 0.003
FSCN1_HUMAN Fascin 6 16.63 2.467 2.47 0.001
LEG1_HUMAN Galectin-1 27 91.11 2.472 2.47 0.000
PLIN3_HUMAN Perilipin-3 9 26.5 2.568 2.57 0.000
A2MG_HUMAN a-2-macroglobulin 7 4.342 2.606 2.61 0.027
H15_HUMAN Histone H1.5 7 23.45 2.692 2.69 0.009
MAP1B_HUMAN Microtubule-associated protein 1B 11 5.146 2.700 2.7 0.036
© 2014 The Authors. 573
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Table 2. Continued

Accession Protein name :’;5'102?83 %Gov (95) EZ?%;atio ;:JI;JB:nrichmenl P
VAT1_HUMAN Synaptic vesicle membrane 12 31.81 2.7117 2.72 0.000
protein VAT-1 homologue
LEG3_HUMAN Galectin-3 10 30.4 2.800 2.8 0.000
MFGM_HUMAN Lactadherin 6 17.05 2.844 2.84 0.019
VIME_HUMAN Vimentin 200 83.69 2.848 2.85 0.000
NEST_HUMAN Nestin 22 16.84 2.865 2.87 0.007
NQO1_HUMAN NAD(P)  H dehydrogenase [quinone] 1 2 7.664 2.874 2.87 0.006
H12_HUMAN Histone H1.2 7 30.99 3.039 3.04 0.001
CSRP2_HUMAN Cysteine and glycine-rich protein 2 1 7.772 BAlI35 3.14 0.022
SH3L3_HUMAN SH3 domain-binding glutamic 3 34.41 3.252 3.25 0.007
acid-rich-like protein 3
COBA3_HUMAN Collagen a-3(VI) chain 41 16.53 4.428 4.43 0.000
MARE1_HUMAN Microtubule-associated protein RP/EB 2 7.463 89.966 89.97 0.018

family member 1

chromatography tandem mass spectrometry as was previously
described by Wang et al. [45] and Jin et al.[46].

Sample preparation

The samples were ground in liquid nitrogen. One millilitre of lysis buffer
(8 M urea, 1x Protease Inhibitor Cocktail; Roche Ltd., Basel, Switzer-
land) was added to sample, followed by sonication on ice and centrifu-
gation at 29,000 x g. for 10 min. at 4°C. The supernatant was
transferred to a fresh tube and stored at —80°C until needed.

iTRAQ labelling and protein digestion

For each sample, proteins were precipitated with ice-cold acetone and
then were redissolved in the dissolution buffer (0.5 M triethylammoni-
um bicarbonate, 0.1% SDS). Then proteins were quantified by the
bicinchoninic acid protein assay, and 100 pg of protein was tryptically
digested and the resultant peptide mixture was labelled using chemicals
from the iTRAQ reagent kit (Applied Biosystems, Foster City, CA, USA).
Disulphide bonds were reduced in 5 mM Tris-(2-carboxyethy) phos-
phine (TCEP) for 1 hr at 60°C, followed by blocking cysteine residues
in 10 mM methyl methanethiosulfonate (MMTS) for 30 min. at room
temperature, before digestion with sequence-grade modified trypsin
(Promega, Madison, WI, USA). For labelling, each iTRAQ reagent was
dissolved in 50 pl of isopropanol and added to the respective peptide
mixture.

Proteins were labelled with the iTRAQ tags as follows: Fibroblast
(5 days) — 114 isobaric tag, TCs (5 days) — 116 isobaric tag, Fibroblast
(10 days) — 118 isobaric tag, TCs (10 days) — 121 isobaric tag. The
labelled samples were combined and dried in vacuo. A SepPac™ C18
cartridge (1 cm®/50 mg, Waters Corporation, Milford, MA, USA) was

574

used to remove the salt buffer and then was dried in a vacuum concen-
trator for the next step.

High pH reverse phase separation

The peptide mixture was redissolved in the buffer A (buffer A: 20 mM
ammonium formate in water, pH 10.0, adjusted with ammonium
hydroxide), and then fractionated by high pH separation using a Aquity
UPLC system (Waters Corporation) connected to a reverse phase col-
umn (XBridge C18 column, 2.1 x 150 mm, 3.5 um, 300 A, Waters
Corporation). High pH separation was performed with a linear gradient.
Starting from 2% B to 40% B in 45 min. (B: 20 mM ammonium for-
mate in 90% ACN, pH 10.0, adjusted with ammonium hydroxide). The
column was re-equilibrated at initial conditions for 15 min. The column
flow rate was maintained at 200 pl/min. and column temperature was
maintained at room temperature [47]. Fourteen fractions were collected,
and each fraction was dried in a vacuum concentrator for the next step.

Low pH nano-HPLC-MS/MS analysis

The peptides were resuspended with 80 pl solvent C (C: water with 0.1%
formic acid; D: ACN with 0.1% formic acid), separated by nanoLC and
analysed by on-line electrospray tandem mass spectrometry. The experi-
ments were performed on a Nano Aquity UPLC system (Waters Corpora-
tion) connected to an LTQ Orbitrap XL mass spectrometer (Thermo
Electron Corp., Bremen, Germany) equipped with an online nanoelectro-
spray ion source (Michrom Bioresources, Auburn, CA, USA). 20 pl pep-
tide sample was loaded onto the Thermo Scientific Acclaim PepMap C18
column (100 um x 2 c¢m, 3 um particle size), with a flow of 10 pl/min.
for 5 min. and subsequently separated on the analytical column (Acclaim
PepMap C18, 75 um x 15 cm) with a linear gradient, from 5% D to 45%

© 2014 The Authors.
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D in 165 min. The column was re-equilibrated at initial conditions for
15 min. The column flow rate was maintained at 300 nl/min. and column
temperature was maintained at 35°C. The electrospray voltage of 1.9 kV
versus the inlet of the mass spectrometer was used.

LTQ Orbitrap XL mass spectrometer was operated in the data-depen-
dent mode to switch automatically between MS and MS/MS acquisition.
Survey full-scan MS spectra (m/z 400-1600) were acquired in the Orbi-
trap with a mass resolution of 30,000 at m/z 400, followed by five
sequential HCD-MS/MS scans. The automatic gain control was set to
500,000 ions to prevent over-filling of the ion trap. The minimum MS
signal for triggering MS/MS was set to 1000. In all cases, one micro-
scan was recorded. MS/MS scans were acquired in the Orbitrap with a
mass resolution of 7500. The dissociation mode was HCD (higher
energy C-trap dissociation). Dynamic exclusion was used with two
repeat counts, 10-sec. repeat duration, and the m/z values triggering
MS/MS were put on an exclusion list for 120 sec. For MS/MS, precur-
sor ions were activated using 40% normalized collision energy and an
activation time of 30 ms.
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Fig. 4 Pie chart representation of the distribution of identified proteins
in TCs (cell culture, 5th day) according to their protein class (A), path-
ways (B) and cellular components (C) classifications.

Database searching, criteria and protein
parameterization

Protein identification and quantification for the iTRAQ experiment was per-
formed with the ProteinPilot software version 4.0 (Applied Biosystems).
The database was the Human UniProtKB/Swiss-Prot database (Release
2011_10_15, with 20248 sequences). The Paragon Algorithm in
ProteinPilot software was used for peptide identification and isoform-
specific quantification. The data search parameters were set up as
follows: trypsin (KR) cleavage with two missed cleavage was consid-
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ered; fixed modification in cysteines by MMTS; iTRAQ modification in
peptide N termini, methionine oxidation and iTRAQ modification in
lysine residues were set as variable modification. To minimize false
positive results, a strict cut-off for protein identification was applied
with the unused ProtScore >1.3, which corresponds to a confidence
limit of 95%, and at least two peptides with the 95% confidence were
considered for protein quantification. The resulting data set was auto
bias corrected to get rid of any variations imparted because of unequal
mixing during combining different labelled samples. For iTRAQ quantifi-
cation, the peptide for quantification was automatically selected by Pro
Group algorithm (at least two peptides with 99% confidence) to calcu-
late the reporter peak area, error factor and p-value. For the selection
of differentially expressed proteins, we considered the following situa-
tion: (/) the proteins must contain at least two unique high-scoring
peptides; (i) the proteins must have a P < 0.05 and the proteins
identified with mass tag changes ratio must be >1.3 or <0.75.
Differentially expressed proteins were screened by two-sample ttest
(P < 0.05) and fold change (>2), based on the bioinformatics analysis.

Data set analysis

MS/MS fragmentation spectra were analysed using PEAKS search
engine tool (PEAKS Studio 7; Bioinformatics Solutions Inc., Waterloo,
ON, Canada).

The protein details obtained were analysed for the function, process,
location, by PANTHER (Protein ANalysis THrough Evolutionary Relation-
ships) classification system (http://www.pantherdb.org/) [48] which is
based on a controlled dialect to describe a protein regarding its subcel-
lular localization, molecular function or biological process.

Top over-expressed proteins were used to create radar (spider) plots
Using Microsoft Excel.

Results

This study utilizes a novel proteomic approach based on isobaric tags
for relative and absolute quantification (iTRAQ) using nano liquid
chromatography tandem mass spectrometry analysis to identify spe-
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Translation regulator activity
3%

Binding
3%

Structural
malecule activity
28%

Catalytic activity
28%

Molecular function (FBs, 5™ day)

Fig. 5 Pie chart representation of the distribution of identified proteins
in FBs (cell culture, 5th day) according to their molecular functions.
Categorizations were based on information provided by the online
resource PANTHER classification system.
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cifically over expressed proteins in TCs comparative to FBs. Figure 1
shows the sequence of connected procedural steps used in this
protocol.

We identified a total of 1609 proteins by iTRAQ technology using
nano LC-MS/MS analysis. The temporal proteome was evaluated at 5
and 10 days, respectively, and the selected lists of differentially up-
regulated proteins identified in TCs and FBs, in cell culture, are shown
in Table 1 (5th day) and Table 2 (10th day).

TCs versus FBs, 5th day in cell culture

Identification of the differentially expressed protein

We found that in TCs, as compared to FBs, there are 39 up-regu-
lated proteins, especially Myosin-14 (15.72-fold). We subsequently
examined the FBs by comparison with TCs and found that there are
25 up-regulated proteins, especially collagen alfa 3(VI) chain (4.71-
fold), secernin-1 (3.73-fold), fascin (3.25-fold) as detailed in Tables
S1and S2.
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Fig. 6 Pie chart representation of the dis-
tribution of identified proteins in FBs (cell
culture, 5th day) according to their biolog-
ical processes (A), cellular processes (B),
developmental processes (C) and system
development (D) involvement.
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Bioinformatic analyses of the identified proteins

The distributions of differentially abundant proteins in putative
functional categories are shown in Figures 2—7 according to the
PANTHER. The various molecular functions which were found to be
mapped with the participation of the identified proteins in TCs are
involved mainly in catalytic activity (43%) and as structural molecule
activity (25%; Fig. 2) compared with FBs in which they are chiefly
involved in binding (32%), catalytic activity (28%) and as structural
molecule activity (28%; Fig. 5).

The 39 proteins identified in TCs were assigned to following main
biological processes: metabolic process (21.5%), cellular process
(17.2%), developmental process (12.9%) and cellular component
organization (11.8%), generation of precursor metabolites and energy
(7.5%) immune system process (5.4%), cell communication, trans-
port, cell adhesion, cell cycle (each 4.3%), system process (3.2%),
homoeostatic process, regulation of biological process, response to
stimulus (each 1.1%; Fig. 3A). The 25 proteins over expressed in FBs
were assigned dominantly to metabolic process (21.4%), cellular pro-
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cess (18.6%), cell communication (11.4%), developmental and
immune system processes (each 7.1%) and cell adhesion (5.7%;
Fig. 6A).

The main developmental processes which engage TCs proteins
are anatomical structure morphogenesis (~41%), ectoderm develop-
ment (37%), mesoderm development and system development (each
~11%; Fig. 3B), comparative to FBs where proteins are engaged in
anatomical structure morphogenesis (~29%), ectoderm development
(35.7%), mesoderm development (14.3%) and system development
(21.4%) respectively (Fig. 6B).

The cellular processes which involve TCs proteins are cellular
component organization (~41%), cell communication, cell adhesion
and cell cycle (each ~15%; Fig. 3C), while FBs proteins are involved
in cell communication (32%), cell motion (24%), cell adhesion and
cellular component organization (each 16%) and cell cycle (12%;
Fig. 6C).

There is a big difference regarding system development func-
tions between TCs and FBs: muscle organ development 50%, ner-
vous system and skeletal muscle development 25% each in TCs
(Fig. 3D) and 50% nervous system development and skeletal
muscle and muscle organ development 25% each for FBs
(Fig. 6D).

The proteins in TCs are attributed to the following protein clas-
ses. cytoscheletal proteins (20%), oxidoreductase (20%) and struc-
tural proteins (14%; Fig. 4A), hydrolase and isomerase (each 6%),
chaperone and transferase (each 5%), while in FBs proteins pertain
to cytoscheletal proteins (14%), oxidoreductase (11%), signalling
molecule (9%), calcium-binding protein, cell adhesion molecule,
nucleic acid binding, structural proteins and transferase (each 7%;
Fig. 7A).

The different highly significant pathway map associated with the
proteins in TCs showed that they are involved in 5-HT degradation
(17%), TCA cycle (17%) and phenyletylamine degradation (17%) and
cytoskeletal regulation by Rho GTPase (9%) and de novo purine
shynthesis (8%; Fig. 4B). By comparison, FBs proteome clearly
depicts that they are involved in glycolysis (15%), Huntington disease
(15%), integrin signalling pathway (14%), pyruvate metabolism and
(14%; Fig. 7B).

The cellular localization of TCs proteome demonstrated pro-
teins from intermediate filaments (56%), actin cytoscheleton
(19%), mitochondria (13%), microtubule (6%) and plasma
membrane (6%; Fig. 4C). In FBs, 75% of the proteins belong to
the cytoskeleton and 25% are destined to the extracellular matrix
(Fig. 7C).

Figure 8 represents the heat map based on the results of protein
quantification and demonstrates that proteins are differentially
expressed between TCs and FBs.

TCs versus FBs, 10th day in cell culture

Identification of the differentially expressed protein

We discovered that in TCs, as compared to FBs, there are 24 up-
regulated proteins, especially superoxide dismutase (8.36-fold) and
prostacyclin  synthase 6A (8.12-fold). Myosin-14 remains up-
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regulated at 10 days (6.6-fold). In FBs, there are 40 up-regulated pro-
teins especially Microtubule-associated protein RP/EB family member
1 (89.96-fold) and Collagen «-3(VI) chain (4.428-fold) comparative to
TCs (Tables S3 and S4).

Bioinformatic analyses of the identified proteins

Figures 9-14 show the distribution of proteins in presumed func-
tional categories according to the PANTHER. The various molecular
functions which were attributed of the identified proteins in TCs are
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Fig. 7 Pie chart representation of the distribution of identified proteins
in FBs (cell culture, 5th day) according to their protein class (A), path-
ways (B) and cellular components (C) classifications.
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Fig. 8 Heat map depicting significance results between TCs and FBs (cell culture, 5th day). Experimental samples are clustered on the horizontal axis
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tein abundance. The colour gradient indicates the magnitude of fold change.
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involved mainly in structural molecule activity (38%), in catalytic re
activity (24%) and binding (22%; Fig. 9) compared with FBs where activiny

5%

are mostly implicated in binding (36%), structural molecule activity Motor activity
(29%), catalytic activity (13%; Fig. 12). 8%

The 39 proteins identified in TCs were assigned to following main
biological processes. cellular process (21.3%), developmental pro-
cess (13.8%), cellular component organization (13.8%) and meta-
bolic process (11.3%), cell-cell communication (8.8%), system
processes (7.5%) cell adhesion (5%), immune system process (5%),
transport (5%), generation of precursor metabolites and energy
(2.5%), cell cycle (3.8%), regulation of biological process, response
to stimulus (each 1.3%; Fig. 10A). The 25 proteins over expressed in
FBs were assigned dominantly to cellular process (19.2%), metabolic
processes (13.3%), cell communication (10.8%), developmental pro-
cesses (10%), immune system process (9.2%), cellular component
organization (7.5%), cell adhesion (6.7%), system process (6.7%),
response to stimulus (5%) apoptosis and transport 3.3% each
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Fig. 9 Pie chart representation of the distribution of identified proteins
in TCs (cell culture, 10th day) according to their molecular functions.
Categorizations were based on information provided by the online
resource PANTHER classification system.

Fig. 10 Pie chart representation of the dis-
tribution of identified proteins in TCs (cell
culture, 10th day) according to their bio-
logical processes (A), cellular processes
(B), developmental processes (C) and sys-
tem development (D) involvement.
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Fig. 11 Pie chart representation of the distribution of identified proteins
in TCs (cell culture, 10th day) according to their protein class (A), path-
ways (B), and cellular components (C) classifications.

The main developmental processes which employ TCs proteins
are anatomical structure morphogenesis (44%) and ectoderm devel-
opment (32%) mesoderm and system development (each 12%;
Fig. 10B), comparative to FBs where anatomical structure morpho-
genesis, ectoderm development and system development are in equal
proportion ~27% each and mesoderm development (19.2%;
Fig. 13B).

The cellular processes which engage TCs proteins are cellular
component organization (34%), cell communication (22%), cell

© 2014 The Authors.
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Fig. 12 Pie chart representation of the distribution of identified proteins
in FBs (cell culture, 10th day) according to their molecular functions.
Categorizations were based on information provided by the online
resource PANTHER classification system.

motion (16%) and cell adhesion (13%; Fig. 10C), while FBs proteins
are involved in cell communication (34.2%), cellular component orga-
nization (~24%), cell adhesion (~21%), cell motion (10%; Fig. 13C).

There is a big difference regarding system development functions
between TCs and FBs: muscle organ development 75%, nervous sys-
tem development 25% in TCs (Fig. 10D) and 50% nervous system
development (28%), skeletal system development (27%) muscle
organ development (18%) and angigenesis (18%) and heart develop-
ment (9%) for FBs (Fig. 13D). The proteins in TCs are attributed to
the following protein classes: cytoscheletal proteins (30%), structural
proteins (17%) and oxidoreductase (13%), signalling molecule (7%),
calcium-binding protein (5%) and cell adhesion molecule, cell junc-
tion protein, enzyme modulator and transferase (each 4%; Fig. 11A),
while in FBs proteins belong to cytoscheletal proteins (18%), cell
adhesion molecule (11%), signalling molecule (8%), nucleic acid
binding calcium (8%), oxidoreductase (7%), enzyme modulator
(7%), receptor (7%; Fig. 14A).

The most significant pathway in TCs showed that they are
involved mainly in nicotinic acethylcoline receptor signalling pathway
(20%), inflammation mediated by chemokine and cytokine (20%) and
cytoskeletal regulation by Rho GTPase (20%), de novo purine shyn-
thesis (10%), integrin signalling pathway (10%), salvage pyrimidine
nucleotides (10%) and Alzheimer disease-presenilin pathways (10%;
Fig. 11B). By comparison, FBs proteome clearly depicts that they are
involved in synthesizing the extracellular matrix components: integrin
signalling pathway (15%), cytoskeletal regulation by Rho GTPase,
glycolysis, gonadotropin releasing hormone pathway and Huntington
disease (each 10%; Fig. 14B).

The cellular localization of TCs proteome demonstrated proteins
from cytoscheleton (87%) and plasma membrane (13%; Fig. 11C). In
FBs, 76% of the proteins belong to the cytoskeleton, 18% to the
extracellular matrix and 6% to the plasma membrane (Fig. 14C).

The heat map showing the expression of differentially expressed
protein between TCs and FBs is showed in Figure 15 and demon-
strated that the differences between this two cell types are still main-
tained in cell culture after 10 days.
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Aspresented by radarrepresentationbothcelltypes, TCsand FBs suf-
fer a slight switch in phenotype between the 5th and 10th day, however
Figures 16A, B and 17A, B clearly show major differences between TCs
andFBs.

Discussion

The domain of proteomics enables comparative analysis of existing
proteins in different cells [49]. In addition, it allows monitoring the
changes in protein expression during the dynamic transformations
that cells undergo during their differentiation [50]. For this reason, we
performed a proteomic analysis of TCs compared to FBs, at different
time-points (the 5th and 10th day in primary cell culture), to verify if
these cells are different from one another and if there are any changes
in their differentiation (phenotype) over time. After the identification
of targeted proteins, we characterized and associated them with pro-
tein families using PANTHER database and analysed them from the
functional point of view.
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We identified a panel of 1609 proteins from human lung TCs and
FBs cell cultures samples which were quantified and the highest fold
change expressed proteins between TCs and FBs were analysed and
classified using the protein database. According to our results, there
were top 39 ranked proteins over expressed in TCs compared to FBs
at 5th day in cell culture and 24 up-regulated proteins in TCs by com-
parison to FBs at 10th day in cell culture and this supports the case
for TCs as distinctive cells.

Putative roles of differentially expressed proteins
in TCs

In TCs, by comparison with FBs, the differentially identified proteins
were mainly located in the cytoplasmic compartment and involved in
cell signalling, energy and metabolic pathways, while a significant
part of the FBs proteins were destined to the extracellular matrix
which is in concordance with its well known function of producing
extracellular matrix components (including collagen) [51].

© 2014 The Authors.
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Myosin-14, which was found to be up-regulated in TCs, is a con-
ventional non-muscle myosin encoded by the MYH14 gene in human
chromosome 19q13.3 [52]. We found that non-muscle myosin-14
seems to be involved in processes such as sensory perception, inter-
cellular signalling and morphogenesis, according to the PANTHER
classification system. Among previous assumptions on TCs functions
it has been included that of mechanoreceptors [53], capable of
detecting and translate stretch information to the nucleus [12, 16].
The presence of cytoskeleton proteins and especially myosin-14 in

© 2014 The Authors.
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TCs confirms this hypothesis. Taking into account that myosin-14 is
known to be involved in sensory perception [54], we can propose TCs
as candidates for a mechanical sensing and mechanochemical con-
version task. In addition, the presence of TC primary cilia was
reported in vasculature [55] and trachea [56], functioning as mechan-
0- or chemosensors [57], probably involved in the initiation of cellular
global positioning to initiate tissue renewal after damage [58].

Telocyte proteome also revealed the presence of periplakin. Peri-
plakin, a protein which in humans is encoded by the PPL gene, links
cytoskeleton elements together and connects them to junctional com-
plexes [59]. Up till now, electron microscopy studies revealed that
TCs establish homocellular (TC-TC junctions) and heterocellular junc-
tions (TC-other cell type) [25, 26]. Mechanical junctions are essential
to the proliferation, migration and transformation of various cell types
[60, 61] and therefore we might suggest that TCs are involved in
these mentioned processes. Also, intercellular signalling is pivotal in
switching cells between different fates such as growth, differentiation
and motility, and it could be influenced by tensional force generation
within the cytoskeleton [62, 63]. We suggest that TCs might partici-
pate in mechanical sensing and mechanochemical conversion task
and also in tissue repair/remodelling/renewal, as shown before [38,
39, 64, 65].

Telocytes proteomic analysis revealed the up-regulation of pro-
teins with oxidoreductase activity, mostly located within mitocondria.
It had been proved under electron microscope that TCs have calcium
uptake/release units defined by a close relation between caveolae,
endoplasmic reticulum and mithocondria [66], located in the podoms
of telopodes [12, 16, 26]. It is well known that mitochondria and
endoplasmic reticulum establish bilateral physiological interactions
responsible (among numerous functions) for modulating the calcium
signalling function, process which involves redox and redoxsensitive
enzymes [67]. ER-mitochondria crosstalk is essential for eukaryotic
cells preventing the onset of diseases by disrupted metabolism [68,
69]. Moreover, Haines et al. suggested that the intensity of oxidative
stress influences cell tissue composition towards desired cell type
ratio, functioning as a cell death ‘rheostat’ [70]. Therefore, we
consider that TCs are involved in the maintenance of cell and tissue
homoeostasis.

Mammalian cells release extracellular vesicles produced by two
mechanisms: (a) secretion from the endosomal membrane compart-
ment after the fusion of multivesicular bodies with a plasma membrane
and (b) shedding directly from plasma membrane [71]. Telocytes are
no exception to this, the presence of exosomes and ectosomes being
recently reported [7, 16, 26]. Several proteins up-regulated in TCs were
found among the top 100 vesicular proteins that are present most fre-
quently in mammalian extracellular vesicles proteome [72]. Among
them we can exemplify with proteins such as: mitochondrial thioredox-
in-dependent peroxide reductase, protein disulphide-isomerase A3,
myosin-14, myosin-10, filamin-B, sodium/potassium-transporting AT-
Pase subunit o-1 and keratin, type Il cytoskeletal 1. We can assume
that the release of extracellular proteins contributes to the extracellular
environment homoeostasis, possibly influencing stem cell niches, lead-
ing to cell differentiation which is in congruence with very recent stud-
ies pointing out that TCs could function as an extensive intercellular
information transmission system [73].
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Conclusion

The present study represents the first proteomic analysis on TCs
and will provide useful insights on the possible functions of these
cells and involvement in lung (and not only) pathology. The data
herein reported show that TCs are completely different from FBs,
not only by their ultrastructural configuration [1, 23], gene profile
[42], immunophenotype [74], but also from the protein expression
point of view. The data presented now are supporting for our pre-
vious assumptions regarding TCs functions in tissue morphogene-
sis, development and repair/remodelling, extracellular environment
homoeostasis and intercellular signalling influencing stem cell
niche fate.
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