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Deep brain stimulation of the subthalamic nucleus has become a standard therapy for Parkinson’s disease. Despite extensive

experience, however, the precise target of optimal stimulation and the relationship between site of stimulation and alleviation of

individual signs remains unclear. We examined whether machine learning could predict the benefits in specific Parkinsonian signs

when informed by precise locations of stimulation. We studied 275 Parkinson’s disease patients who underwent subthalamic

nucleus deep brain stimulation between 2003 and 2018. We selected pre-deep brain stimulation and best available post-deep brain

stimulation scores from motor items of the Unified Parkinson’s Disease Rating Scale (UPDRS-III) to discern sign-specific changes

attributable to deep brain stimulation. Volumes of tissue activated were computed and weighted by (i) tremor, (ii) rigidity, (iii)

bradykinesia and (iv) axial signs changes. Then, sign-specific sites of optimal (‘hot spots’) and suboptimal efficacy (‘cold spots’)

were defined. These areas were subsequently validated using machine learning prediction of sign-specific outcomes with in-sample

and out-of-sample data (n¼51 subthalamic nucleus deep brain stimulation patients from another institution).

Tremor and rigidity hot spots were largely located outside and dorsolateral to the subthalamic nucleus whereas hot spots for

bradykinesia and axial signs had larger overlap with the subthalamic nucleus. Using volume of tissue activated overlap with sign-

specific hot and cold spots, support vector machine classified patients into quartiles of efficacy with �92% accuracy. The accuracy

remained high (68–98%) when only considering volume of tissue activated overlap with hot spots but was markedly lower (41–

72%) when only using cold spots. The model also performed poorly (44–48%) when using only stimulation voltage, irrespective

of stimulation location. Out-of-sample validation accuracy was �96% when using volume of tissue activated overlap with the

sign-specific hot and cold spots. In two independent datasets, distinct brain areas could predict sign-specific clinical changes in

Parkinson’s disease patients with subthalamic nucleus deep brain stimulation. With future prospective validation, these findings

could individualize stimulation delivery to optimize quality of life improvement.
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Introduction
A wide range of brain disorders is thought to arise from

aberrant brain circuits.1 Deep brain stimulation (DBS) is

a neurosurgical treatment directed towards modulating

dysfunctional circuits. DBS is most established in the

treatment of Parkinson’s disease.2 The therapeutic effects

achieved with DBS surgery hinge upon the precise and
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selective modulation of the intended target structure,

maximizing treatment efficacy while minimizing off-target

spill-over into neighbouring structures to avoid adverse

effects.3 In Parkinson’s disease, the most commonly tar-

geted brain structure is the subthalamic nucleus (STN),

an essential hub in the brain’s motor circuitry.1 Despite

extensive experience, however, questions persist about the

optimal stimulation target for Parkinson’s disease, and

more specifically, the precise characterization of the neur-

al substrates responsible for sign-specific improvements.4

Parkinson’s disease patients typically express cardinal

motor signs of tremor, rigidity, bradykinesia and axial

signs to varying degrees.5 Functional neuroimaging studies

have suggested that clinical features map to different brain

networks, forming the basis for sign-specific circuitopa-

thies.1 In STN-DBS for Parkinson’s disease, structural con-

nections between STN and the supplementary motor area

were associated with bradykinesia and rigidity improve-

ment, while structural connections with the primary motor

cortex were linked to tremor alleviation.6 Symptom-specific

networks have also been implicated in psychiatric disorders

such as obsessive-compulsive disorder, in which obsessions/

compulsions mapped to different white matter bundles

than depressive symptoms.7 These findings suggest that ap-

propriately delivered network modulation could lead to

feature-specific, rather than disease-specific effects, poten-

tially allowing for individualized DBS therapy based on

patients’ unique clinical profile.

Previous studies have investigated the relationship

between clinical feature-specific improvement and stimula-

tion location in STN-DBS. While global motor improve-

ment seems to consistently localize to the dorsolateral

STN region,8 sign-specific sites of optimal stimulation dif-

fer across studies. This may partly reflect the heterogen-

ous methods employed in previous studies, as well as

limited statistical power. For example, a study8 found an

area encompassing dorsolateral STN and neighbouring

white matter was associated with rigidity improvement,

whereas another group6 defined a rigidity improvement

zone that was limited to the dorsolateral STN. The latter

also defined a tremor improvement zone in dorsolateral

STN more antero-lateral than that of rigidity. In line

with these concepts, targets nearby to STN, such as the

dentato-rubro thalamic tract, have been prospectively

investigated to preferentially treat tremor-dominant

Parkinson’s disease.9

The primary purpose of this study was not necessarily

to investigate anatomical structures responsible for clinic-

al benefits, but rather to define the relationship between

improvement of Parkinson’s disease cardinal signs and

stimulation location in a large sample of patients treated

with STN-DBS. To do so, we modelled activation vol-

umes and employed voxel-wise linear regression to define

sign-specific discriminative sites of optimal and subopti-

mal efficacy. We then used machine learning to determine

whether sign-specific improvement could be explained by

the recruitment of these discrete areas, and validated the

resulting model using out-of-sample data from another

institution.

Materials and methods

Patient population

Following institutional research ethics board approval

(University Health Network Research Ethics Board

#15–9777), we retrospectively screened the charts of

Parkinson’s disease patients who underwent DBS surgery

at Toronto Western Hospital (TWH) from 2003 to 2018.

In total, 275 Parkinson’s disease patients who underwent

bilateral STN-DBS at TWH were included (Table 1).

Inclusion and exclusion criteria are detailed in the

Supplementary material. These patients were reported in

a prior study that described the relationship between vol-

ume of tissue activated (VTA) location and global motor

improvement.10 The current study expands on this by

investigating Parkinson’s disease sign-specific changes and

characterizing their relationships with stimulated brain

areas. An additional cohort of previously published

patients from Charité-Universitätsmedizin Berlin (CUB,

n¼ 51) was included as an independent test-cohort.

Demographic details and imaging parameters are pub-

lished elsewhere.11,12

Clinical scores

As detailed in a previous study,10 preoperative baseline

(Med-OFF) and postoperative (Med-OFF/DBS-ON) motor

item scores on the Unified Parkinson’s Disease Rating

Scale (UPDRS-III) were collected for each patient as a

measure of clinical improvement attributable to DBS.

Table 1 Patient demographics of TWH (n¼ 275) and CUB (n¼ 51)

Patient cohort TWH CUB P

No. of patients (female) 275 (82) 51 (17) >0.05

Age (year) 59.8 6 7.1 60.0 6 7.9 >0.05

Disease duration (year) 11.4 6 4.3 10.4 6 3.9 >0.05

Preoperative LED (mg) 1405.1 6 698.2 1071.7 6 528.5 <0.01

Baseline demographics between the two institutions (TWH and CUB) were not significantly different (P> 0.05, two-sample T-test), except for levodopa equivalent dose

(P< 0.01). Bold indicates statistical significance. Data are numbers of participants or mean 6 standard deviation.

CUB ¼ Charité-Universitätsmedizin Berlin; LED ¼ levodopa equivalent dose; TWH ¼ Toronto Western Hospital.
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Each patient’s best available clinical postoperative score

was sampled, and the corresponding stimulation parame-

ters were recorded (Supplementary Table 1). Patients

underwent extensive programming according to our

published algorithms.13,14 Then, we selected items from

UPDRS-III to calculate sign-specific change. We reviewed

the literature for previous publications using clinical

feature-specific neuroimaging analysis to extract the fol-

lowing items: (i) items 20 and 21 (rest and action tremor)

for tremor, (ii) items 22 (rigidity) for rigidity, (iii) items

18, 19, 23–26 (speech, facial expression, finger tap, hand

movement, rapid alternating movements of hands and leg

agility) for bradykinesia and (iv) items 27–30 (arising

from chair, posture, gait and axial signs) for axial

signs.8,15–17

The clinical change attributable to DBS was calculated

based on the absolute difference between the best avail-

able postoperative score (at any time point longer than

2 months after surgery) and the baseline score. A positive

difference indicated improvement whereas a negative dif-

ference indicated worsening. Absolute difference rather

than per cent change was used because the maximum

possible scores for each sign cluster (tremor¼ 28, rigidi-

ty¼ 20, bradykinesia¼ 40, axial signs¼ 16)—and thus

the maximum change—were relatively small compared to

the global UPDRS-III. As such, using percentage improve-

ment would have resulted in large changes for patients

with mild signs at baseline. Patients with both baseline

and best postoperative scores of 0 for a given sign were

not included in that sign-specific analysis, as no clinical

change attributable to DBS could be calculated.

Therefore, the number of patients included in each sign-

specific analysis was: (i) tremor (n¼ 242), (ii) rigidity

(n¼ 273), (iii) bradykinesia (n¼ 275) and (iv) axial signs

(n¼ 274) (Fig. 1). Baseline demographics were not signifi-

cantly different across these four sign-specific cohorts

(P> 0.05, ANOVA). Mean active contact coordinates

were also similar across the four signs (Supplementary

Table 2 and Supplementary Fig. 1). Finally, to account

for the natural history of Parkinson’s disease, the clinical

improvement attributable to DBS was adjusted for disease

severity using the corresponding preoperative baseline

(Med-ON) and postoperative UPDRS-III scores (Med-

ON/DBS-ON). Of note, this only led to minor changes in

clinical scores (see Supplementary material and

Supplementary Table 3).

Image acquisition, electrode
localization and VTA estimation

These steps, in keeping with previously published meth-

ods, are detailed in the Supplementary material and were

performed using Lead-DBS v2.0 software (https://www.

lead-dbs.org/ 20 July 2020, date last accessed).11 Briefly,

DBS electrodes were localized and warped to standard

space for group analysis. To approximate the spatial ex-

tent of the peri-electrode electric field wherein modulation

of neuronal activity is assumed to occur, activation vol-

umes were computed. Although not technically accurate,

these will be referred as VTAs for context and ease of

reading, especially for readers familiar with the prior clin-

ical literature Finally, to facilitate group-level analysis,

left-sided VTAs were flipped non-linearly—accounting for

anatomical asymmetry—to the right using Lead-DBS.8,11

Defining sign-specific sites of
optimal and suboptimal efficacy

To define sign-specific sites of optimal (‘hot spots’) and

suboptimal (‘cold spots’) efficacy, voxel-wise mass uni-

variate linear regression analyses were performed using

clinically weighted (by each sign cluster) VTAs. This

resulted in a map of t-values discriminating voxels (i.e.

brain areas) associated with optimal (positive t-values)

and suboptimal (negative t-values) sign-specific outcomes

when stimulated. Here, negative t-values signify that the

mean sign-specific clinical change associated with overlap-

ping VTAs compared unfavourably to that of non-over-

lapping VTAs, thus representing suboptimal benefits

rather than worsening per se.

To define hot and cold spots, the sign-specific t-value

maps obtained from the mass univariate analyses were

thresholded at Puncorrected < 0.01 and subsequently binar-

ized. This resulted in a total of eight binary labels: Hot

and cold spots for tremor (HotT and ColdT), rigidity

(HotR and ColdR), bradykinesia (HotB and ColdB) and

axial signs (HotA and ColdA). Overlap between each

Figure 1 Patient flowchart. Two patient cohorts were included

in this study (n¼ 326): TWH (n¼ 275) and CUB (n¼ 51). Because

no clinical change attributable to DBS could be calculated, patients

with both baseline and best postoperative scores of 0 for a specific

sign were not included in the sign-specific analysis. Therefore, the

number of patients included in each sign-specific analysis for TWH

was: (i) tremor (n¼ 242), (ii) rigidity (n¼ 273), (iii) bradykinesia

(n¼ 275) and (iv) axial signs (n¼ 274). Similarly, the number of

patients included in each sign-specific analysis for CUB was: (i)

tremor (n¼ 40), (ii) rigidity (n¼ 48), (iii) bradykinesia (n¼ 51) and

(iv) axial signs (n¼ 50). CUB ¼ Charité-Universitätsmedizin Berlin;

TWH ¼ Toronto Western Hospital.
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label and STN, sensorimotor STN and zona incerta was

also assessed.18

Internal validation of sign-specific
sites of optimal and suboptimal
efficacy

To validate the sign-specific hot and cold spots, as well

as the chosen P-value threshold, we used a supervised

machine learning model, specifically support vector ma-

chine (SVM). SVM approaches have previously been used

to classify and predict clinical outcomes following DBS

for dystonia based on neuroimaging features.19 For our

purposes, the SVM input was the volume of overlap be-

tween individual VTAs—belonging to each sign-specific

cohort—and the corresponding hot and cold spots labels.

Voltage alone was also used as an input to a separate

SVM to investigate the influence of VTA size (independ-

ent of VTA location) on outcome. SVM output in both

cases was the classification of patients into sign-specific

quartiles of predicted clinical changes. The slight differen-

ces into the quartile group size were due to patients hav-

ing equal clinical score change.

External validation of sign-specific
sites of optimal and suboptimal
efficacy

To provide additional external validation of the hot and

cold spots, we tested our SVM model on an out-of-sample

Parkinson’s disease STN-DBS dataset from a separate insti-

tution (CUB) (Fig. 1). The sign-specific clinical improve-

ment attributable to DBS was calculated in the same

manner as for the TWH cohort, based on the absolute dif-

ference between available postoperative (1–2 years after

surgery) and baseline scores of the same UPDRS-III items.

Once again, two SVM models were tested. The overlap

of sign-specific CUB VTAs with the corresponding hot

and cold spots (derived from TWH cohort) was used as

input for the first model, whereas voltage alone served as

input for the second. SVM output was the classification

of CUB patients into sign-specific quartiles of predicted

clinical changes.

Sign-specific structural connectivity

As an additional exploratory analysis to investigate pat-

terns of structural connectivity between sign-specific hot

spots and motor regions-of-interest previously implicated

with motor improvement,6,12,20 we seeded HotT, HotR,

HotB and HotA in a large averaged diffusion template

created from the diffusion-weighted imaging scans of

1065 Human Connectome Project (http://www.humancon

nectomeproject.org/ 15 June 2020, date last accessed)

subjects.21 Additional details on acquisition parameters

and tractography processing steps are detailed in the

Supplementary material.

Analyses using different hot and
cold spots

For completeness sake, we also defined hot and cold

spots using two additional analyses: (i) using the com-

plete UPDRS-III with similar thresholding (Puncorrected <

0.01) and binarization and (ii) using threshold cluster

free enhancement to compute sign-specific hot and cold

spots without binarization to use the complete statistical

information.

Statistical analyses

R (https://www.r-project.org/ 15 June 2020, date last

accessed, version 3.4.4) and RMINC (https://github.com/

Mouse-Imaging-Centre/RMINC 20 July 2020, date last

accessed) were used (Supplementary material).

Data availability

The validated hot and cold spots labels for each sign are

publicly available for download on ZENODO (https://doi.

org/10.5281/zenodo.4425256 20 January 2021, date last

accessed) and are accessible in Lead-DBS (https://www.

lead-dbs.org/ 20 July 2020, date last accessed). The data

and code that support the central findings of this study

are available from the corresponding author upon reason-

able request.

Results

Patient characteristics

Patient demographics are shown in Table 1. Baseline

demographics between the two institutions were not sig-

nificantly different (P> 0.05, two-sample t-test), except

for levodopa equivalent dose (P< 0.01) (Table 1). Mean

coordinates of the active contacts differed between TWH

and CUB cohorts (Supplementary Table 2). In both

cohorts, tremor and rigidity improved the most in re-

sponse to STN-DBS, whereas bradykinesia improved the

least (Table 2). For TWH patients, the best scores for ri-

gidity, gait and bradykinesia were achieved between 1.5

and 2 years post-DBS implantation. However, achieving

best tremor control took significantly longer (2.2 years,

ANOVA P< 0.001).

Anatomical relationship of
sign-specific sites of optimal and
suboptimal efficacy

We used a voxel-wise mass univariate analysis (thresh-

olded at Puncorrected < 0.01) to define sign-specific
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discriminative sites of optimal (‘hot spots’) and subopti-

mal (‘cold spots’) efficacy. These hot and cold spots were

then internally (TWH cohort) and externally (CUB co-

hort) validated using machine learning (SVM) classifica-

tion to predict sign-specific clinical changes. The spatial

distribution of hot and cold spots corresponding to each

sign can be seen in Fig. 2. Both HotB and HotA primarily

occupied dorsolateral STN with extension into the

adjacent white matter (Fig. 2 and Supplementary

Table 4). Conversely, a large portion of HotT was

located outside dorsolateral STN, overlapping with zona

incerta and also lying adjacent to mediodorsal STN.

Most of HotR was located outside lateral STN, within

the white matter located antero-ventral and antero-dorsal

to STN. ColdB and ColdA were located in the thalamic

ventral-intermediate nucleus area and adjacent white mat-

ter. Small foci of ColdT straddled the inferior thalamus

and adjacent white matter. ColdR was located in ventral-

intermediate nucleus and nearby white matter. HotR

exhibited 24% and 17% overlap with HotB and HotA,

respectively.

Machine learning validations of
sign-specific sites of optimal and
suboptimal efficacy

We validated the observed hot and cold spots using

SVM, assessing whether the amount of VTA overlap

with these areas could accurately explain sign-specific

clinical outcomes (Supplementary Table 5). To ascertain

the robustness of our model, we tested its accuracy with

different inputs (overlap with hot spots only, cold spots

only or both) (Fig. 3). The most accurate model was

obtained when considering overlaps with both hot and

cold spots. The model accuracy ranged from 92% to

100% when classifying the vast majority of patients into

their quartiles of clinical changes for each sign (Fig. 3).

Overlap with hot spots only did not perform as well as

the combined model (accuracy 68–98%), but it outper-

formed the model using cold spots only (accuracy

41–72%), suggesting that hot spot location is a stronger

determinant of clinical outcomes.

We also performed two additional SVM analyses to

further interrogate our model. First, to control for the

extent of stimulation, we also tested the model

using voltage only as an input (rather than overlap

with hot or cold spots). This model performed poorly

(accuracy 44–48%, Fig. 3), highlighting that the location

of stimulation (rather than the volume of stimulation) is

the crucial determinant of treatment efficacy. Second,

since baseline sign severity was significantly correlated

with postoperative clinical change (Pearson’s product-

moment correlation, P< 0.001), we investigated

whether removing the influence of (i.e. regressing out) the

baseline sign score changed the accuracy of our model

(Supplementary Fig. 2). When considering only the resid-

uals (i.e. after removing baseline scores), the combined

model efficacy only slightly decreased (accuracy

91–100%), highlighting the extent to which stimulation

location, rather than disease severity, drives differences in

clinical changes.

Finally, we applied our SVM model to an unseen data-

set from a second, independent institution (CUB). We

Table 2 Sign-specific clinical outcomes

Sign Preoperative UPDRS-III score Adjusted clinical change Time after surgery

(year)

TWH

Tremor (n¼ 242) 6.0 6 4.3 5.0 6 4.2 (82.2) 2.2 6 2.0

Rigidity (n¼ 273) 6.8 6 3.8 4.3 6 3.7 (60.0) 1.9 6 1.7

Bradykinesia

(n¼ 275)

16.4 6 5.3 7.4 6 6.2 (45.1) 1.5 6 1.5

Axial signs

(n¼ 274)

5.7 6 2.6 3.2 6 2.8 (53.8) 1.6 6 1.5

CUB

Tremor

(n¼ 40)

6.5 6 5.5 4.3 6 3.7 (72.2) N/A*

Rigidity

(n¼ 48)

7.6 6 4.0 4.4 6 2.8 (57.9) N/A*

Bradykinesia

(n¼ 51)

18.1 6 7.2 7.2 6 5.8 (39.8) N/A*

Axial signs

(n¼ 50)

5.8 6 3.1 2.7 6 2.2 (46.6) N/A*

Clinical change reflects the adjusted difference between the sign-specific UPDRS-III at the time of follow-up and prior to surgery. The clinical improvement attributable to DBS was

adjusted for disease severity using the corresponding preoperative baseline (Med-ON) and postoperative UPDRS-III scores (Med-ON/DBS-ON) (see Supplementary material and

Supplementary Table 2). Time after surgery represents the timepoint with best clinical score. For the CUB cohort, * indicates that the precise time after surgery was not available

but it was usually 1–2 years after surgery. Unless otherwise stated the data are mean 6 standard deviation and percentages in parentheses.

CUB ¼ Charité-Universitätsmedizin Berlin; LED ¼ levodopa equivalent dose; N/A ¼ not available; TWH ¼ Toronto Western Hospital; UPDRS-III: Motor section of the Unified

Parkinson’s disease rating scale.
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tested whether overlap of these patients’ VTAs with sign-

specific hot and cold spots derived from the TWH cohort

also predicted clinical improvement (Supplementary Table

5). Again, the SVM model using both hot and cold spots

overlap outperformed the other models, predicting the

clinical improvement quartile with high accuracy (accur-

acy 96–100%) (Fig. 4).

Structural connectivity patterns of
hot spots

In an exploratory analysis, we seeded sign-specific hot

spots in a high-quality normative diffusion-weighted

imaging template to investigate whether motor regions

previously implicated with motor improvement, demon-

strated preferential structural connectivity to specific hot

spots. Of the included motor regions-of-interest, the pri-

mary motor and premotor cortex received the most

streamlines (Fig. 5). The thalamus was most connected

with HotT, whereas the primary motor and premotor

cortex were most connected with HotB.

Analyses using different hot and
cold spots

Additional hot and cold spots were computed using the

complete UPDRS-III scores, which were primarily

located in the STN with extension into the adjacent

white matter, and in the thalamic ventral-intermediate nu-

cleus area and adjacent white matter, respectively

(Supplementary Fig. 3). When considering VTA overlap

with both hot and cold spots, the model accuracy was

100%. Furthermore, additional hot and cold spots were

computed using threshold cluster free enhancement. These

spots were larger than the hot and cold spots obtained

with the thresholding and binarizing method

(Supplementary Fig. 4). When considering VTA overlap

with both threshold cluster free enhancement hot and

cold spots, the model accuracy was 100% for the four

hot and cold spot labels.

Discussion
Using a large cohort of Parkinson’s disease patients

receiving STN-DBS, we defined brain areas associated

with sign-specific optimal (i.e. hot spots) and suboptimal

(i.e. cold spots) clinical efficacy. These areas were vali-

dated with in-sample and out-of-sample data using super-

vised machine learning. Based on the extent of

stimulation overlap with these areas, our machine learn-

ing model was able to predict a patient’s clinical im-

provement in each of the four cardinal signs of

Parkinson’s disease with high accuracy (�92%). We also

showed differences in structural connectivity between hot

spots and motor regions-of-interest.

Similar to a recent study defining discriminative

streamlines with respect to clinical response to DBS for

obsessive-compulsive disorder,23 we used mass univariate

analyses to define sign-specific hot and cold spots.

This method identifies brain areas that discriminate

optimal (i.e. positive t-values) and suboptimal (i.e. nega-

tive t-values) efficacy. Importantly, the absence of a

brain area from our hot and cold spots labels does not

mean that it has no contribution to clinical outcomes;

Figure 2 Sign-specific area of clinical change after STN-

DBS. Binarized areas of optimal (‘hot spots’) and suboptimal (‘cold

spots’) efficacy were identified using mass univariate analysis

(uncorrected P< 0.01). Hot (positive t-values, green) and cold

(negative t-values, red) spots are shown. The subthalamic nucleus

(green outline), zona incerta (yellow outline), and thalamic ventral-

intermediate nucleus (black outline) are projected on sagittal (first

column) and coronal (second column) T1-weighted MRI (MNI

ICBM 2009 b NLIN asymmetric). The nuclei outline were derived

from nuclei labels18 using FSLeyes for visualization.
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Figure 3 Machine learning model classification accuracy using TWH (Internal Validation). Sign-specific accuracy matrices (4 � 4)

classifying patients into quartiles of clinical changes (Q) obtained with SVM model (machine learning model). To ascertain the robustness of our

model, we tested its accuracy with different inputs (VTA overlap with hot spots only and/or cold spots only). Voltage, a surrogate of VTA size,

was also used as an input. The diagonal (top left—bottom right) represents patients correctly classified. Matrix columns and rows represent true

and predicted data, respectively. TWH ¼ Toronto Western Hospital; VTA ¼ volume of tissue activated.
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Figure 4 Machine learning model classification accuracy using CUB (External Validation). (A) CUB distribution of the active

contacts (red dots) and the subthalamic nucleus (shaded green) are shown on sagittal (first and third column) and coronal (middle column)

T1-weighted MRI (MNI ICBM 2009 b NLIN asymmetric). (B) Sign-specific accuracy matrices (4 � 4) classifying patients into quartiles of clinical

changes (Q) obtained with SVM model (machine learning model). To ascertain the robustness of our model, we tested its accuracy with different

inputs (VTA overlap with hot spots only and/or cold spots only). Voltage, a surrogate of VTA size, was also used as an input. The diagonal

(top left—bottom right) represents patients correctly classified. Matrix columns and rows represent true and predicted data, respectively.

CUB ¼ Charité-Universitätsmedizin Berlin; VTA ¼ volume of tissue activated.
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rather, it means that, based on our data, this area was

not sufficient to differentiate (i.e. low absolute t-values)

between patients with optimal and suboptimal benefits.

This distinction is important when comparing our results

to those of previous studies, which often constructed

probabilistic stimulation maps that reflect voxel-wise

clinical outcomes.

Using probabilistic stimulation maps, a recent study8

defined and validated areas associated with improvement

in rigidity and bradykinesia, which they found were

largely located outside dorsolateral STN. In contrast to

our findings, areas associated with tremor improvement

were not significant in this earlier analysis. Another

group24 also reported that the white matter adjacent to

the dorsolateral STN played a crucial role for rigidity

and bradykinesia improvement. We also found that a

large proportion of HotR and HotT were located mostly

adjacent to the STN, whereas HotB and HotA had larger

overlap with the STN. A study6 demonstrated that

tremor, rigidity and bradykinesia improved when the

dorsolateral STN was stimulated. In line with subthala-

motomy studies,25 these findings suggest that modulation

of STN itself, as well as neighbouring structures, contrib-

ute to therapeutic benefits, highlighting the complex inter-

actions with other circuits such as the hyperdirect

pathway. Finally, studies using only active contacts (ra-

ther than VTAs) have reported that STN and adjacent

structures, such as the zona incerta and substantia nigra,

may contribute to bradykinesia and tremor improvement,

respectively.26 Highlighting the importance of ‘sweet

spots’ validation, our study and another group8 used ma-

chine learning and linear mixed-effect models,

respectively. Rather than raising doubts about the utility

of group-level neuroimaging DBS studies, these heterogen-

ous findings should reflect the evolution of neuroimaging

methods, with recent studies focusing on data validation.

We validated our hot and cold spots using machine

learning—specifically SVM—predicting patients’ clinical

outcomes with a high accuracy. Interestingly, although

the position of active contact differed slightly between

institutions, the external validation maintained a high ac-

curacy, emphasizing the robustness of our model. In

doing so, we validated the t-map thresholding and pro-

vided insights on the contribution of various inputs to

model performance. Using VTA overlap with hot spots

provided markedly higher accuracy than overlap with

cold spots, suggesting that clinical improvement is better

explained by the engagement of certain beneficial regions

than the avoidance of unwanted ones. We also showed

that stimulation location is the primary driver of clinical

outcomes. Indeed, voltage—a surrogate of stimulation

volume—was a poor predictor of improvement.

Furthermore, after regressing out the relationship between

preoperative sign severity and outcomes, the model’s pre-

dictive accuracy was largely maintained. These findings

support the notion that therapeutic effects achieved with

DBS hinge upon selective stimulation of specific areas.3

The magnitude of clinical improvement and the time-

point at which greatest improvement was achieved were

different across Parkinson’s disease signs. This highlights

the difficulty of programming in STN-DBS patients,13

which took at least 1.5 years before clinical outcomes

were optimized. Interestingly, tremor—which responds

with a variable time delay to DBS when compared to

Figure 5 Sign-specific hot spots structural connectivity. Sign-specific hot spots were iteratively seeded (50 000 streamlines) into high-

quality normative diffusion-weighted imaging22 to investigate patterns of connectivity to motor regions including primary motor cortex (M1),

premotor cortex (PM), cerebellum, supplementary motor area and thalamus. Contra ¼ contralateral; Ipsi ¼ ipsilateral.
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rigidity—took significantly longer to optimize than other

signs.14 Programming is commonly driven by rigidity im-

provement, however, this may be associated with para-

doxical deterioration of gait and akinesia. Our findings

are in line with this established clinical notion, reporting

higher efficacy for rigidity and tremor, relative to brady-

kinesia and axial signs.13,27 STN-DBS would benefit from

novel lead designs and stimulation paradigms enabling

concomitant improvement of different motor signs. Our

data showed partial overlap of the rigidity hot spot with

bradykinesia and axial signs hot spots, which may ex-

plain the concomitant improvement in rigidity and brady-

kinesia or axial signs in some patients. Knowledge of

these hot spots and their spatial interactions with one an-

other is important since quality of life in Parkinson’s dis-

ease patients is often driven by clinical signs other than

rigidity such as bradykinesia.28

This study has several limitations. First, although our

data included STN-DBS surgeries performed by three

neurosurgeons over 20 years, our hot and cold spots were

limited to the stimulated (i.e. sampled) areas. Second,

since VTAs were flipped to a single side, we forfeited our

ability to find possible side-specific results. Because the

concept of a ‘dominant’ STN has been suggested,29 future

studies should compare right- and left-sided findings

without flipping, examining contralateral clinical changes

to discern possible asymmetries in stimulation location re-

sponsible for clinical changes. Third, while the lead local-

ization, image normalization and VTA modelling

methods—as implemented in Lead-DBS—have been previ-

ously described, it is important to acknowledge that each

step is associated with errors that diminish the precision

with which stimulation volumes can be localized in the

brain (see Supplementary material for more details).

Fourth, while we retrospectively validated the hot and

cold spots using an independent dataset from a second

institution, we did not apply our findings prospectively.

Finally, when defining hot and cold spots using the full

statistical information (i.e. unbinarized, see Supplementary

Fig. 4), their ability to predict clinical outcome was mar-

ginally improved, perhaps supporting the benefits of using

the full statistical information in future machine learning

applications.

The primary purpose of this study was not necessarily

to investigate anatomical structures responsible for clinic-

al benefits, but rather to demonstrate that VTA modelling

combined with machine learning could identify and valid-

ate precise locations of stimulation responsible for

Parkinson’s disease sign-specific clinical benefits. For the

postoperative programming, hot spots—originally defined

in standard (MNI) space—could be precisely identified in

an individual patient following a personalized non-linear

transformation. Similar to Devaluez et al.,30 we believe

that guiding stimulation overlap with hot spots, which

can be visualized with existing VTA software, could en-

able the preferential targeting of a patient’s most dis-

abling Parkinson’s disease signs. For the treating

physician, this is more easily performed with discrete and

binarized hot spots, which as per our data can predict

clinical efficacy with a high degree of accuracy. Novel

electrode designs and stimulation paradigms allowing dir-

ectional VTAs could theoretically shape the VTAs to

preferentially overlap certain sign-specific hot spots, al-

though this new technology remains to be validated. The

next step after clinician choice of optimal VTA based on

visual overlap would be a machine learning-driven soft-

ware defining optimal VTA. Such a software would be

able to handle non-binarized hot and cold spots, thereby

enabling the use of the full statistical data and likely

yielding superior accuracy. In sum, future studies could

explore the utility of these areas as adjunct targeting and

programming tools using clinician choice of optimal VTA

based on visual overlap and, eventually, machine learn-

ing-driven VTA optimization.

In conclusion, we identified sign-specific hot and cold

spots in STN-DBS and validated these areas using in-sample

and out-of-sample datasets, showing that individual clinical

outcomes are largely explained by the degree to which these

discrete areas are stimulated. These areas could serve to per-

sonalize surgical planning and programming, allowing sign-

specific circuitopathies to be targeted based on patients’

most disabling signs and maximizing quality of life improve-

ment. Validating such areas is pertinent as novel DBS tech-

nologies, such as directional leads, enable more precise and

flexible delivery of stimulation to desired areas. These find-

ings also represent an important step in identifying the

neuroanatomical elements responsible for the manifestation

and alleviation of cardinal Parkinson’s disease signs.
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Supplementary material is available at Brain
Communications online.
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