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Abstract

Obesity is a complex multifactorial phenotype that influences several metabolic pathways.
Yet, few studies have examined the relations of different body fat compartments to urinary
and serum metabolites. Anthropometric phenotypes (visceral adipose tissue (VAT), subcu-
taneous adipose tissue (SAT), the ratio between VAT and SAT (VSR), body mass index
(BMI), waist circumference (WC)) and urinary and serum metabolite concentrations mea-
sured by nuclear magnetic resonance spectroscopy were measured in a population-based
sample of 228 healthy adults. Multivariable linear and logistic regression models, corrected
for multiple testing using the false discovery rate, were used to associate anthropometric
phenotypes with metabolites. We adjusted for potential confounding variables: age, sex,
smoking, physical activity, menopausal status, estimated glomerular filtration rate (eGFR),
urinary glucose, and fasting status. In a fully adjusted logistic regression model dichoto-
mized for the absence or presence of quantifiable metabolite amounts, VAT, BMI and WC
were inversely related to urinary choline (8 =-0.18, p =2.73*1073), glycolic acid (3 = -0.20,
0.02), and guanidinoacetic acid (8 =-0.12, p = 0.04), and positively related to ethanolamine
(3=0.18, p=0.02) and dimethylamine (3 = 0.32, p = 0.02). BMI and WC were additionally
inversely related to urinary glutamine and lactic acid. Moreover, WC was inversely associ-
ated with the detection of serine. VAT, but none of the other anthropometric parameters,
was related to serum essential amino acids, such as valine, isoleucine, and phenylalanine
among men. Compared to other adiposity measures, VAT demonstrated the strongest and
most significant relations to urinary and serum metabolites. The distinct relations of VAT,
SAT, VSR, BMI, and WC to metabolites emphasize the importance of accurately differenti-
ating between body fat compartments when evaluating the potential role of metabolic regu-
lation in the development of obesity-related diseases, such as insulin resistance, type 2
diabetes, and cardiovascular disease.
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Introduction

Obesity is a strong correlate of diabetes mellitus, hypertension, stroke, and several types of cancer
[1-3]. The molecular mechanisms that link obesity with the development of these chronic condi-
tions remain largely unknown. Previous epidemiological studies that examined the association
between obesity and obesity-associated diseases have focused on individual molecular mediators,
such as inflammatory cytokines [4]. However, the traditional epidemiologic approach that tests a
single hypothesis and regresses one outcome variable on one exposure variable has limitations.
Most importantly, it highlights one exposure-outcome relation while neglecting the biological
complexity and the multifactorial origin of most chronic diseases [5-7]. Thus, a more compre-
hensive approach to study a whole biological system rather than a single risk factor is needed.
Metabolomics simultaneously examines many substrates and products of the metabolism to
detect metabolic alterations that are linked to human behavior, such as diet and physical activity
[8-10], that are directly linked to obesity [11-14]. Thus, metabolomics offers the potential to
unravel the biological mechanisms and pathways through which obesity-related phenotypes are
linked to metabolism.

Better understanding the molecular mechanisms would offer the potential to develop tai-
lored strategies for the prevention and treatment of obesity-associated chronic diseases [15,
16]. Previous studies reported dysregulation of serum and urinary metabolites, including
branched chained amino acids (BCAA), amino acid-related metabolites, carnitine, phosphati-
dylcholines, and metabolite ratios of BCAAs to glucogenic amino acids in obesity or obesity-
associated diseases [17-20]. Little is known about the relation between different adipose tissue
compartments such as visceral adipose tissue (VAT), abdominal subcutaneous adipose tissue
(SAT), the ratio between VAT and SAT (VSR) and metabolic profiles, and whether the contri-
bution of those parameters are different regarding their metabolic regulation compared to
body mass index (BMI) or waist circumference (WC). This is important because VAT has
been considered to have multiple endocrine, metabolic, and immunological functions and to
be more strongly related to obesity-associated metabolic dysregulation than SAT [21-23],
which has been proposed to reduce the risk of adiposity-related metabolic dysregulation [24,
25]. However, data confirming these differences using accurate methods to quantify VAT and
SAT are sparse and inconsistent [26]. The aim of the current study was to examine the associa-
tions of VAT, SAT, VSR, BMI, and WC with urinary and serum metabolites in healthy adults.

Methods
Study design and population

An age- and sex stratified sample of the population was drawn by the local population registries.
German speaking participants aged between 20 and 70 years, living in Regensburg or adjacent
regions were included in the study. In total, 233 agreed to participate (24.6% response). Of
those, five participants were excluded from analyses due to pregnancy (n = 1) or diagnosed
chronic diseases (n = 4). The study was conducted according to the guidelines laid down in the
Declaration of Helsinki. All procedures involving human subjects were approved by the ethics
committee of the University of Regensburg. The ethic committee of the Regensburg University
specifically approved this study. Written informed consent was obtained from all participants.

Metabolite measurements

Midstream urine specimens were collected from all participants (n = 228) of whom 14% had
fasted overnight prior to urine collection, and centrifuged at 2000g for 10 minutes at 15°C.
Supernatant urine was filled into 0.5 mL tubes and immediately stored at -80°C. Blood
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specimens were available from 88% of the participants (n = 200), of whom 11% had fasted
overnight prior to blood withdrawal. Venous blood was drawn in serum tubes, which were
then tilted twice and kept at room temperature for 30 minutes before they were centrifuged by
2500g for exactly 10 minutes at 15°C. Serum aliquots of 0.5 mL each were stored at -80°C.
Metabolites were measured by nuclear magnetic resonance spectroscopy (NMR). Therefore,
four hundred microliters of urine were mixed with 200 pL of phosphate buffer, pH 7.4, and

50 pL of D,O containing 0.75 (w%) 3-trimethylsilyl-2,2,3,3-tetradeuteropropionate (TSP) as
internal standard.

Serum specimens (0.5 mL) were ultrafiltered at 4000xg for 60 minutes at 8°C using Milli-
pore Amicon 10kDa-Filters, which had been prewashed once with 3 mL of distilled water by
centrifugation at 4000g for 30 minutes at 22°C to remove filter preservatives. Subsequently,
400 pL of the serum ultrafiltrate were mixed with 200 pL of phosphate buffer, pH 7.4, and
50 uL of D,O containing 0.75 (w%) TSP. NMR experiments were carried out on a Bruker
Avance IIT 600 MHz spectrometer employing a triple-resonance (‘H, >C *'P, *H lock) cryo-
genic probe equipped with z-gradients and an automatic sample changer. All spectra were
acquired following established protocols [27, 28].

Targeted metabolomics approach

In the targeted approach the signals contributing to a given compound were integrated by
peak-shape analysis to ensure that only the signals contributing to that compound are inte-
grated and no neighbouring signals. Employing the Analytical Profiler module of AMIX 3.9.13
(BrukerBioSpin), 30 urine and 20 serum metabolites were quantified by integrating well-
resolved signals of these metabolites in the acquired 2D "H-">C HSQC and 1D 'H spectra rela-
tive to the TSP reference signal, ensuring that only non-overlapping signals were considered
for obtaining quantitative values. From the obtained relative integrals, absolute concentrations
were calculated employing individual peak calibration factors using the NMR quantification
tool MetaboQuant [29]. All metabolites quantitated yielded concentration values at or above
the individual lower limits of quantification (LLOQ) for at least 10% of the spectra. For a
detailed list of the 30 urinary and 20 serum metabolites quantitated see the S1 Table and S2
Table.

Untargeted metabolomics approach

The untargeted approach involves a large number of metabolites and does not depend upon a
priori assumptions. Urinary and serum data sets were subjected to a comparable pre-process-
ing routine, starting with equidistant binning of the 1D 'H spectra to compensate for slight
shifts in signal positions across spectra due to small variations in sample pH, salt concentra-
tion, or temperature. The spectral regions of 9.5-0.5 ppm were evenly split into bins of

0.01 ppm employing Amix 3.9.13 (BrukerBioSpin). The region between 6.5-4.5 ppm, which
contains the broad urea and water signals, was excluded. After exclusion of additional bins
that had yielded in less than 90% of the spectra signals, a total of 701 urinary bins remained. In
case of serum, the region corresponding to residual glycerol, which served as a filter preserva-
tive (3.81-3.76 ppm, 3.68-3.52 ppm), was excluded in addition, resulting in 678 bins. All urine
metabolites were scaled and normalized to creatinine, and serum samples were scaled and nor-
malized to the reference signal (TSP) to remove disturbing technical or biological variances.
Chemical compounds in biological specimens were identified by their characteristic peak pat-
terns and signal positions in the NMR spectra using reference spectra from the commercially
available Bruker Biofluid Reference Compound Database BBIOREFCODE 2-0-3 and the
Human Metabolome Database (HMDB) [30]. Confirmation of metabolite identification was
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achieved by spike-in experiments. In addition, concentrations of well-resolved compounds
were calculated using calibration curves that had been generated from serially diluted external
standards over a concentration range of 0.0012-10.0 mmol/L.

Body composition measurements

VAT and SAT were quantified by ultrasonography using a B-mode ultrasound (Mindray DP-
50) and a 3.5-5.0 MHz convex array transducer. Measurements were performed according to
a strict protocol, details of which are described elsewhere [31]. Briefly, at the median line SAT
was measured extending from the skin to the linea alba and VAT was measured reaching from
the linea alba to the lumbar vertebra corpus. Height in centimeters and weight in kilograms
were measured with two decimal places using a digital measuring station (seca285 measuring
station, SECA, Hamburg, German). Height and weight were measured with the participants
wearing underwear without shoes. BMI was calculated by dividing body weight (in kilograms)
by height in meters squared (m?). WC was measured at the mid-point between the lower rib
and the iliac crest using an inelastic tape (SECA measuring tape 201, SECA, Hamburg, Ger-
many). Measurements were taken with the participant standing in an upright position.

Measurement of covariables

Potential confounding variables including age, sex, current smoking status, estimated glomer-
ular filtration rate (eGFR), physical activity, overnight fasting status, and menopausal status
(women only) were assessed by standardized computer-assisted personal interviews. Physical
activity levels were calculated from Metabolic Equivalents of Task (METs) [32] by a 24-hour
physical activity recall. The eGFR was calculated from serum creatinine using the four-variable
Modification of Diet in Renal Disease (MDRD4) formula [33]. Overnight fasting status (yes or
no) was determined from self-reports of the participants before collecting urine and blood
specimens.

Statistical analysis

Descriptive statistics were used to present the characteristics of the study population. Targeted
urinary and serum metabolomic data were log, transformed to achieve normally distributed
data and reduce heteroscedasticity. Pearson correlations between all quantified, log,-trans-
formed metabolites were calculated and correlation coefficients were considered weak (r<0.4),
moderate (r>0.4-<0.6), or strong (r>0.6) [34]. Differences between men and women, fasting
and non-fasting participants, urinary glucose and non-glucose subjects were tested using Krus-
kal-Wallis and % tests. In sensitivity analyses, effect-measure modification by age and sex
interaction was examined by testing multiplicative interaction terms in regression models
using likelihood ratio tests. For the detection of unbalanced regulation of compounds in untar-
geted data, the total spectral area for each NMR spectrum was calculated and tested for normal
distribution using the Shapiro-Wilk test [35]. To reduce heteroscedasticity, data were normal-
ized using variance stabilization with 60% of the urinary and 65% of the serum features,
respectively. Identification of metabolites was further facilitated by use of the statistical correla-
tion technique (STOCSY), which utilizes the presence of multiple collinearities in a set of spec-
tra [36]. To this end, based on a set of '"H 1D spectra a pseudo 2D spectrum is computed by
calculating the correlation between the intensities of the different bins. For bins corresponding
to the same metabolite strong correlations are expected independent of the presence of dipolar
or ] couplings, which are utilized in standard 2D spectra. Therefore, based on the STOCSY
technique bins belonging to the same molecule may be identified and thereby supporting
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metabolite identification. Note, for the computation of the STOCSY spectra were normalized
to total spectral area [37].

Multiple linear regression models were used to examine associations of VAT, SAT, VSR,
BMI, and WC to urinary and serum metabolites. Models were adjusted for study, age, and sex
(Model 1). The fully-adjusted model added a multiplicative age-sex interaction, smoking status
(former, current, never smoking), physical activity level (continuous), menopausal status (pre-
, peri-, postmenopausal), fasting status (overnight fasting: yes, no), urinary glucose (elevated
glucose: yes, no), and eGFR (continuous) were applied (Model 2). Stratified analyses were per-
formed regarding sex. We tested for linearity by including squared and cubic terms of VAT,
SAT, VRS, BMI and WC. To account for the considerable amount of values below the LLOQ
of some metabolites (S1 Table and S2 Table), linear regression models were only calculated for
those metabolites for which at least 75% of data were available. Otherwise, metabolites were
dichotomized as detectable and undetectable and logistic regression models were run while
adjusting for the same models 1 and 2 as described above.

Multiplicity was corrected by controlling the false discovery rate (FDR) according to Benja-
mini and Hochberg [38] at a level of 5%. Dependent and independent variables were standard-
ized by subtracting the mean and dividing by the standard deviation for all regression models to
assure the comparability of effect estimates. All reported p values are two-tailed, FDR-adjusted,
and values <0.05 were deemed statistically significant. R statistics 3.1.2 were used for analyses.

Results

Characteristics of the study population are presented in Table 1. The mean age of study partici-
pants was 52 years and 13.2% of the participants were fasting. Women had lower VAT
(p<0.001), VSR (p<0.001), BMI (p = 0.008) and WC (p<0.001) than men. In contrast, women
had a higher mean SAT (p = 0.011) than men. Differences between men and women, fasting and
non-fasting participants as well as between subjects with elevated urinary glucose and subjects
with no urinary glucose were found for urinary and serum metabolites (S3 Table and S4 Table).

Table 1. Characteristics of the study population by sex.

Total mean (SD) Women mean (SD) Men mean (SD) p-value

N 228 121 107

Age 51.96 (12.55) 52.80 (12.00) 50.97 (13.15) 0.388
Non-fasting 198 105 93 0.511
Current smoking 31 12 19 0.075
Physical activity level* 1.67 (0.27) 1.67 (0.27) 1.68 (0.28) 0.888
VAT thickness US (cm) 6.79 (2.85) 6.29 (2.80) 7.38 (2.81) <0.001
SAT thickness US (cm) 2.06 (0.85) 2.17 (0.89) 1.93(0.78) 0.011
VSR 3.77 (2.14) 3.23(1.70) 4.41 (2.41) <0.001
BMI (kg/m?) 26.61 (4.66) 25.97 (4.99) 27.36 (4.13) 0.008
Waist circumference (cm) 91.16 (13.56) 85.53 (11.99) 97.75 (12.30) <0.001

Entries are mean (standard deviation) for continuous variables and absolute numbers for categorical variables. VAT = visceral adipose tissue,
SAT = subcutaneous adipose tissue, BMI = body mass index, US = ultrasonography, n = 228. p-value from Kruskal-Wallis test.
*Calculated from Metabolic Equivalents of Task.

https://doi.org/10.1371/journal.pone.0175133.t001
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Results from targeted metabolomics approach

Pearson correlation analyses to assess correlations between metabolites showed moderate
(r>0.4) and strong (r>0.6) correlations between 36% of the urinary metabolites and 44% of
the serum metabolites (S1 Fig and S2 Fig).

Results from regression models to examine relations of obesity measures to urinary metab-
olites in the overall population revealed significant inverse and positive relations of VAT,
BMI, and WC to the detection of urinary metabolites in age and sex adjusted models (Model
1) and in fully adjusted models considering further adjustments for smoking, menopause sta-
tus, physical activity, urinary glucose, and eGFR (Model 2) (Table 2). Specifically, VAT was
inversely related to the detection of choline (3 = -0.18, p = 2.73" 1073), guanidinoacetic acid
(B8=-0.12, p = 0.04), and glycolic acid (8 = -0.20, 0.02), and positively related to the detection
of ethanolamine (8 = 0.18, p = 0.02) and dimethylamine (3 = 0.32, p = 0.02) in fully adjusted
models (Model 2). Note that the obtained choline concentrations were most likely influenced
by related molecules due to the presence of partial overlap in the analyzed NMR spectra. Fur-
ther, BMI and WC were additionally inversely related to the detection of glutamine and lactic
acid in fully adjusted models (Model 2). Moreover, WC was inversely associated with the
detection of serine in fully adjusted models (Model 2). No significant associations were found
between SAT or VSR and urinary metabolites in any of the analyses.

After stratifying by sex, results showed inverse relations of VAT to the detection of choline
(B=-0.18p=2.73"10"), glycolic acid (3 = -0.58, p = 0.04), guanidinoacetic acid (8 = -0.36,

p = 0.04), lactic acid ($ = -0.32, p = 0.04), and serine (f = -0.41, p = 0.04) and positive relations
to the detection of ethanolamine (£ = 0.71, p = 0.04) and dimethylamine (8 = 0.65, p = 0.04) in
fully adjusted models among men (S5 Table). By comparison, BMI and WC were additionally
inversely associated with the detection of betaine and glutamine in fully adjusted models. No
relation was found between BMI and serine in fully adjusted models among men. Among
women, VAT was positively related with the detection of dimethylamine (8 = 0.12; p = 0.04) in
the fully adjusted model. BMI was significantly inversely related to the detection of creatine
and glycolic acid and positively related to the detection of dimethylamine and methanol in the
age and sex adjusted models. However, after full adjustment, estimated relations were attenu-
ated and associations of BMI with the detection of urinary metabolites were no longer statisti-
cally significant. WC was positively associated with the detection of dimethylamine in fully
adjusted models (Model 2) among women. No significant relations were found between SAT
or VSR and urinary metabolites among men or women.

When regression models were applied to serum metabolites, results showed no significant
results between VAT, SAT, VSR, BMI, and WC and concentrations of serum metabolites for
the overall population and among subgroups. Also, no significant results were found between
the highest and lowest quartiles of VAT, SAT, VSR, BMI, or WC and serum metabolites in the
overall population or among subgroups.

Results from untargeted metabolomics approach

Multiple linear regression models to detect relations of VAT and SAT to the urinary metabolic
fingerprints in the overall population showed statistically significant associations between
VAT and 38 urinary bins in fully adjusted models (Model 2) (Table 3). Metabolite identifica-
tion was performed by comparison with reference spectra of pure compounds. The metabolite
assignments were further corroborated by means of an STOCSY analysis (S3 Fig). The
STOCSY helps identifying signals belonging to the same metabolite by means of a correlation
analysis. In its appearance, it is comparable to a conventional 2D TOCSY experiment. In this
representation, positive and negative correlations are depicted in red and blue, respectively.
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Table 2. Significant associations between measures of obesity and urinary metabolite levels.

Metabolite Model 1 Model 2
B p B p
VAT Formic acid* -0.09 4.81%107* -0.07 0.19
Choline -0.12 5.26*107 -0.18 2.73*107°
Methanol 0.23 0.01 0.10 0.29
Ethanolamine 0.15 0.03 0.18 0.02
Dimethylamine 0.23 0.01 0.32 0.02
Guanidinoacetic acid -0.14 0.03 -0.12 0.04
Glycolic acid -0.16 0.03 -0.20 0.02
BMI Formic acid* -0.04 0.03 -0.04 0.20
Alanine 0.10 0.01 0.17 0.01
Betaine -0.10 0.01 -0.13 0.03
Choline -0.11 0.01 -0.17 0.01
Creatine -0.10 0.01 -0.10 0.10
Dimethylamine 0.18 5.51%107* 0.26 0.01
Ethanolamine 0.13 2.10%107° 0.15 0.02
Glutamine -0.12 3.32%107° -0.16 0.01
Glycolic acid -0.15 6.74%107* -0.19 0.01
Guanidinoacetic acid -0.14 1.30%1073 -0.17 0.01
Lactic acid -0.08 0.02 -0.16 0.01
Methanol 0.12 0.01 0.05 0.36
Taurine -0.08 0.03 -0.10 0.10
WC Formic acid* -0.02 0.01 -0.02 0.21
Alanine 0.05 1.93%1073 0.07 0.05
Betaine -0.05 1.67*%1073 -0.05 0.12
Choline -0.05 1.67*107° -0.08 3.99%107°
Creatine -0.04 0.01 -0.03 0.13
Dimethylamine 0.07 7.71%¥107° 0.09 3.99%1073
Ethanolamine 0.06 6.87%107* 0.06 0.01
Glutamine -0.06 8.49%107* -0.06 0.01
Glycolic acid -0.05 1.67*%1073 -0.06 0.01
Guanidinoacetic acid -0.06 6.87%107* -0.07 0.01
Lactic acid -0.03 0.02 -0.06 0.01
Methanol 0.03 0.04 0.02 0.30
Phenylalanine -0.04 0.03 -0.02 0.28
Serine -0.04 0.02 -0.05 0.02
Taurine -0.03 0.02 -0.04 0.10

Model 1: regression model adjusted for study, age (non-linear) and sex. Model 2: regression model adjusted for study, age and sex interaction (non-linear),
smoking status, menopausal status (women only), physical activity, urinary glucose, and eGFR. VAT = visceral adipose tissue, BMI = body mass index,
WC = waist circumference, 3 = beta coefficient, p-value = corrected for multiple testing by controlling the false discovery rate.

*linear model applied, p-values<0.05 after correction for multiple testing were considered significant.

https://doi.org/10.1371/journal.pone.0175133.t002

Correlations above 0.50 respectively below -0.50 are shown. As the plot of the STOCSY is fairly
crowded individual metabolites were analyzed by employing the 1D version of the STOCSY
algorithm. In case that more than one compound contributed to a given bin, all corresponding
molecules are indicated in Table 3. Positive relations were found to lysine, dimethylamine and
tyrosine, while negative relations were found to 4-hydroxyhippuric acid, acetone, citric acid,
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Table 3. Significant results from multiple regression analyses on the relation of VAT to urinary bins (all subjects).

Anthropometric variable bin (ppm)

VAT 3.795
1.485
2.435
2.475
3.945
6.955
6.965
2.235
2.725
3.205
3.525
4.065
2.675
2.735
3.565
2.405
2.515
2.395
2.425
1.235
3.355
3.055
2.965
2.975
8.455
3.535
1.355

VAT 2.325
2.335
2.365
2.605
2.615
2.625
2.645
6.585
6.785
6.805
6.945

Model 1

B
0.0341
0.0981
-0.0354
-0.0334
-0.0452
-0.0717
-0.0803
-0.0480
0.0518
-0.0324
-0.0455
-0.1101
-0.1161
0.0633
-0.0661
-0.0540
-0.0430
-0.0283
-0.0318
-0.0428
-0.0503
0.0952
-0.0347
-0.0331
-0.0911
-0.0324
0.0234
-0.0303
-0.0259
-0.0362
-0.0119
-0.0157
-0.0198
-0.0468
-0.0657
-0.0369
-0.0632
-0.0384

p
0.0106

0.0500
0.0316
0.0695
0.0695
0.0277
0.0277
0.0562
0.0546
0.0546
0.0562
0.0546
0.0546
0.0772
0.0546
0.0277
0.0313
0.1068
0.0695
0.0546
0.0277
0.0587
0.0772
0.0772
0.0316
0.0695
0.0271
0.0661
0.1025
0.0562
0.0346
0.0446
0.0018
0.0546
0.0277
0.0772
0.0433
0.1147

Model 2
B p
0.0388 0.0155
0.0918 0.0285
-0.0329 0.0318
-0.0355 0.0102
-0.0475 0.0320
-0.0860 0.0100
-0.0843 0.0227
-0.0526 0.0318
0.0601 0.0304
-0.0458 0.0097
-0.0463 0.0344
-0.1337 0.0175
-0.1358 0.0304
0.0813 0.0304
-0.0669 0.0349
-0.0583 0.0100
-0.0430 0.0297
-0.0308 0.0465
-0.0348 0.0320
-0.0457 0.0318
-0.0561 0.0223
0.1149 0.0304
-0.0394 0.0435
-0.0674 0.0381
-0.1013 0.0223
-0.0320 0.0465
0.0226 0.0392
-0.0307 0.0320
-0.0276 0.0320
-0.0377 0.0320
-0.0508 0.0217
-0.0613 0.0162
-0.0511 0.0045
-0.0454 0.0449
-0.0692 0.0223
-0.0439 0.0320
-0.0807 0.0223
-0.0489 0.0320

metabolite identification
Lysine

3-Hydroxy-3-methylglutaric acid, others

4-Hydroxyhippuric acid

Acetone
Dimethylamine
Choline, others

Citric acid
Dimethylamine
Glycine, others
L-Pyroglutamic acid

Methylmalonic acid
scyllo-Inositol
Creatinine
Asparagine, unknown

Formic acid
Sugar compounds, unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown

Model 1: linear regression model adjusted for study, age (non-linear) and sex. Model 2: regression model adjusted for study, age and sex interaction (non-
linear), smoking status, menopausal status (women only), physical activity, urinary glucose, and eGFR. VAT = visceral adipose tissue, B = beta coefficient,
p-value = corrected for multiple testing by controlling the false discovery rate. p-values<0.05 after correction for multiple testing were considered significant.

https://doi.org/10.1371/journal.pone.0175133.t003

glycine, L-pyroglutamic acid, methylmalonic acid, scyllo-inositol, and formic acid. In addition,
significant associations were found between BMI and 35 bins and between WC and 62 bins
(data not tabulated). Most bins that were significantly associated with VAT were also found to
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be significant in models with BMI and WC. However, VAT but none of the other parameters
was inversely related to 4-hydroxyhippuric acid in the overall study population in fully
adjusted models (Model 2). By comparison, no significant relations were found between SAT
or VSR and urinary bins.

In subgroup analyses stratified by gender, no significant relations were found between
VAT, SAT, VSR, BMI, or WC and urinary bins. However, when analyses were restricted to
non-fasting participants, significant associations were found between VAT and 80 bins in fully
adjusted models (Model 2) (S6 Table). No relations were found between SAT or VSR and uri-
nary bins. By comparison, BMI and WC were significantly related to 99 and 70 bins, respec-
tively (data not tabulated). Significant results from analyses among all subjects were
reproduced in sensitivity analyses among non-fasting subjects. In addition, VAT, BMI, and
WC were inversely associated with acetone, choline, citric acid, asparagine/unknown, and L-
pyroglutamic acid in this group. Significant associations were found between VAT, BMI, and
WC to urinary bins in analyses restricted to subjects with no urinary glucose in fully adjusted
models (Model 2). Specifically, VAT was related to 11 bins among subjects with no urinary
glucose (S6 Table). These bins were also found to be significant in the overall study population
(e.g., 4-hydroxyhippuric acid or L-pyroglutamic acid).

Linear regression models to detect relations of VAT and SAT to serum bins showed no sig-
nificant results in the overall population. VSR, BMI, and WC also showed no significant rela-
tions to individual serum bins. When analyses were stratified by gender, significant results
were found between VAT and 20 serum bins among men in fully adjusted models (Model 2)
(Table 4). Of these significantly related 20 bins, twelve could be assigned to specific metabo-
lites. VAT was positively related to citric acid and tryptophan, and showed an inverse relation
to ketoleucine. In addition, positive relations were found between VAT and essential amino
acids, including valine, phenylalanine, and isoleucine. Note that the bin corresponding to iso-
leucine shows partial overlap with ketoleucine. By comparison, among women VAT was
inversely related to three serum bins in fully adjusted models (Model 2). Those bins were not
related to VAT among men. However, only one of the significantly inversely related bins could
be identified as lipid-cholesterol. No relations were found between SAT, VSR, BMI, or WC
and serum bins among men or women.

Discussion
Discussion of urine results

Results from the targeted metabolomics approach showed significant positive and inverse rela-
tions of VAT, BMI, and WC to urinary metabolites in the overall study population and in
stratified analyses among men and women. Specifically, VAT, BMI, and WC were consistently
inversely related to the detection of choline in the overall study population and in stratified
subgroups including men. The strongest and most significant associations were found between
VAT and choline. This indicates that predominantly VAT is related to choline metabolism.
Choline is an essential nutrient, playing a complex role in human metabolism [39]. Specifi-
cally, choline is needed for neurotransmitter synthesis (acetylcholine), cell-membrane signal-
ing (phospholipids), lipid transport (lipoproteins), and methyl-group metabolism
(homocysteine reduction) [40]. Previous metabolomics studies reported inverse relations of
serum choline to type 2 diabetes [41] and cardiovascular disease [42]. A lack of choline can
lead to a fatty liver condition due to lack of very low density lipoprotein (VLDL), which shut-
tles lipids away from the liver [39]. In addition, choline deficiency is associated with increased
levels of several inflammatory markers that link obesity to obesity-associated diseases, includ-
ing CRP, homocysteine, IL-6, and TNF [39, 43]. A possible mechanism is that with inadequate
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Table 4. Significant results from gender specific multiple regression analyses on the relation between VAT and serum bins.

Model 1 Model 2
Anthropometric variable bin (ppm) B p B p metabolite identification
Men (n =98)
VAT 0.995 0.0413 0.0146 0.0588 0.0015 Valine
0.985 0.0381 0.0476 0.0138 0.0285
1.035 0.0813 0.0246 0.0562 0.0128
0.935 0.0008 0.9952 0.0466 0.0178 Isoleucine, ketoleucine
2.605 -0.0160 0.9746 -0.0508 0.0117 Ketoleucine
2.615 -0.0175 0.9746 -0.0613 0.0060
2.625 -0.0084 0.9818 -0.0502 0.0047
1.065 0.0444 0.8602 0.0993 0.0006 Isobutyric acid, unknown
1.075 0.0314 0.8602 0.0798 0.0017
2.655 0.0186 0.8602 0.0442 0.0093 Methionine, unknown
7.375 0.0170 0.9746 0.0669 0.0202 Phenylalanine, unknown
7.555 0.0485 0.9802 0.1351 0.0274 Tryptophan
2.595 0.0203 0.9746 0.0538 0.0285 unknown
2.635 0.0167 0.9746 0.0672 0.0003 unknown
4.345 -0.2167 0.7141 -0.4572 0.0013 unknown
6.745 0.4734 0.8602 0.7706 0.0351 unknown
7.485 -0.2613 0.8602 -0.4372 0.0388 unknown
1.085 0.0271 0.8602 0.0638 0.0202 unknown
1.105 0.0102 0.9818 0.0826 0.0161 unknown
7.675 -0.2390 0.7141 -0.3350 0.0082 unknown
Women (n =102)
VAT 0.735 -0.0242 0.5579 -0.0482 0.0136 Lipid-cholesterol
0.605 -0.4264 0.1599 -0.3640 0.0136 unknown
7.845 -0.2337 0.1888 -0.4020 0.0368 unknown

Model 1: linear regression model adjusted for study, age (non-linear) and sex. Model 2: linear regression model adjusted for study, age and sex interaction

(non-linear), smoking status, menopausal statu

s (women only), physical activity, urinary glucose, and eGFR. In each case, the stratification variable was

excluded from the model. VAT = visceral adipose tissue, 3 = beta coefficient, p-value = corrected for multiple testing by controlling the false discovery rate.
p-values<0.05 after correction for multiple testing were considered significant.

https://doi.org/10.1371/journal.pone.0175133.t1004

choline stores, the capacity to methylate homocysteine to methionine is diminished and conse-
quently, plasma levels of homocysteine increase [39]. Homocysteine was demonstrated to con-
tribute to the initiation and progression of vascular disease by activating monocytes, resulting
in the secretion of cytokines that amplify the inflammatory response [44].

In addition, VAT, BMI, and WC were positively related to dimethylamine in the overall
population, among men and women. Compared to other measures of obesity, the strongest
relations were found between VAT and dimethylamine and only weak relations were found
between WC and dimethylamine. This indicates that VAT may be the main indicator for
increased dimethylamine levels. A positive association of BMI with urinary dimethylamine
was reported recently by one study among adults of the US population and was replicated
among British adults [45]. Dimethylamine is a gut-microbial metabolite related to the gut
microbial metabolism of choline. The impact of the gut microbiota on dietary choline, for the
most part originating from carnitine and lecithin, to produce trimethylamine by choline tri-
methylamine-lyases and the subsequent conversion of trimethylamine and trimethylamine-N-
oxide to dimethylamine describes a pathway that has been linked to the development of
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atherosclerosis and cardiovascular disease [46, 47]. Increased urinary excretion of microbial
metabolites from co-metabolic processing of choline has also been related to steatosis, fatty
liver, and insulin resistance in animals fed high-fat diets [48]. In humans, an increase in energy
intake from high-fat diets rapidly influences the composition of the gut microbiota [49]. These
compositional changes in microbiota may lead to increases in systemic endotoxin levels [50]
that consequently may contribute to low-grade inflammation, insulin resistance, adipocyte
hyperplasia, and decreased B-cell function, all of which characterize the metabolic syndrome
[49].

Results from the untargeted metabolomics approach showed that VAT, BMI, and WC were
consistently related to numerous urinary bins in the overall study population and in stratified
subgroups. No relations were found between SAT or VSR and urinary bins. With the applica-
tion of the untargeted metabolomics approach in combination with multiple linear regression
models, candidate metabolites were identified that were not included in the targeted metabolo-
mics software to quantify metabolite concentrations. Specifically, VAT was inversely related to
numerous urinary bins identified as 4-hydroxyhippuric acid, acetone, L-pyroglutamic acid,
citric acid, and scyllo-inositol. Moreover, VAT was positively related to lysine and creatinine.
Notably, VAT but none of the other adiposity measures was significantly inversely related to
4-hydroxyhippuric acid. As a glycine conjugate of 4-hydroxybenzoic acid, 4-hydroxyhippuric
acid is an end-product derived of polyphenol metabolism by the intestinal microflora [51]. A
previous study suggested that the intake of fruits containing polyphenols rich in anthocyanins
(i.e., berries and grapes) may increase 4-hydroxyhippuric acid in the urine [52]. Anthocyanins
are naturally occurring polyphenols with anti-inflammatory activity [53, 54]. Hence, the
observed inverse relations of VAT to 4-hydroxyhippuric acid found in the present study may
reflect a diet lacking in health benefitting nutrients among participants with increased VAT.
However, concentrations of 4-hydroxyhippuric acid were not quantitated in the present study.
Nevertheless, 4-hydroxyhippuric acid may be a promising candidate metabolite for future obe-
sity research.

Discussion of serum results

No significant relations were found between VAT, SAT, VSR, BMI, or WC and quantified
serum metabolites. There are several possible explanations that might explain why we found
significant associations of adiposity measures with urinary metabolites but not with serum
metabolites. Although the human urine metabolome is generally believed to constitute a subset
of the human serum metabolome [55], a few hundred compounds identified in urine still
await their detection in blood [56]. The fact that so many compounds seem to be unique to
urine most likely reflects the ability of the kidney to concentrate certain metabolites from
blood, with urinary levels of some metabolites exceeding those in serum more than a 1000-fold
(e.g., histamine) [56]. In addition, the use of ultrafiltration in sample pretreatment allows only
measurement of the protein-unbound fraction of metabolites [57]. As a result, many serum
metabolites may go undetected. This holds particularly true for NMR spectroscopy, a fairly
insensitive method with lower limits of quantification in the low to medium micromolar
range.

In the untargeted analyses, VAT but none of the other measures of obesity was related to
serum bins which was evident in sex-stratified analyses only. This indicates a possible interac-
tion of sex on the association between VAT and serum metabolites that needs further investi-
gation. Two recent studies demonstrated major differences in metabolic fingerprints between
men and women [58, 59]. Specifically, the authors reported that the serum metabolic profile
showed no significant difference between lean and obese participants in the overall study
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population. However, similar to the present study, they reported significantly altered metabo-
lites among men, whereas no significant differences were observed among women [59]. Inter-
estingly, no relations were found between SAT, VSR, BMI, or WC and serum metabolites,
indicating that VAT may be predominantly responsible for metabolite alterations in serum
among men. Note that the significant relations found between VAT and serum bins were
detected in untargeted analyses only. However, results from targeted analyses showed that the
association between VAT and valine (8 = 0.07; p = 0.06) and VAT and isoleucine (3 = 0.10;

p = 0.05) were “borderline significant” after the correction for multiple testing in fully adjusted
models (Model 2). These differences may be explained by the fact that in targeted analyses
only those integrals are considered that were above the LLOQ, whereas in untargeted analyses
all integrals for one bin were considered. Moreover, the additional normalization of spectral
areas using VSN on untargeted data may have attenuated some of the relations. Finally,
because of differences in the distribution between targeted and untargeted data, different sta-
tistical analyses were performed that resulted in differences in significance and strengths of the
relations between anthropometric parameters and metabolites.

The positive relations found between VAT and serum valine and isoleucine are consistent
with findings from previous studies that reported significantly higher levels of BCAA, includ-
ing isoleucine and valine in obese participants compared to lean participants [14, 59, 60].
Moreover, plasma BCAA levels were positively correlated with insulin resistance in a previous
study [14]. Another study concluded, that BCAAs and aromatic amino acids could serve as
predictors of the future development of diabetes [61]. No relations of SAT, VSR, BMI, or WC
to serum BCAAs were found in the present study, indicating that VAT is predominantly
involved in BCAA metabolism. This supports findings from previous studies that identified
adipose tissue and adipocytes to be a main contributor to whole-body, branched-chain amino
acid catabolism [62]. Leucine, isoleucine, and valine are transported into adipocytes and
metabolized in the mitochondria to form the anapleurotic intermediates acetyl-CoA and succi-
nyl-CoA, thereby enabling maximal pyruvate metabolism to citrate and subsequent lipogenesis
[63]. Further, it has been shown that adipocytes readily metabolize BCAAs to lipogenic precur-
sors and that the maximal lipogenic rate requires replenishment of the tricarboxylic acid
(TCA) cycle [62].

Strengths and limitations

The major strength of our study is that it represents, to the best of our knowledge, the first
cross-sectional study to examine relations of VAT and SAT assessed by ultrasound to NMR-
measured urinary and serum metabolites. Although gold standard methods to measure VAT
and SAT are magnetic resonance imaging (MRI) or computer tomography (CT), these
approaches are limited in field conditions due to the associated costs and issues regarding
accessibility, and in terms of CT potential adverse effects of radiation. We recently reported
that ultrasound represents a suitable technique to assess VAT and SAT accurately and repro-
ducibly in epidemiologic research settings [31]. A further asset of our study is that we consid-
ered several different body fat measures and conducted informative stratified analyses.
However, our study has several limitations that need to be considered when interpreting the
results. First, our analyses were based on a single laboratory measurement and they may not
represent the true long-term average urinary and serum concentrations of metabolites. How-
ever, a previous study on reliability of metabolite concentrations over time stated that for most
metabolites a single measurement may be sufficient [64]. Potential limitations of our study
include the relatively small sample size, potentially resulting in insufficient statistical power to
detect relations, particularly in subgroup analyses. In addition, the cross-sectional nature of
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our study design precludes an assessment of temporality and reverse causality. Finally, the
majority of our urine and blood specimens were non-fasting and we lacked sufficient power to
conduct analyses among fasting participants.

Conclusion

In conclusion, we found VAT to be consistently related to urinary and serum metabolites. By
comparison, SAT and VSR showed no relation to urinary or serum metabolites, further indi-
cating that VAT is a major contributor to metabolite regulation. In addition, relations between
VAT and serum metabolites occurred in a sex-dependent manner. The present findings sug-
gest potential pathways that may explain possible mechanisms underlying obesity-associated
diseases. Specifically, metabolites and their related pathways could be identified that may
explain mechanisms of obesity-induced low-grade inflammation. In addition, the accumula-
tion of VAT may be, at least in part, responsible for dysregulation of BCAAs in serum. BMI
and WC were consistently related to urinary metabolites but no relations were found between
BMI or WC and serum metabolites. Compared to the relations of WC and BMI to urinary
metabolites, relations between VAT and metabolites were generally stronger. In addition,
some relations of metabolites including 4-hydroxyhippuric acid were unique to VAT. Never-
theless, the number of metabolites that were significantly associated with VAT was smaller
than the number of metabolites related to BMI and WC. This indicates that the impact of
VAT, BMI, and WC differs regarding metabolic regulation and metabolic pathways associated
with VAT cannot precisely be reflected by BMI or WC alone. The distinct relations of VAT,
BMI and WC and the null findings of SAT and VSR to metabolites emphasize the importance
of accurately differentiating between body fat compartments when evaluating the potential
role of adiposity-associated metabolic regulation in the development of obesity-related
diseases.
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