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The human brain is a large-scale system of functionally connected brain regions. This

system can be modeled as a network, or graph, by dividing the brain into a set of regions,

or “nodes,” and quantifying the strength of the connections between nodes, or “edges,”

as the temporal correlation in their patterns of activity. Network analysis, a part of graph

theory, provides a set of summary statistics that can be used to describe complex brain

networks in a meaningful way. The large-scale organization of the brain has features of

complex networks that can be quantified using network measures from graph theory.

The adaptation of both bivariate (mutual information) and multivariate (Granger causality)

connectivity estimators to quantify the synchronization between multichannel recordings

yields a fully connected, weighted, (a)symmetric functional connectivity graph (FCG),

representing the associations among all brain areas. The aforementioned procedure

leads to an extremely dense network of tens up to a few hundreds of weights. Therefore,

this FCG must be filtered out so that the “true” connectivity pattern can emerge. Here,

we compared a large number of well-known topological thresholding techniques with

the novel proposed data-driven scheme based on orthogonal minimal spanning trees

(OMSTs). OMSTs filter brain connectivity networks based on the optimization between

the global efficiency of the network and the cost preserving its wiring. We demonstrated

the proposed method in a large EEG database (N = 101 subjects) with eyes-open (EO)

and eyes-closed (EC) tasks by adopting a time-varying approach with the main goal

to extract features that can totally distinguish each subject from the rest of the set.

Additionally, the reliability of the proposed scheme was estimated in a second case study

of fMRI resting-state activity with multiple scans. Our results demonstrated clearly that

the proposed thresholding scheme outperformed a large list of thresholding schemes
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based on the recognition accuracy of each subject compared to the rest of the cohort

(EEG). Additionally, the reliability of the network metrics based on the fMRI static networks

was improved based on the proposed topological filtering scheme. Overall, the proposed

algorithm could be used across neuroimaging and multimodal studies as a common

computationally efficient standardized tool for a great number of neuroscientists and

physicists working on numerous of projects.

Keywords: EEG, fMRI, resting state, graph theory, phase locking value, dynamic functional connectivity, minimal

spanning tree, topological filtering

INTRODUCTION

The brain is an inherently dynamic system which both resting-
state networks (Hansen et al., 2015) and networks connected
to executive cognition requires dynamic reconfiguration of
highly evolving networks of brain areas that interact via
transient complexity patterns (Bassett et al., 2011; Braun et al.,
2015a). To investigate how the brain functionality changes over
experimental time, time-varying graphs should be computed as
networks that evolve over time with fixed number of nodes
but links that change over time. The dynamic approach of
brain connectivity is explored by adopting a time-window
over experimental time and constructs quasi-static connectivity
graphs from the temporal signal segments enclosed within this
time-window where various network metrics can be estimated
for each window leading to network metric time series (NMTS)
(Dimitriadis et al., 2010a, 2012a, 2013a,b, 2015a,c; Sporns, 2011,
2014).

Both static and dynamic graphs can be analyzed either as
binary or weighted networks after first applying a thresholding
criterion.With both full binary andweighted graphs, every pair of
brain areas is directly connected. Many researchers have argued
that full-weighted graphs are not “true” networks since brain
areas are inter-connected via sparse anatomical connections
(Sporns, 2011). A recent study supported that weighted graphs
are also less computationally efficient, when someone attempts
to analyze large-scale networks like the well-known voxel-based
functional connectivity networks (Telesford et al., 2011). Also
the overrepresentation of functional connections between brain
areas added difficulties to the extraction of significant topological
information (Serrano et al., 2009).

To work either with binary or weighted graphs, a large
number of topological thresholding schemes can be applied.
The list of available thresholding schemes can be divided
into arbitrary and data-driven methods. Arbitrary thresholding
schemes includes (1) the preservation of the same degree
(number of connections per node), k, for each graph, so that
the subsequently derived network metrics are comparable across
graphs/subjects/conditions (Milo et al., 2002; Sporns and Zwi,
2004; Stam et al., 2007a; Dimitriadis et al., 2009; Micheloyannis
et al., 2009), (2) the maintenance of a specific ratio of the
strongest edges (sparsity) (Stam et al., 2007a; Rubinov et al.,
2009) and (3) the absolute threshold up to a predefined value
(between 0 and 1). Each approach has both advantages and
disadvantages. The aforementioned thresholding schemes even
though are simplified, adds bias for group and task comparisons

and moreover, reduce the possibility of the reproducibility of the
findings across studies from different research groups but also
within the same research group with the extension of recording
sessions. Absolute thresholds set a value between 0 and 1 above
which the strength of connections survived while below are
excluded from further analysis and are set to 0. Proportional
thresholds employ a % percentage of the strongest connections
(edges), like the top 10% of weighted values in the network.
The preservation of the same degree, k, for each graph is more
meaningful compared to the two aforementioned approaches
since it picks equiprobable strong and weak weights but also
assumed that networks have the same mean degree across group
and tasks.

Even though connectedness in a node level between groups
and conditions could be informative, it restricts both the
interpretation and the comparison between various graph
measures that vary with the degree (Alexander-Bloch et al., 2013).
Additionally, absolute thresholding scheme divides the weights
of connections into two groups, weak and strong connections
emphasizing either the weak or the strong (vanWijk et al., 2010).
A number of studies attempted to diminish the effect and the
reproducibility of their results due to the adopted thresholding
scheme by presenting various network measures over traditional
cumulative thresholding. Specifically, for absolute, sparsity
(proportional) and mean degree thresholding schemes, they
demonstrated their network-oriented results over a range of
values (0–1 for absolute, 2–40% for sparsity, 1-(N-1) for degree
preservation where N denotes the number of nodes). Based on
correlation coefficient r, a range of thresholds has been applied,
e.g., r = 0.1 (Buckner et al., 2009) and r = 0.8 (Tomasi and
Volkow, 2010). For sparsity, a range of proportional thresholds
have been presented, e.g., from 5 to 40% (e.g., Fornito et al., 2011)
or for a narrower range of values in Alzheimer’s disease (Stam
et al., 2009) and in schizophrenia (Micheloyannis et al., 2006).
One of the very first studies that presented networkmetrics over a
range of degree was aMEG resting-state study at both control and
Alzheimer’s disease group (Stam et al., 2007a) and also in EEG
sleep study (Dimitriadis et al., 2009). A few researchers attempted
to present their results in narrower range of thresholds in order
to support the insensitivity of their results to the arbitrary
choice of the threshold (e.g., Cole et al., 2013, 2014, top 2–10%;
van den Heuvel et al., 2009, r = 0.3–0.5). However, the above
approach will lead to unstable results if the adopted network
properties are sensitive to a large range of thresholds, especially
in the case where group or task differences in terms of network
metrics are reversed within a range of a threshold (e.g., Scheinost
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et al., 2015). An alternative solution to traditional cumulative
thresholding scheme is the alternative windowed thresholding
scheme (Bassett et al., 2012) where the connections were binning
into 100 bins and finally 100 graphs were created where the first
graph encapsulated the 1% of strongest connections, the second
graph the 1% of the next strongest connections etc. (Bassett et al.,
2012). Finally, a few studies fairly demonstrated their results,
e.g., hub detection that is consistent over a range of absolute
thresholds (Buckner et al., 2009).

According to our knowledge, two data-driven thresholding
schemes exist in the literature. The first one has as an objective
criterion to maximize the formula of cost-efficiency (cost
efficiency= global efficiency− cost) of a network vs. its cost (the
ratio of the existing edges divided by the total number of possible
edges) that typically range between the upper and lower limits
of an economical small-world network (Bassett et al., 2008). The
basic drawback of this method is that it accumulates edges based
on their strength and applying an iteratively absolute threshold
searching approach from 0 to 1 without taking into consideration
any topological constraint. Additionally, the aforementioned
approach completely separate weak from strong connections
where in some diseases studying the mixture of both strong
and weak connections can improve the designing of reliable
connectomic biomarkers (Bassett et al., 2012). The second data-
driven thresholding scheme based on the notion of shortest path
lengths (SPL) and assumes that the information between brain
areas flows via the shortest pathways (Dimitriadis et al., 2010a).

Minimal spanning tree (MST) is a unique representation of
a functional brain network and it is a unique acyclic subgraph
that connects all nodes and maximizes the synchronization
between brain areas. MST has already been applied in human
brain networks where both trivial network metrics but also tree-
oriented properties have been estimated based on the unique
sparse MST-representation of a weighted graph (Vourkas et al.,
2014; for a review see Stam, 2014; Stam et al., 2014).

Current approach attempted to maximize the information
flow over the network vs. the cost by selecting the connections
via the notion of orthogonal minimal spanning trees (OMSTs).
OMSTs based on the notion of sampling the full-weighted brain
network over consecutive rounds of MST that are orthogonal
to each other. Practically, we extracted the 1st MST, then we
zeroing their connections and we estimate the 2nd MST based
on the rest of the network. With this iteratively approach, we can
get orthogonal MST and topologically filtering brain network by
optimizing the global efficiency of the network constrained by the
cost of keeping its connections.

Therefore, this study sought to introduce a novel data-driven
thresholding scheme based on OMSTs that will advance the
ability of research neuroimaging centers to compare and analyse
large imaging connectomes/connectomics under a common
topological filtering framework. This will enforce our ability to
compare results from different studies based on the same imaging
method and condition and also between different imaging
methods in a multimodal imaging approach.

Test-retest reliability of the network metrics derived from
functional networks is of significant value in the neuroscience
community (Zuo et al., 2012, 2014; Zuo and Xing, 2014;

Chen et al., 2015). Many researchers world-wide presented
connectomic biomarkers for various brain disorders/diseases
and for that reason, their reproducibility should be explored
(Kaiser, 2013; Dimitriadis et al., 2015b,c,d, 2016a,b). The
choice of the appropriate preprocessing steps to achieve
reproducible measurements is more than significant. One
significant preprocessing step in the choice of topological filtering
scheme to untangle the “true” backbone of a brain network.
Therefore, we validated the proposed data-driven topological
filtering OMSTs method and the rest in terms of intra-class
correlation (ICC) of basic network metrics derived from static
functional networks estimated from resting-state BOLD activity.
For that reason, we employed an open fMRI database from a
single-subject that has been scanned 100 times.

To validate its potentiality, a large EEG study of resting-state
activity was used in order to increase the recognition accuracy of
each subject over the rest of the database based on nodal network
metric time series (nNMTS) using well-known network metrics
(Dimitriadis et al., 2010a). The EEG database is a free available
dataset repository as part of PhysioNet BCI Database1. The whole
analysis based on dynamic functional brain connectivity and a set
of nNMTS over frequencies and topology (EEG sensors) which
were used as the unique brain fingerprinting of each subject (Finn
et al., 2015). Our method was compared to various thresholding
schemes based on the recognition accuracy of each individual
based on the nNMTS signature to the rest of cohort. Additionally,
since the EEG dataset based on a single-trial, we accessed the
reliability of the current method and the derived network metrics
from a free available dataset of a case study of fMRI resting-
state recordings repeated over 100 scans (Poldrack et al., 2015).
The fMRI dataset from the single-case long term study can
be downloaded and preprocessed with available code from the
author’s website2.

MATERIALS AND METHODS

On this section, we described both free available neuroimaging
datasets (EEG and fMRI) with the adopted preprocessing steps.
The main goal with EEG resting-state dataset was to demonstrate
the superiority of the proposed topological filtering scheme
to filter dynamic networks using as validation criterion the
recognition accuracy of each subject to the rest of the cohort.
Using multiple scans of fMRI, we demonstrated the superiority
of the topological filtering method to increase the reliability of
trivial network metrics across scans.

EEG Recordings
Scalp EEG signals were gathered from the freely online database
PhysioNet BCI (Database physionet BCI1 Schalk et al., 2004). The
database consists of N = 101 healthy subjects recorded in two
different baseline conditions, i.e., 1-min eyes-open (EO) resting
state and 1-min eyes-closed (EC) resting state. In each condition,
subjects were comfortably seated on a reclining chair in a dimly lit
room. During EO they were asked to avoid ocular blinks in order

1https://physionet.org/pn4/eegmmidb/
2https://github.com/poldrack?tab=repositories
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to reduce signal contamination. The EEG data were recorded
with a 64-channel system (BCI2000 system (BCI2000 system)
with an original sampling rate of 160 Hz.

Preprocessing
Ongoing activity was corrected for artifacts through a two-
step procedure implemented in Matlab (The MathWorks, Inc.,
Natick, MA, USA) and Fieldtrip (Oostenveld et al., 2011). Line
noise was first removed using a notch filter at 60 Hz and the
single-subject data was whitened and reduced in dimensionality
by means of Principal Component Analysis (PCA) with a
threshold corresponding to 95% of total variance (Delorme
and Makeig, 2004; Escudero et al., 2011; Antonakakis et al.,
2013). The resulting signals were submitted to independent
component analysis (ICA) using the extended Infomax algorithm
as implemented in EEGLAB (Delorme and Makeig, 2004). A
given independent component was considered to reflect ocular
or cardiac artifacts if more than 30% of its z-score kurtosis or
skewness values, respectively, were outside±2 of the distribution
mean (Escudero et al., 2011; Antonakakis et al., 2013; Dimitriadis
et al., 2014). The remaining ICs were used to reconstruct a
relatively artifact-free signal. The average number of artifactual
ICs was 5.5 for eyes-closed and 5.1 for the eyes-open condition.

Functional Connectivity
Here, functional connectivity was examined among the following
8 brain rhythms where the optimal low frequency for phase fϕ
was in one of the typical sub-bands of electrophysiological neural
signals {δ, θ, α1, α2, β1, β2, γ1, γ2}, defined respectively within
the ranges {0.5–4Hz; 4–8Hz; 8–10Hz; 10–13Hz; 13–20Hz; 20–
30Hz; 30–48Hz; 52–70Hz}.We adopted a 3rd order Butterworth
filters applied in a zero-phase mode to get the characteristic
brain rhythms. Among the available connectivity estimators, we
adopted the one based on the imaginary part of phase-locking
value (iPLV) (Lachaux et al., 1999) and adjusted properly so as to
extract time-resolved profiles of intra-frequency coupling from
EEG multichannel recordings at resting state.

The original PLV is defined as follows:

PLV =
1

T
∗

T
∑

t= 1

ei(φk(t) − φl(t)) (1)

Where t refers to time in samples while ϕ to the phase time series
extracted via the Hilbert Transform and {k, l} to the EEG sensors.

while the imaginary part of PLV as follows:

ImPLV =
1

T
∗

∣

∣

∣

∣

∣

Im(
T

∑

t= 1

ei(φk(t) − φl(t)))

∣

∣

∣

∣

∣

(2)

The imaginary part of PLV (iPLV) investigates intra-frequency
interactions without putative contributions from volume
conductance. In general, the iPLV is mainly sensitive to non-
zero-phase lags and for that reason is resistant to instantaneous
self-interactions from volume conductance (Nolte et al., 2004).
In contrast, it could be sensitive to phase changes that not
necessarily imply a PLV oriented coupling.

Dynamic iPLV Estimates: The Time-Varying iPLV

Graph (TViPLV Graph)
The goal of the analytic procedures described in this section was
to understand the repertoire of phase-to-phase interactions and
their temporal evolution, while taking into account the quasi-
instantaneous spatiotemporal distribution of iPLV estimates.
This was achieved by computing one set of iPLV estimates within
each of a series of sliding overlapping windows spanning the
entire 1-min continuous EEG recording for both eyes-open and
closed condition. The width of the temporal window was set
equal to the duration of ten cycles of each frequency band. The
center of the stepping window moved forward every 20 ms and
the intra-frequency interactions between every possible pair of
frequencies were reestimated leading to a quasi-stable in time
static iPLV graph. In this manner, a series of 1,496 for δ to 1,930
for γ2 sets of iPLV graph estimates were computed per condition,
frequencies and for each participant.

This procedure, the implementation details of which can
be found elsewhere (Dimitriadis et al., 2010b, 2012a, 2013a,b,
2015a,c), resulted in 8 time-varying iPLV graphs per participant
(TViPLV), each serving as an instantaneous snapshot of the
surface network. TViPLV tabulates iPLV estimates between every
possible pair of sensors. For each subject, a 4D tensor (frequencies
bands x slides x sensors x sensors) was created for each condition
integrating subject-specific spatio-temporal phase interactions.

Surrogate Data Analysis of iPLV

Estimates—Statistical Filtering of Brain Networks
To identify significant iPLV-interactions which were estimated
for every pair of frequencies within and between all 64 sensors,
and at each successive sliding window (i.e., temporal segment),
we employed a surrogate data analysis (Theiler et al., 1992).
Accordingly, we could determine (a) if a given iPLV value differed
from what would be expected by chance alone, and (b) if a
non-zero iPLV corresponded to non-spurious coupling.

For every temporal segment, sensor-pair, and frequency, we
tested the null hypothesis H0: “the observed iPLV value comes
from the same distribution as the distribution of surrogate iPLV-
values.” One thousand surrogate time-series were generated
by cutting them at a single point at a random location and
exchanging the two resulting time courses (Aru et al., 2014).
We restricted the range of the selected cutting point in a
temporal window of width equals to 10 s in the middle of the
recording session (between 25 and 35 s). This surrogate scheme
was applied to the original whole time series and not to the
signal-segment at every slide. Repeating this procedure leads to
a set of surrogates with a minimal distortion of the original
phase dynamics while destroying less the non-stationarity of
the brain activity compared to shuffling the time series or
cutting and rebuilding it in more than one time points. Using
the method of delay vector variance (DVV), we estimated the
non-linearity/non-stationarity of the surrogate time series which
didn’t differ statistically with the original time series (see S1 in
Supplementary Material; Gautama et al., 2004).

This procedure assures that the real and surrogate indices
both have the same statistical properties. For each data set the
surrogate iPLV (siPLV) was then computed. We then determined
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a one-sided p-value for each iPLV value that corresponded
to the likelihood that the observed value could belong to the
surrogate distribution. This was done by directly estimating
the proportion of “surrogate” iPLVs that were higher than the
observed iPLV (Theiler et al., 1992). The p-value reflected the
statistical significance of the observed iPLV-level (a very low value
revealed that it could not have appeared from processes with no
iPLV coupling).

The FDR method (Benjamini and Hochberg, 1995) was
employed to control for multiple comparisons (across all possible
pairs of frequencies) with the expected fraction of false positives
set to q ≤ 0.01. Finally, for each subject the resulting TViPLV
profiles constituted a 4D array of size [8 (number of frequencies)
× 1,896 (time windows) × 64 (sensors) × 64 (sensors)] with a
value of 0 indicated a non-significant iPLV value.

Network Metric Time Series (NMTS): Dynamic

Topological Properties of the Underlying Brain

Networks
Many well-known topological metrics can be estimated over
dynamic networks (Rubinov and Sporns, 2010). Here, we used
global efficiency (GE) for weighted networks ofNxN nodes which
expressed the inverse of the shortest path length between every
possible pair of nodes and provides an index of the information
transfer in the network (Latora and Marchiori, 2001; Achard and
Bullmore, 2007). GE is defined as follows:

GE =
1

N

∑

i∈N

∑

j∈N, j 6= i

(

dij
)−1

N − 1
(3)

withN representing the number of nodes (sensors or ROIs) in the
network, wij the weights between nodes and E the total number
of edges.

Graph Construction
In order to perform any type of multivariate brain network
analysis described aforementioned, it is significant to threshold

the full-weighted correlation matrices to more sparse and
meaningful binary or weighted graphs by applying one or a set of
thresholding schemes (Bullmore and Bassett, 2011). A set of brain
networks from a target group can be threshold to extract equi-
sparse graphs by applying to each subject different thresholds in
order to ensure that the brain networks of all the subjects have
the same sparsity, the same number of edges (Achard et al., 2006;
Bassett and Bullmore, 2006) or equi-threshold graphs where
the brain network of each individual has a different number of
connections (van den Heuvel et al., 2008, 2009; Hayasaka and
Laurienti, 2010). In both the aforementioned cases, a network
topology is examined over a large range of sparsity values, e.g.,
between 0.1 (keeping 10% of connections) to 0.5 with a stepping
criterion of 0.01 (Bassett and Bullmore, 2009; Bullmore and
Sporns, 2009; Bullmore and Bassett, 2011).

An Overview of Topological Filtering of Brain

Networks
The majority of neuroimaging studies that explored functional
brain connectivity in various tasks, conditions and in both
healthy and disease groups employed three basic thresholding
schemes. The most common thresholding schemes are the
following:

(1) Mean degree (Milo et al., 2002; Sporns and Zwi, 2004; Stam
et al., 2007a; Dimitriadis et al., 2009; Micheloyannis et al.,
2009),

(2) The sparsity, the maintenance of a specific ratio of the
strongest edges (Stam et al., 2007a,b; Rubinov et al., 2009),

(3) The selection of a % of the strongest connections over the
whole graph,

(4) The maximization of the following formula cost efficiency=
global efficiency− cost) (Bassett et al., 2008), and

(5) A data-driven algorithm based on Dijkstra algorithm
(Dimitriadis et al., 2010b). Figure 1 demonstrates the
topology of the connections survived after applying the
six different thresholding schemes (including the proposed

FIGURE 1 | Topological layouts of the six thresholding schemes applied to a static functional connectivity graph (FCG) from δ frequency bands during

eyes-open condition. (A) Global Cost Efficiency (GCE), (B) Orthogonal Minimal Spanning Trees (OMSTs), (C) Dijkstra’s algorithm, (D) Absolute threshold,

(E) Proportional Thershold, (F) Mean Degree Threshold. Panels (A–C) are data-driven topological filtering schemes while (D–F) are arbitrary thresholding schemes.
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based on OMST) over a weighted graph from a single subject
in δ band in eyes-open condition. It is clear that the top-
3 data-driven thresholding schemes select connections with
a larger range of values and a mixture of both strong and
lower connection values (Figures 1A–C) while the bottom-3
arbitrary thresholding schemes extract mostly the strongest
connections (Figures 1D–F).

Apart from analyzing topological network metrics over a
range of absolute, mean degree and sparsity using cumulative
thresholding procedure, there is a new approach based on
windowed thresholding. To overcome this weakness, a recent
study proposed to retain connections that fell within a
range of strength rather than above a threshold (Schwarz
and McGonigle, 2011). With windowed thresholding one can
examine independent sets of connections while the traditional
cumulative thresholding allows for the examination of non-
independent sets of connections.

Identification of Significant Edges Based on Dijkstra’s

Algorithm
In a previous study, we introduced a novel, unbiased technique to
access the most significant edges of a weighted network based on
Dijkstra’s algorithm (Dijkstra, 1959). This algorithm constituted
a heuristical approach that alleviated the need for defining a
threshold according to any particular optimization scheme. The
application of Dijkstra’s algorithm to the point-wise inverse of
the connectivity matrix corresponding to an FCG resulted in the
path of lowest traveling cost between every possible pair of nodes.
Two different matrices were derived with this procedure: (1) a
weighted graph denoted as a distance matrix, with all the shortest
path lengths’ inter-nodes that tabulated the traveling costs, and
(2) an adjacency matrix that kept the weights of all the edges
utilized in the formation of the shortest paths (see Figure 1C).

fMRI Single-Case Long Term Dataset
Description of the Scanning Protocol
The participant on this single-case study (author R.A.P.) is a
right-handed Caucasian male, aged 45 years at the onset of the
study. He suffers from plaque psoriasis but is otherwise generally
healthy. RS-fMRI was performed in 100 scans throughout the
data collection period (89 in the production phase), using amulti-
band EPI sequence (TR = 1.16 ms, TE = 30 ms, flip angle = 63
degrees (the Ernst angle for gray matter), voxel size= 2.4× 2.4×
2 mm, distance factor = 20%, 68 slices, oriented 30 degrees back
from AC/PC, 96× 96 matrix, 230 mm FOV,MB factor= 4, 10:00
scan length). Freesurfer parcellation of BOLD activity gave a total
of 630 regions for subsequent analysis. For further details please
see the original paper (Poldrack et al., 2015).

Graph Construction
The maximal overlap discrete wavelet transform (MODWT)
method has been used to create functional connectivity matrices
(Deuker et al., 2009). Our analysis based on 0.06∼0.125 Hz (Scale
2). Bold activity of each of the 630 regions was decomposed with
MODWT in wavelet coefficients. Using correlation coefficient in
a pair-wise fashion between the wavelet coefficients of every pair
of the regions, we estimated a single static functional connectivity

graph (FCG) with dimensions 630 × 630 for each scan. The
whole analysis was repeated for all the trials. Finally, we got the
absolute values of the correlation-based FCGs and we normalized
with the maximum observed value to range the FCG into [0,1].

Network Analysis and Reproducibility
Two basic network metrics were estimated from the single-trial
FCGs, the global and local efficiency. The ICC was estimated as
a measure of test–retest reliability for both graph metrics under
multiple trials (scans). A value close to 1means that the estimated
network metrics are consistent across scans. We optimized the
three arbitrary thresholding schemes (mean degree, absolute
threshold and % of strongest connections (proportional) over the
maximization of the sum of ICC for global and local efficiency.

A DATA-DRIVEN THRESHOLDING
SCHEME BASED ON ORTHOGONAL
MINIMAL SPANNING TREES (OMSTS)

Minimal Spanning Tree (MST) Algorithm
In graph theory, a tree is defined as an acyclic connected graph
(Estrada, 2011). Acyclic means that there are no loops (of any
length) in the graph. A graph is connected if there exists a path
between each pair of nodes in the graph. A tree with N nodes has
exactly m = N − 1 links or edges. A spanning tree is a subgraph
that includes all nodes of the original graph (it has the same N)
but only N − 1 edges (it has no cycles). A minimum spanning
tree (MST) of a connected weighted graph is the spanning tree
of this graph that minimizes the sum of the weights of the edges
included in the tree. If all the weights in the weighted graph are
unique, its MST is also unique (Mares, 2008). In other words,
there is only one MST that corresponds to a weighted graph with
unique weights.

Two major algorithms have been described to construct the
MST of a weighted graph (Kruskal, 1956; Prim, 1957). Here, we
used Kruskal’s algorithm. Prim’s method produces the sameMST
if the weights of the original graph are unique. The running time
of the MST is O((V+E)Â ·logV) where E denotes edges and N
the vertices.

Orthogonal Minimal Spanning Tree
(OMSTs)
It was proved thatMST is an unbiasedmethod for brain networks
in order to get reliable network metrics (Tewarie et al., 2014). In
contrast, MST for large brain networks of hundreds of nodes is a
very sparse network that cannot always capture the true topology
and can diminish the strength of discriminating two groups.
Recent studies demonstrated the efficacy of brain networks and
machine learning techniques for discriminating a control and
one (e.g., mTBI; Dimitriadis et al., 2015c; Antonakakis et al.,
2016) or more target groups (e.g., mild cognitive impairment
and Alzheimer’s disease; Supekar et al., 2008; Brier et al., 2013;
Khazaeea et al., 2017). All the aforementioned studies adopted
a data-driven topological filtering method before extracted
network metrics as features for the classification. Another study
used MST while adding connections from the rest of the network
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using as criterion the proportion of functional connections into
four sparsity levels in order to demonstrate the effect on the
results (Song et al., 2015).

Usage of the orthogonal MST graph leads to a better sampling
of brain network preserving the advantage of MST that connects
the whole network with minimum cost without introducing
cycles and without differentiated strong from weak connections.

OMST is estimated as follows: The initial 1st MST connects all
the N nodes by using N − 1 edges. Then, the N − 1 connections
of the 1st MST will substituted with zeros and a 2nd -MST
is estimated that connects all of the N points with minimal
total distance, satisfying the constraint that is orthogonal—i.e.,
shares no common edges- to the 1st MST. Afterward, the N
− 1 connections of the 2nd MST will substituted with zeros
and a 3rd−MST will be estimated that connects the nodes with
the minimal total weight, subject to the constraint that it is
orthogonal to the previous two constructed (1st and 2nd) MST’s.
In general, an m-MST is orthogonal to all the previous (m − 1)
MST’s, having exactly m·(N − 1) edges (Figure 2). The whole
computational times is equal to O(m∗(N+ E)Â ·logV).

Figure 2 demonstrates the MST (Figures 2A,D) and the first
two OMST (Figures 2B,C), and (Figures 2E,F) applied to a
static graph from a single subject at δ band from eyes-open
(Figure 2A–C) and eyes-closed condition (Figures 2D–F).

The Proposed Algorithm Based on OMSTs
It is important to mention here that OMST should be worked on
the inverse weighted graph (distance matrix) so as to capture the
strongest connections which can be interpreted that two brain
areas are more functionally “closed.”

Our data-driven thresholding algorithm based on OMSTs
works as followed:

(a) We extract the OMSTs by applying iteratively the Kruskal’s
algorithm on the inversed functional brain graph because we
want to collect the most significant connections under the
constraint of MST.

(b) After extracting the 1st MST, we substituted the N − 1 edges
with ‘Inf ’ in the original network in order to avoid capturing
the same edges and also to keep the orthogonality of the next
MST.

(c) We aggregated connections over the OMSTs (including the
1st) so as to optimize the formula global efficiency− cost vs.
cost. This procedure can employ, e.g., 3∗(N − 1) edges from
the first three OMSTs plus 10 edges from the 4th OMSTs.

(d) For each adding connection, we estimated the objective
function of Global Cost Efficiency (GCE)= global efficiency
− cost) where cost denotes the ratio of the total weight of the
existing edges divided by the total strength of the original
full-weighted graph. The values of this formula range within
the limits of an economical small-world network for healthy
control participants (Bassett and Bullmore, 2006).

Our criterion to topologically filter a given brain network is by
finding the maximum value of the following quality formula:

JOMSTs
GCE = GE− Cost (4)

A recent study based on original and artificial biological networks
demonstrate that wiring cost supports the evolution of both
modular and hierarchical organization of biological networks
(Mengistu et al., 2016). Additionally, these biological networks
exhibit higher performance in terms of information flow and
adoptability to new environments. Complementary to previous
studies that demonstrate the relationship between sparsity and
hierarchy (Corominas-Murtra et al., 2013), this study explained
and validated why sparsity leads to hierarchy under the force of
wiring cost and provides new information about the evolution
of hierarchy (Mengistu et al., 2016). For that reason, both global
efficiency as an index of how efficient the network operates and
the cost should be part of the optimized function J.

Figure 3 demonstrates how our algorithm works in
comparison with algorithm proposed in Bassett and Bullmore
(2006) from a single subject at δ band from the eyes-open

FIGURE 2 | An application of Orthogonal Minimal Spanning Tree (OMSTs) applied to a static functional connectivity graph (FCG) from δ frequency

bands during eyes-open condition (A–C) and eyes-closed condition (D–F).
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FIGURE 3 | A demonstration of how GCE algorithm (GCE) and the proposed Orthogonal Minimal Spanning Tree (OMST) data-driven thresholding

scheme are working applied to a static functional connectivity graph (FCG) from δ frequency bands during eyes-open condition. Blue circles denote the

maximization of global cost efficiency with the two approaches.

condition. The basic difference of these two algorithms is the
sampling of connections from the given brain network. Our
approach based on OMST while the one used by Bassett et al.,
on iteratively absolute thresholding the weights of functional
connections without any topological criterion and distinguishes
weak from strong connections. The two curves represented
the quality formula in Equation (4) over various costs using
the two sampling approaches. Finally, we extracted as optimal
thresholding functional brain network the one that maximizes
the formula in Equation (4) (see the arrow in Figure 3). We
can clearly see in Figure 3 that OMST optimizes better the
topological criterion compared to Bassett’s approach.

UNIQUE BRAIN FINGERPRINTING BASED
ON NETWORK METRIC TIME SERIES
(NMTS)

For each of the aforementioned thresholding schemes (absolute,
proportional, mean degree, shortest-path edges selection and the
maximization of global cost efficiency) and the proposed one
based onOMSTs, we estimated nodal global efficiency across time
based on the thresholding versions of dynamic 4D TViPLV arrays
across subjects and frequency bands. This approach results to
subject and frequency specific nNMTSGE from GE which will
then be used as possible brain fingerprinting features.

To access the recognition accuracy of each node and network
metric over the eight frequency bands, we split each nNMTSGE

into two equal segments and we employed Wald-Wolfowitz

(WW) test as a similarity index to each target nNMTSGE from
the database. On the next section, we described how WW test
was used.

A Dissimilarity Measure for Dynamical
Trajectories Based on the Wald-Wolfowitz
(WW) Test
The two-sample, non-parametric WW test was adopted in the
present work to assess the degree of similarity between two nodal
networkmetric time series based on global efficiency (nNMTSGE)
derived from dynamic FCGs. The procedure entailed, first,
transforming every pair of NMTSGE time series x(t), t = 1.2,...T
into dynamic trajectories represented by multidimensional
vectors Xt = [x(t), x(t + 1),..., x(t + de)] and Yt = [y(t),

y(t + 1),..., y(t + de)] (X and Y correspond to two split-half
segments from a single participant or from two participants).
These vectors were formed by selecting the appropriate set of
de, which is the embedding dimension parameter that controls
the dimensionality of the vectors and dt is the time-delay. By
adopting the Ragwitz criterion, we optimized the embedding
dimension de and the embedding delay dt (Ragwitz and Kantz,
2002), resulting in values ranging from 3 to 6 in both the complete
and split-half temporal segments of NMTSGE series. The two
point-samples {Xt}t= 1:m and {Yt}t= 1:n were then formed and the
wdist = w({Xt},{Yt}) was computed.

Next, the minimal spanning tree (MST) graph of the overall
sample was constructed (i.e., disregarding the sample identity of
each point). In these graph points represent nodes with N− 1
edges (N = n + m) (i.e., paths within each pair of nodes). The
second step of the procedure entails computing the R statistic
which is the total number of consecutive sequences with identical
sample identities (i.e., “runs”). Based on the number of edge
pairs of MST sharing a common node and the degrees of the
nodes, the mean and variance of R can be calculated (Laskaris
and Ioannides, 2001). This property of R permits computation
of the initial form of the normally-distributed, WWDissimilarity
Index (w) as follows:

w =
R− E[R]
√
Var[R]

(5)

The measure used in classification schemes in the present work
was derived from w using the Heaviside step function H(x) as
follows: wdist = |w|.H(−w). The higher the value of wdist, the
more dissimilar the two point-sets are considered to be. Figure 4
visualizes the WW procedure for two split half nNMTSGE data
obtained from two participants from frontalθ.

Dynamic Network Connectivity
Analysis-Based Identification of Individual
Subjects
Identification of each subject was performed based on nNMTSGE

from EEG sensor sites and across frequency bands extracted from
various thresholding schemes applied to the original DCFGs.
Specifically, given a query of a nNMTSGE (one of the two split
nNMTSGE) from the target subject, we computed the correlations
between this nNMTSGE and all the nNMTSGE in the database
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FIGURE 4 | From nNMTSGE to similarity-relations: (A) nNMTSGE trace from subject 1 (blue lines) and a subject 2 (red lines); (B) superposition of two

reconstructed trajectories (time delay = 5, embedding dimension = 3); and (C) using the WW test to assess similarity between the two given trajectories based on the

common MST-based edges that connect the two point clouds. (D) Enlarged representation of the MST-based edges for the reconstructed space of nNMTSGE

derived from subject 1 (blue dots) shown in (C).

(2∗100 split nNMTSGE + 1 split nNMTSGE from the target
subject). The predicted identity ID∗ is the one where the majority
of the set of highest nNMTSGE belongs to a subject (see Figure 5):

ID∗ = argmax(2∗{r1, r2, .., rN−1} + rtarget) (6)

where r denotes the list of split nNMTSGE from each subject
across the sensors and frequency bands.

The objective criterion of selected the appropriate number of
nNMTSGE across frequency bands and sensors locations was to
increase the recognition accuracy for each thresholding scheme
separately.

Identification analysis procedure based on the set of selected
nNMTSGE. Given a query of a set of individual nNMTSGE

from the target subject, we estimated the distance between the
target individual with the rest of the sets within the database.
The predicted individual ID∗ is the one where the majority of
nNMTSGE belongs to using WW-test as a similarity index. WW-
test was estimated between a set of halves of nNMTSGE from
the target individual with the two halves from the rest of the
dataset. By searching all over the EEG sensors and the frequency
bands, we selected the nNMTSGE that improved the classification
accuracy. Our features in total were 8 (frequency bands) × 64
sensors= 512 nNMTSGE.

To account for the contribution of various nNMTSGE over
prediction of individual prediction, we used a confusion matrix
called CM. This CM matrix has dimensions equal to Ns × Ns
where Ns denotes the number of subjects. Each row of CM
matrix represents the actual class while each column represents
the predicted subject S. For each individual, the identity ID was
given by the Equation (6).

The recognition rate was defined as the mean of the diagonal
elements of the CMmatrix with the following formula:

CM = (
1

N

Ns
∑

n= 1

CM(S, S)) × 100 (7)

IMPLEMENTATION OF THRESHOLDING
SCHEMES

All the threshold schemes were implemented in an in-house
software toolbox using MATLAB environment and will be
available from the author’s website after acceptance of this
manuscript. http://users.auth.gr/∼stdimitr/software.html, from
researchgate (https://www.researchgate.net/profile/Stavros_
Dimitriadis), and from the github website (https://github.
com/stdimitr/topological_filtering_networks). A webpage in
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FIGURE 5 | Identification analysis procedure based on nNMTSGE. Given a query of a set of individual nNMTSGE from the target subject extracted from split half

nNMTSGE, we estimated the distance between the target individual with the rest of the sets within the database. The predicted individual is the one where the majority

of nNMTSGE is predicted (argmax) using WW-test as a distance metric. WW-test was estimated between halves of nNMTSGE from the target individual (B) with the

two halves from the rest of the dataset (A) plus the second set of halves of the target individual (C).

scholarpedia is under construction for the promotion of the
whole approach.

RESULTS

EEG Dataset
Differences of Thresholding Schemes in Terms of

Shortest Path Lengths Distribution
As an attempt to make clear the differences between the
repertoire of thresholding schemes, we presented the distribution
of shortest path lengths (SPLSs) after applying the six
thresholding schemes to a static graph from δ band at eyes-
closed condition (Figure 6). To determine the differences
of the algorithms in terms of SPL, we compared the five
thresholds with the one based on SPL notion (Figure 6C).
The first two data-driven thresholding schemes allow more
non-shortest path lengths (Figures 6A,B) compared to the
arbitrary thresholds (Figures 6D–F). The explanation of this
behavior is the wiring cost that is used in both data-driven
methods as part of the optimized formula that allow also non-
strongest connections to be part of the network compared to the
arbitrary thresholding schemes where favor mostly the strongest
connections.

Thresholding Scheme Alters Brain Fingerprinting

Based on nNMTSGE

To demonstrate how the adaptation of a thresholding scheme can
alter the brain fingerprinting based on nNMTSGE, we illustrated
the nNMTSGE from a single-subject in δ band at eyes-closed
condition from Fz sensor (Figure 7). One can clearly investigate

the differences of nNMTSGE across the various thresholding
schemes.

Identification Accuracy Based on nNMTSGE

To reduce the computational effort of optimizing the threshold
for the three non-data-driven thresholding schemes (absolute,
proportional, mean degree), we selected a common thresholding
criterion across individuals, frequencies and slides. We selected a
threshold for each algorithm based on their individual criterion
with main aim the highest matching between the resulted
distance matrices of the thresholding graphs and the distance
matrix as it was derived from the proposed algorithm of OMSTs.
To estimate the distance between two graphs, Frobenius norm
was used as implemented in norm function in Matlab. The
stepping value through which the optimal matching was searched
was 0.01 for absolute, 1% for proportional and 0.1 for the mean
degree algorithm.

Table 1 tabulates the identification results for each of the
thresholding schemes and also the number of selected NMTSGE.
We also estimated the accuracy by fusing both conditions. Even
though the results for such a difficult task is still high for
GCE threshold, OMSTs succeeded to accurate identify all the
participants with the exception of 1 on each task but with absolute
accuracy by combining both tasks. Figure 8 presents the sensors
across the eight frequency bands for both conditions where
their nNMTSGE based on OMSTs algorithm were employed as
subject-specific brain fingerprinting. Tables S1–S3 (Section 2 in
Supplementary Material) illustrates the identification accuracy
based on the strength, the clustering coefficient and the local
efficiency. Table S4 (Section 2 in Supplementary Material)
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FIGURE 6 | Distribution of the length of shortest path lengths (SPL) applied to the static functional connectivity graph (FCG) thresholding by the six

thresholding schemes presented in Figure 1. (A) Global Cost Efficiency (GCE), (B) Orthogonal Minimal Spanning Trees (OMSTs), (C) Dijkstra’s algorithm, (D)

Absolute threshold, (E) Proportional Thershold, (F) Mean Degree Threshold. Panels (A–C) are data-driven topological filtering schemes while (D–F) are arbitrary

thresholding schemes.

FIGURE 7 | An example of how different thresholding schemes affect the estimation of nNMTSGE and finally the individual unique brain fingerprinting.

The approach was applied in δ band from Fz sensor at eyes-closed condition. GCE, Global Cost Efficiency; OMSTs, Orthogonal Minimal Spanning Trees.

demonstrates the recognition accuracy based on the global
efficiency estimated on the network level, one NMTSGE per
frequency band.

The Effect of Window Size on Brain Fingerprinting
It is well-known from the literature related to dynamic functional
connectivity how the selection of the moving window can affect

the network related metrics (Dimitriadis et al., 2010b, 2015a;
Bassett et al., 2011; Hindriks et al., 2016). Here, we repeated
the whole analysis by adopting 20 and 30 cycles frequency-
dependent moving window and we demonstrated the result of
brain fingerpring in Table 2 in association with Table 1. Clearly,
we can detect the temporal stability of data-driven techniques in
terms of brain fingerprinting accuracy and the number of selected
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TABLE 1 | Identification accuracy over various thresholding schemes.

Identification accuracy GCE OMSTs SPL Absolute Proportional Mean degree

Eyes-open 0.81 (115) 0.99 (96) 0.77 (112) 0.61 (132) 0.64 (121) 0.73 (109)

Eyes-closed 0.82 (112) 0.99 (104) 0.79 (109) 0.62 (128) 0.65 (118) 0.69 (98)

Fusion 0.88 1 0.83 0.64 0.63 0.7

In brackets, we denoted the number of the selected nNMTSGE for each method and for both conditions.

The moving window is equal to 10cycles of the studying frequency band.

FIGURE 8 | Topographical layouts of the selected nNMTSGE over frequencies for both eyes-closed (A) and eyes-open (B) condition in order to get the

highest accuracy for brain fingerprinting.

features based on nNMTSGE over the three widths of temporal
windows.

fMRI Dataset
Table 3 summarizes the estimates of global and local efficiency
for the six different thresholding schemes. The first three are
data-driven and the rest three should be optimized under an
objective criterion. Here, we used the objective criterion of
increasing the ICC value. The selected absolute threshold, mean
degree and % (density) are shown in brackets in Table 3. The
whole analysis gave fair to good ICC scores for the 5 out
of 6 thresholding schemes with the highest scores reached by
the two data-driven techniques. The proposed OMST scheme
demonstrated excellent reproducibility for both network metrics
(ICC > 0.85). The topological layout of scan averaged nodal
global and local efficiency of the fMRI dataset with the proposed
OMST topological filtering scheme is illustrated in Figure 9.

DISCUSSION

Last years, an increasing amount of human brain research based
on functional imaging methods (EEG/MEG/fMRI) have adopted
a more dynamic approach for exploring how brain connectivity
fluctuates at resting-state and during tasks (Laufs et al., 2003;
Mantini et al., 2007; Chang and Glover, 2010; Dimitriadis et al.,
2010a, 2012a,c, 2013a,b, 2015a,b,c,d, 2016a,b; Bassett et al., 2011;
Allen et al., 2012; Handwerker et al., 2012; Ioannides et al.,
2012; Hutchison et al., 2013; Liu and Duyn, 2013; Braun et al.,
2015b; Mylonas et al., 2015; Toppi et al., 2015; Yang and

Lin, 2015; Calhoun and Adali, 2016, for reviews see Calhoun
et al., 2014). Innovative techniques for manipulating the large
number of graphs estimated via dynamic functional connectivity
analysis (DFCA) have just arisen (Sakoğlu et al., 2010; Dimitriadis
et al., 2013a, 2015a, 2016b; Leonardi et al., 2013; Keilholz, 2014;
Leonardi and Van De Ville, 2014; Betzel et al., 2016). A crucial
step in brain connectivity analysis is the application of a statistical
thresholding scheme to capture the most significant connections
within a graph and also the selection of a topological filtering
where the most significant connections can be extracted leading
to meaningful topologies. Especially, in the case of (DFCA), a
data-driven approach is important in order to avoid any pitfalls
in the interpretations of the results and also to enhance the
reproducibility of the results of a current study under a common
data-driven thresholding framework.

The majority of neuroimaging studies that followed a
connectivity analysis (static or dynamic) adopted an arbitrary
threshold that in many cases can vary the results in terms of
group comparisons. Additionally, it restricts the usability of the
results across different research groups but also within the group
by adding more samples in the initial analysis. The instability of
the functional network measures over different thresholds have
been recently demonstrated (Garrison et al., 2015). With the
increased number of open neuroimaging repositories (Sharing
the wealth:Brain Imaging Repositories in 2015), it is crucial to
adopt more sophisticated data-driven techniques within brain
network analysis in order to aggregate the effort given by
hundreds of research groups all over the world for a better
understanding of how the brain functions.
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TABLE 2 | Identification accuracy over various thresholding schemes and across two different lengths of the moving window.

Identification accuracy GCE OMSTs SPL Absolute Proportional Mean degree

(A) THE MOVING WINDOW IS EQUAL TO 20 CYCLES OF THE STUDYING FREQUENCY BAND

Eyes-open 0.84 (113) 0.99 (95) 0.75 (109) 0.57 (125) 0.61 (125) 0.68 (101)

Eyes-closed 0.85 (119) 0.99 (103) 0.75 (114) 0.58 (121) 0.62 (125) 0.65 (95)

Fusion 0.87 1 0.8 0.59 0.61 0.63

(B) THE MOVING WINDOW IS EQUAL TO 30 CYCLES OF THE STUDYING FREQUENCY BAND

Eyes-open 0.81 (115) 0.99 (94) 0.74 (117) 0.57 (123) 0.61 (126) 0.66 (112)

Eyes-closed 0.82 (112) 0.99 (101) 0.75 (113) 0.56 (121) 0.6 (127) 0.64 (103)

Fusion 0.88 1 0.75 0.57 0.60 0.62

In brackets, we denoted the number of the selected nNMTSGE for each method and for both conditions.

TABLE 3 | Reliability of network metrics based on multiple fMRI scans.

GCE OMSTs SPL Absolute (0.235) Proportional (22%) Mean degree (67)

Global

Efficiency

0.34 ± 0.06

(ICC = 0.67)

0.37 ± 0.03

(ICC = 0.89)

0.32 ± 0.05

(ICC = 0.71)

0.33 ± 0.11

(ICC = 0.55)

0.32 ± 0.09

(ICC = 0.56)

0.34 ± 0.08

(ICC = 0.61)

Local

Efficiency

0.29 ± 0.06

(ICC = 0.71)

0.31 ± 0.03

(ICC = 0.91)

0.30 ± 0.06

(ICC = 0.72)

0.31 ± 0.08

(ICC = 0.57)

0.29 ± 0.07

(ICC = 0.53)

0.31 ± 0.08

(ICC = 0.59)

The optimized criterion for the three arbitrary thresholding schemes are presented.

ICC, Intra-class Correlation Coefficient.

We underlined in bold the highest ICC scores for each adopted network metric across the six thresholding methods.

FIGURE 9 | Scan-averaged brain topographies of nodal (A) global efficiency (GE) and (B) local efficiency (LE) based on the proposed data-driven topological

filtering approach of OMST.

In the present study, we demonstrated the superiority of
a novel data-driven thresholding scheme based on OMSTs
compared to the rest well-known thresholds to accurate identifies
individuals in a large EEG database. The recognition accuracy
was the highest in both eyes-open and eyes-closed condition
compared to the rest of thresholding schemes. As unique
features of this EEG biometric evaluation approach, a set of
nNMTSGE were used across the sensors and frequency bands.
The location of the selected nNMTSGE highly overlapped with

the topography of the EEG spectrum related to the default
mode network (DMN) of the brain (Chen et al., 2008). In
δ band, there is a more prefrontal selection of the NMTSGE

and a more fronto-central for the θ frequency. In both α1 and
α2 selected sensors were distributed at posterior parietal brain
regions. In both β1 selected sensors were located at posterior
parieto-occipital brain regions while in β2, γ1, and γ2 selected
sensors were distributed anteriorly (Figure 8). Overall, the set
of NMTSGE from the whole repertoire of the eight frequency
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bands can be seen as the unique subject-specific brain signature
of the DMN.

MST is a unique acyclic subgraph that connects all nodes with
a minimal cost and also maximizes the information flow between
brain regions since it captures the backbone of all shortest path
lengths. One of the basic disadvantages of the MST is that it
gives a sparse representation of a full-weighted functional graph.
Especially, for a brain network up to or larger than 100 nodes,
MST-oriented representation of the functional brain network
is too sparse to get robust network metrics for characterizing
the connectivity matrix. For that reason, the method of OMSTs
with the objective criterion of maximizing the information flow
with the restriction of the wiring cost presents a more robust
approach. Here, we demonstrated the superiority of OMSTs over
the existing methods of an EEG dynamic functional connectivity
analysis at resting-state with the main scope to maximizing the
identification accuracy within a database.

The basic explanation of the superiority of the proposed
algorithm over the rest and especially the data-driven techniques
(Bassett and Bullmore, 2006) is the sampling of weighted
connections with main constrain to connect all the nodes with
minimal cost without ranking connections according to their
strength. The algorithm presented by Bassett et al., searches over
the network by windowing the range of the weights which are
often between 0 and 1 starting from 0 up to 1 with a small
stepping criterion (e.g., 0.01; Bassett and Bullmore, 2006). This
option separates strongest from weakest connections obliviously
also if the network is connected. It seems that MST and especially
multiple rounds of OMSTs is a reliable sampling approach
for the selection of the subgraph that better described the
functionality of the studying brain topology. A recent study
combined MST with an arbitrary proportional threshold to get
the sparse representations of brain networks (Song et al., 2015).

One significant observation of our method is that using the
penalty term of wiring cost, part of information flows via non-
shortest path lengths compared to the notion of shortest path
lengths (see Figure 6; VanMieghem andWang, 2009; Dimitriadis
et al., 2010a, 2012b). Our previous data-driven algorithm based
on shortest-path lengths have already been reported as the Union
of Shortest Path Trees (USPL; Van Mieghem and Wang, 2009)
and applied to functional brain networks (Meier et al., 2015).

It is important to mention here that our main goal was
to present the superiority of our method overall the existing
thresholding schemes in a large EEG database by adopting
a dynamic functional connectivity analysis. The objective
criterion to validate the proposed data-driven thresholding
scheme based on OMSTs was the identification accuracy
of each individual further supporting recent efforts over
functional connectome brain fingerprinting (Finn et al., 2015).
Additionally, previous attempts have already demonstrated
high classification accuracy based on power spectrum and
coherence on static graphs on the same database (La Rocca
et al., 2014). Our approach improves current efforts over EEG-
based biometric systems by extracting meaningful temporal
graph-oriented features supporting and validating the proposed
data-driven threshold algorithm (OMSTs) via the notion of
brain fingerprinting. Finally, we demonstrated its temporal

stability in terms of recognition accuracy and the number
of selected features over three different widths of temporal
windows.

Finally, the proposed data-driven thresholding scheme based
on OMSTs demonstrates the need of a data-driven approach for
topological filtering of brain networks. Complementary, it shows
that sampling the connections in weighted brain network using
orthogonal MSTs is a superior approach compared to taking into
consideration only their strength (Bassett and Bullmore, 2006).
Additionally, the wiring cost is a significant attribute of a brain
network while it was proved its key role to the evolution of
hierarchy and modularity by its direct link to sparsity (Mengistu
et al., 2016). Further studies should validate the superiority of
this approach to multimodal imaging and to the design of reliable
connectomic biomarkers for various brain disorders/diseases.

The analysis of functional brain networks derived from
resting-state recordings or task-related via graph theory has been
proven to be a powerful tool to characterize both globally and
locally the architecture of functional connectivity in the human
brain (Van Dijk et al., 2010). Due to the increment of research
studies that expanded their results based on network analysis
to daily clinical use (Savitz et al., 2013), it is significant to
provide data-driven solutions of preprocessing steps in order
to increase the reproducibility of the network metrics (Zuo
and Xing, 2014; Zuo et al., 2014; Chen et al., 2015). Here,
we investigated how the different topological filtering scheme
(data-driven vs. arbitrary algorithms) can alter the reliability
of basic network metrics estimated via ICC score. Apart from
the choice of topological filtering scheme of functional brain
network, the selection of the connectivity estimator can also
affect the reliability of the network metrics (Garcés et al.,
2016). The effect of both the connectivity estimator and the
selection of filtering schemes has been recently demonstrated
(Jalili, 2016) and we will present the reproducibility of network
metrics based on brain connectivity on the source level with
both EEG and MEG recordings in a next upcoming journal
paper.

Employing a second fMRI case study dataset and following a
static network analysis, we demonstrated the superiority of the
proposed topological filtering scheme to increase the test-retest
reliability of the network metrics across different scans/sessions
(Deuker et al., 2009). The reliability of network metrics across
trials is an important issue in order to make general conclusions
for a targeted group (e.g., Alzheimer) or a task (e.g., resting-state,
n-back memory etc.).

LIMITATIONS AND FURTHER
VALIDATIONS

To further validate the proposed thresholding scheme over the
highly used thresholds, it is important to apply it also on EEG
and MEG source level (Ioannides et al., 2012) and also to fMRI
experimental paradigms where the spatial resolution is higher
compared to the scalp-recorded EEG activity. Additionally, it is
significant to compare nNMTS between resting-state and tasks
in both control and disease groups (Damaraju et al., 2014)
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but also during the developmental time (Dimitriadis et al.,
2015a). Finally, by adopting multivariate estimators like Granger
causality or partial direct coherence (Omidvarnia et al., 2013)
in a dynamic fashion with the proposed algorithm may further
shed light on the importance of data-driven approaches in
neuroimaging.

It will be interesting in the future to generate brain network
models of the human connectome (Betzel et al., 2016) based
on the notion of OMSTs using a distance geometric penalty
(e.g., Euclidean distance between ROIs in 3-dimensional space).
It seems that geometry is crucial in the studying of structural
connectome (Roberts et al., 2016), an observation that should
be further validated if it contributes to the network topology in
functional connectome at source space.

CONCLUDING REMARKS

We showed that a data-driven thresholding scheme based on
OMSTs implies a unique description of each individual brain
activity based on the notion of nodal networkmetrics times series
and namely the global efficiency (nNMTSGE). The proposed
technique overcame the rest of highly used thresholding schemes
in terms of human brain distinctiveness employing a dynamic
functional connectivity approach. Moreover, we demonstrated
its effectiveness to increase the reliability of network metrics
in a multi-scan fMRI dataset. The novel method has practical
significance over the existing thresholding schemes, in that it
represents a model-free framework for identifying the significant
connections over which the information flow between the
brain areas is maximized with the constraints of the wiring
cost. Current approach could be of greater neuroinformatic
importance especially in the direction of reproducibility of brain
connectivity results across different data repositories based on

various imaging methods like EEG,MEG and fMRI. Especially,
in a simultaneous recording of different imagingmethods (MEG-
EEG and EEG-fMRI) the proposed algorithm could be a common
framework to compare dynamic FCGs estimated from two
different modalities. The proposed method deals with a data-
driven filtering of (chro)/(co)nnectomics.
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