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Abstract: Members of the genus Spiroplasma are Gram-positive bacteria without cell walls. Some
Spiroplasma species can cause disease in arthropods such as bees, whereas others provide their host
with resistance to pathogens. Ticks also harbour Spiroplasma, but their role has not been elucidated yet.
Here, the infection status and genetic diversity of Spiroplasma in ticks were investigated using samples
collected from different geographic regions in Japan. A total of 712 ticks were tested for Spiroplasma
infection by PCR targeting 16S rDNA, and Spiroplasma species were genetically characterized based
on 16S rDNA, ITS, dnaA, and rpoB gene sequences. A total of 109 samples originating from eight
tick species were positive for Spiroplasma infection, with infection rates ranging from 0% to 84%
depending on the species. A linear mixed model indicated that tick species was the primary factor
associated with Spiroplasma infection. Moreover, certain Spiroplasma alleles that are highly adapted to
specific tick species may explain the high infection rates in Ixodes ovatus and Haemaphysalis kitaokai.
A comparison of the alleles obtained suggests that horizontal transmission between tick species
may not be a frequent event. These findings provide clues to understand the transmission cycle of
Spiroplasma species in wild tick populations and their roles in host ticks.

Keywords: Haemaphysalis; Ixodes; Spiroplasma; symbionts; ticks; Japan

1. Introduction

Members of the genus Spiroplasma are Gram-positive bacteria without cell walls. They
are known as symbionts of arthropods and plants and are classified into three major clades
based on the 16S ribosomal RNA gene (rDNA) sequence: Ixodetis, Citri-Chrysopicola-
Mirum (CCM), and Apis [1,2]. Spiroplasma is one of the most common endosymbionts
with a wide range of hosts, including insects, arachnids, crustaceans, and plants [3]. It is
estimated that 5–10% of insect species harbor this symbiont group [2,4].
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Spiroplasma has a wide range of fitness effects and transmission strategies [2,5–17].
Some Spiroplasma species affect the sex ratio by inducing male killing in hosts such as flies,
butterflies, and ladybird beetles [7–10]. Several Spiroplasma species are known to cause
disease in arthropods such as bees and plants [6,17,18]. On the other hand, some flies
infected with Spiroplasma can develop resistance to other pathogens [5,10–12]. A wide
range of symbiotic relationships involving Spiroplasma have been observed [5,7,8,14–16].
The rapid spread of Spiroplasma infection in fruit fly natural populations has been reported
in some areas of North America, and this phenomenon has been confirmed in laboratory
settings [19]. This characteristic of Spiroplasma is not only biologically interesting, but also
useful for symbiotic control applications among host individuals [20].

Ticks have long been studied, since they transmit a variety of pathogens to humans
and animals. Spiroplasma mirum is the first reported tick-associated Spiroplasma, which
was obtained from Haemaphysalis leporispalustris in the United States in 1982 during the
search for rickettsiae in ticks [21]. Another species, S. ixodetis, was isolated from Ixodes
pacificus in the United States in 1981 [22]. Thus far, these two species are the only validated
Spiroplasma species detected in ticks. Nevertheless, several alleles or putative new species
of Spiroplasma have been found in various tick species such as I. arboricola, I. frontalis, I.
ovatus, I. persulcatus, I. ricinus, I. uriae, Dermacentor marginatus, Rhipicephalus annulatus, R.
decoloratus, R. geigyi, and R. pusillus [23–30].

In Japan, 46 tick species belonging to seven genera (Amblyomma, Argas, Dermacentor,
Rhipicephalus, Haemaphysalis, Ixodes, and Ornithodoros) have been recorded [11,12]. Several
tick-borne diseases such as Lyme disease, relapsing fever, Japanese spotted fever, severe
fever with thrombocytopenia syndrome, and tick-borne encephalitis are endemic [31].
Taroura et al. first detected Spiroplasma DNA in questing I. ovatus ticks captured in several
prefectures [24]. Subsequently, a microbiome study revealed the presence of Spiroplasma
in the salivary glands of I. ovatus and I. persulcatus [23]. More recently, several Spiroplasma
isolates were obtained by incubating the homogenates of I. monospinosus, I. persulcatus, and
H. kitaokai with tick and mosquito cells [32]. These studies collectively indicate that there is
a close relationship between Spiroplasma and ticks in Japan; however, no comprehensive
studies have been conducted to determine the genetic diversity and prevalence of tick-
associated Spiroplasma.

The aim of this study was to identify and genetically characterize Spiroplasma in
different tick species in Japan. A linear mixed model (LMM) was developed to resolve
the correlation among several extrinsic and intrinsic factors associated with Spiroplasma
infection in ticks.

2. Materials and Methods
2.1. Sample Collection

Ticks were collected by flagging the vegetation during the period of tick activity
(between April 2013 and August 2018) at 112 different sampling sites in 19 different
prefectures in Japan. The sampling sites were classified into nine geographical blocks:
Hokkaido (Hokkaido prefecture), Tohoku (Yamagata and Fukushima prefectures), Kanto
(Chiba prefecture), Chubu (Nagano and Shizuoka prefectures), Kinki (Mie, Nara, and
Wakayama prefectures), Chugoku (Hiroshima and Shimane prefectures), Shikoku (Kagawa,
Ehime, and Kochi prefectures), Kyushu (Nagasaki, Kumamoto, Miyazaki, and Kagoshima
prefectures), and Okinawa (Okinawa prefecture). All collected ticks were transferred to
Petri dishes and preserved in an incubator at 16 ◦C until use.

2.2. Identification of Tick Species

Tick species were identified morphologically under a stereomicroscope according to
standard morphological keys [33,34]. A total of 712 adult ticks from four genera were
examined in this study. These included two species in the genus Amblyomma (A. geoemydae,
n = 3; A. testudinarium, n = 26), one species in the genus Dermacentor (D. taiwanensis, n = 9),
10 species in the genus Haemaphysalis (H. concinna, n = 2; H. cornigera, n = 1; H. flava, n = 65;
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H. formosensis, n = 83; H. hystricis, n = 60; H. japonica, n = 20; H. kitaokai, n = 78; H. longicornis,
n = 106; H. megaspinosa, n = 66; H. yeni, n = 1), and seven species in the genus Ixodes
(I. monospinosus, n = 21; I. nipponensis, n = 3; I. ovatus, n = 80; I. pavlovsky, n = 26; I. persulcatus,
n = 55; I. tanuki, n = 1; I. turdus, n = 6).

2.3. DNA Extraction

The procedures for DNA extraction from individual ticks have been reported previ-
ously [35]. In brief, the surface of tick bodies was individually washed with 70% ethanol
and sterilized phosphate-buffered solution (PBS). The whole tick bodies were homogenized
in 100 µL of high-glucose Dulbecco’s modified Eagle’s medium (Gibco, Life Technologies,
Grand Island, NY, USA) using Micro Smash MS100R (TOMY, Tokyo, Japan) for 30 s at
3000 rpm. DNA was extracted from 50 µL of the tick homogenate using the blackPREP Tick
DNA/RNA Kit (Analytik Jena, Jena, Germany) according to the manufacturer’s protocol.

2.4. Detection of Spiroplasma in Ticks

To detect Spiroplasma DNA, PCR amplification of a sequence of approximately 1028 bp
in the 16S rDNA was performed. The PCR was carried out in a 20 µL reaction mixture
containing 10 µL of 2× Gflex PCR Buffer (Mg2+, dNTP plus), 400 nM of Tks Gflex™ DNA
Polymerase (Takara Bio, Shiga, Japan), 400 nM of each primer, 1 µL of DNA template, and
sterilized water. The reaction was performed at 94 ◦C for 1 min, followed by 45 cycles at
98 ◦C for 10 s, 60 ◦C for 30 s, and 68 ◦C for 45 s and a final step at 68 ◦C for 5 min. PCR
products were electrophoresed on a 1.0% agarose gel. The DNA of a Spiroplasma species
isolated from I. persulcatus in our previous study [23] and sterilized water were included
in each PCR run as positive and negative controls, respectively. Primer sets used for
each assay are shown in Table 1 [13,36]. The amplified PCR products were purified using
ExoSAP-IT Express PCR Cleanup Reagent (Thermo Fisher Scientific, Tokyo, Japan). Sanger
sequencing was performed using the BigDye Terminator version 3.1 Cycle Sequencing Kit
(Applied Biosystems, Foster City, CA, USA) and the ABI Prism 3130xl Genetic Analyzer
according to the manufacturer’ s instructions. Sequence data were assembled using ATGC
software version 6.0.4 (GENETYX, Tokyo, Japan).

2.5. Molecular Characterization of Spiroplasma

To further characterize Spiroplasma in ticks, additional PCRs based on the 16S–23S
rRNA intergenic transcribed spacer (ITS) region (301 bp), chromosomal replication ini-
tiator protein dnaA (dnaA) (515 bp), and RNA polymerase B (rpoB) genes (1703 bp) were
performed with primers widely used for the characterization of Spiroplasma in arthro-
pods [2,36]. These PCRs were performed for selected samples using the following criteria:
(1) more than three samples (when available) were selected for each 16S rDNA allele; (2)
the samples were selected from each tick species when the 16S rDNA allele was obtained
from multiple tick species. The PCRs were carried out as described above, except that
56 and 52 ◦C were used as the annealing temperatures for ITS and dnaA PCRs, respectively.
The primer sets used for each assay are shown in Table 1. All PCR amplicons were sub-
jected to Sanger sequencing analysis. The sequences obtained were submitted to the DNA
Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp) under specific accession numbers
(16S rDNA: LC592079–LC592113; ITS: LC592139–C592161; dnaA: LC592127–LC592138;
rpoB: LC592114–LC592126).

http://www.ddbj.nig.ac.jp
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Table 1. Primers used in the present study.

Primer Sequence (5’-3’) Target Gene Annealing Temperature (◦C) Purpose Amplicon Size (bp) Reference

spi_f1 GGGTGAGTAACACGTATCT 16S rDNA 60 PCR 1028 [13]
spi_r3 CCTTCCTCTAGCTTACACTA

16S_s1 ACCTTACCAGAAAGCCACGG 16S rDNA NA Sequencing NA This study
16S_s2 AGACCTTCATCAGTCACGCG 16S rDNA NA Sequencing NA This study
16S_s3 GTAATATGTGCCAGCAGCCG 16S rDNA NA Sequencing NA This study
16S_s4 ACCGCATTCTCCATCAGCTT 16S rDNA NA Sequencing NA This study

SP-ITS-JO4 GCCAGAAGTCAGTGTCCTAACCG ITS1 56 PCR 301 [13]
SP-ITS-N55 ATTCCAAGCCATCCACCATACG

SRdnaAF1 GGAGAYTCTGGAYTAGGAAA dnaA 52 PCR 515 [36]
SRdnaAR1 CCYTCTAWYTTTCTRACATCA

RpoBF1 ATGGATCAAACAAATCCATTAGCAGA rpoB 60 PCR 1703 [36]
RpoBR2 GCATGTAATTTATCATCAACCATGTGTG
RpoB_s1 TGACCATTACTACGAGCAATAACA rpoB NA Sequencing NA This study
RpoB_s2 CCCCTGTTTTTGATGGTGCA rpoB NA Sequencing NA This study

NA, not applicable.
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2.6. Phylogenetic Analysis

Phylogenetic trees were constructed based on the partial sequences of 16S rDNA, dnaA,
rpoB genes, and ITS region. The nucleotide sequences obtained were aligned with repre-
sentative sequences of known Spiroplasma species available in GenBank as implemented
in MEGA7 [30,37]. The reference sequences of ITS region of S. ixodetis were obtained by
de novo assembly of Illumina raw reads of Spiroplasma-infected African monarch butter-
fly Danaus chrysippus deposited in the sequence read archives (SRA) of the NCBI with
accession numbers of SRX3872086 and SRX3872088-SRX3872090 [38] using CLC Genomics
Workbench v 20.0.4 (Qiagen, Hilden, Germany). Phylogenetic trees were constructed using
maximum likelihood (ML) method with bootstrap tests of 1000 replicates. The sequence
data of the evolutionary models were determined using the Akaike information criterion
with MEGA7 [37].

2.7. Phylogenetic Analysis

Spiroplasma infection in ticks can be affected by various extrinsic and intrinsic factors.
Here, the extrinsic factors included sampling district, city/town, season, month, and year
variations, and the intrinsic factors were tick species and sex. First, multicollinearity among
the explanatory variables was examined using pairwise correlations and the “VIF” function
in R package [39] to determine whether multicollinearity was likely to influence LMM
results. A correlation between several variables affecting Spiroplasma infection in tsetse
flies was reported in a previous study [40]. To identify this possible correlation in ticks, we
performed multiple correspondence analysis (MCA) using the “MCA” and “fviz_mca_var”
functions in the R packages FactoMineR and Factoextra, respectively [41]. We used an
LMM to resolve the correlation among the predictor variables associated with Spiroplasma
infection in ticks. We fit the LMM with the predictor variables (sampling season, year, tick
sex, and species) as the fixed effects with and without geographic location (district) as the
random effect. This was followed by testing in additional LMMs using combinations of
the predictor variables with district as the random effect variable and Spiroplasma infection
as the response variable. We compared the effectiveness of the tested models with the
Chi-square test using the “ANOVA” function in R software. Finally, the “lmer” function in
the R package lme4 [42] was used for the selected LMM, with each detected Spiroplasma
allele as the response variable.

3. Results
3.1. Infection Rate of Spiroplasma in Different Tick Species

In this study, 109 of 712 samples (15%) were positive for Spiroplasma infection. Among
the 20 different tick species, eight tick species were positive for Spiroplasma infection, and
the highest infection rate was observed in I. ovatus (84%; 67/80), followed by H. kitaokai
(35%; 27/78), I. turdus (17%; 1/6), I. persulcatus (16%; 9/55), D. taiwanensis (11%; 1/9),
I. pavlovsky (8%; 2/26), A. testudinarium (4%; 1/26), and H. flava (2%; 1/65) (Figure 1). Only
female ticks were positive for the infection in I. turdus, D. taiwanensis, and H. flava, while
only one male was positive in A. testudinarium. The difference in Spiroplasma infection
rates between male and female ticks was not statistically significant (Fisher’s exact test).
Spiroplasma-positive ticks were detected from most of the geographic blocks except for
Kanto and Okinawa (Figure 2).
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3.2. 16S rDNA Genotyping of Spiroplasma in Ticks

A total of 101 amplicons of 16S rDNA were successfully sequenced, resulting in
17 different 16S rDNA alleles (G1–G17) (Table 2). Eight samples failed in sequencing due to
mixed signals. Of the 17 alleles, 13 alleles (G3–G8, and G11–G17) were detected in a single
tick species. Two alleles (G1 and G10) were detected in two different tick species: G1 from
I. ovatus and I. persulcatus and G10 from A. testudinarium and I. persulcatus. One allele (G2)
was detected in three different tick species: I. ovatus, I. persulcatus, and H. kitaokai. Another
allele (G9) was observed in four different tick species: I. turdus, I. persulcatus, D. taiwanensis,
and H. kitaokai. The detected alleles were classified into the Ixodetis or CCM group in
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a phylogenetic tree based on the sequences of 16S rDNA (Figure 3). G10 and G17 were
clustered with Spiroplasma spp. in the CCM group, whereas other alleles were grouped
with members in the Ixodetis group. G10 and G17 showed 99.7% and 99.4% sequence
identity, respectively, to S. mirum (CP006720). Alleles in the Ixodetis group formed a cluster
with S. ixodetis found in Ixodes, Rhipicephalus, and Dermacentor ticks in other countries and a
variety of arthropods such as ladybird, beetle, louse, butterfly, planthopper, and mealybug
(Figure 3).
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Figure 3. A phylogenetic tree based on the sequences of 16S rDNA. The analysis was performed using a maximum-
likelihood method based on the Hasegawa–Kishino–Yano model with bootstrap tests of 1000 replicates in MEGA7. A discrete
Gamma distribution was used to model evolutionary rate differences among sites (five categories (+G, parameter = 0.2496)).
The sequences obtained in this study are included with allele names provided in Table 2 and are shown in red. The
sequences of other Spiroplasma species were retrieved from GenBank. The host is indicated in the parenthesis for each
Spiroplasma sequence.
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Table 2. Spiroplasma 16S rDNA alleles and their geographic origins and host tick species.

16S rDNA Allele Tick Species
No. of Positive/No. of Tested (%)

Hokkaido Tohoku Kanto Chubu Kinki Chugoku Sikoku Kyushu Okinawa

G1 I. ovatus 21/44 (48) 2/32 (6) - 0/4 (0) - - - - -
G1 I. persulcatus 1/39 (3) 0/8 (0) - 0/4 (0) 0/4 (0) - - - -

G2 H. kitaokai - 0/5 (0) - - 2/12 (17) - 0/36 (0) 0/45 (0) -
G2 I. ovatus 1/44 (2) 0/32 (0) - 0/4 (0) - - - - -
G2 I. persulcatus 3/39 (7) 0/8 (0) - 0/4 (0) 0/4 (0) - - - -

G3 I. ovatus 3/44 (7) 1/32 (3) - 3/4 (75) - - - - -

G4 I. ovatus 1/44 (2) 0/32 (0) - 0/4 (0) - - - - -

G5 I. ovatus 1/44 (2) 0/32 (0) - 0/4 (0) - - - - -

G6 I. ovatus 3/44 (7) 1/32 (3) - 1/4 (25) - - - - -

G7 I. ovatus 1/44 (2) 1/32 (3) - 0/4 (0) - - - - -

G8 I. ovatus 1/44 (2) 0/32 (0) - 0/4 (0) - - - - -

G9 D. taiwanensis - 0/1 (0) - - 1/4 (25) - - 0/4 (0) -
G9 H. kitaokai - 0/5 (0) - - 3/12 (25) - 2/36 (6) 18/45 (40) -
G9 I. persulcatus 0/39 (0) 0/8 (0) - 0/4 (0) 4/4 (100) - - - -
G9 I. turdus - - - - 0/2 (0) - 0/2 (0) 1/2 (50) -

G10 A. testudinarium - - - - - 1/9 (11) 0/15 (0) 0/2 (0) -
G10 I. persulcatus 0/39 (0) 1/8 (13) - 0/4 (0) 0/4 (0) - - - -

G11 I. ovatus 0/44 (0) 16/32 (50) - 0/4 (0) - - - - -

G12 I. ovatus 0/44 (0) 2/32 (6) - 0/4 (0) - - - - -

G13 I. pavlovsky 1/26 (4) - - - - - - - -

G14 H. kitaokai - 0/5 (0) - - 0/12 (0) - 0/36 (0) 1/45 (2) -

G15 H. kitaokai - 1/5 (20) - - 0/12 (0) - 0/36 (0) 0/45 (0) -

G16 I. ovatus 0/44 (0) 1/32 (3) - 0/4 (0) - - - - -

G17 I. pavlovsky 1/26 (4) - - - - - - - -
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3.3. Characterization of Spiroplasma Based on the Sequences of ITS Region, dnaA, and rpoB Genes

To further characterize Spiroplasma in ticks, 50 Spiroplasma-positive samples were
selected based on 16S rDNA genotyping results. The ITS region was amplified in all
16S rDNA alleles, resulting in five different alleles (T1–T5) (Table 3). T1 was the most abun-
dant allele detected in the samples of 10 different 16S rDNA alleles (G1, G2, G4, G8–G10,
and G12–G15). Phylogenetic analysis revealed that T4 was clustered with Spiroplasma spp.
including S. mirum in the CCM group, whereas T1-T3 and T5 formed a cluster with S. ixode-
tis reported from butterflies (Figure 4). There was a discrepancy between the 16S rDNA and
ITS genotyping results; haplotype SP22 had a 16S rDNA allele (G10) belonging to the CCM
group and an ITS allele (T1) belonging to the Ixodetis group. PCR amplification of the dnaA
and rpoB genes were only successful for six and seven 16S rRNA alleles, respectively. ML
trees based on dnaA and rpoB are shown in Supplementary Figures S3 and S4, respectively.

Table 3. Multi-locus sequence typing of Spiroplasma in ticks.

Spiroplasma Haplotype 16S
rDNA ITS dnaA rpoB Tick Species

SP1 G1 T3 A1 B1 I. ovatus
SP2 G1 T1 - - I. persulcatus
SP3 G2 T1 A1 B4 H. kitaokai
SP4 G2 T1 A1 - H. kitaokai
SP5 G2 T2 - - I. ovatus
SP6 G2 T1 A2 B1 I. persulcatus
SP7 G2 T1 A2 B7 I. persulcatus
SP8 G2 T1 - - I. persulcatus
SP9 G3 T2 - - I. ovatus
SP10 G4 T1 A2 B3 I. ovatus
SP11 G5 T3 A2 B3 I. ovatus
SP12 G6 T2 - - I. ovatus
SP13 G7 T2 A1 - I. ovatus
SP14 G8 T1 A2 B3 I. ovatus
SP15 G9 T1 A2 B2 D. taiwanensis
SP16 G9 T1 A2 B4 H. kitaokai
SP17 G9 T1 A2 B7 H. kitaokai
SP18 G9 - A2 B7 H. kitaokai
SP19 G9 T1 - - I. persulcatus
SP20 G9 T1 A1 - I. persulcatus
SP21 G9 T1 A1 B7 I. persulcatus
SP22 G9 T5 - B6 I. persulcatus
SP23 G9 T1 - B5 I. turdus
SP24 G10 T1 - - A. testudinarium

G10 T1 - - I. persulcatus
SP25 G11 T2 - - I. ovatus
SP26 G12 T1 - - I. ovatus
SP27 G13 T1 - - I. pavlovsky
SP28 G14 T1 - - H. kitaokai
SP29 G15 T1 - - H. kitaokai
SP30 G16 T2 - - I. ovatus
SP31 G17 T4 - - I. pavlovsky

-, Not amplified.
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Figure 4. A phylogenetic tree based on the sequences of ITS region. The analysis was performed using a maximum-
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rate differences among sites (five categories (+G, parameter = 0.2599)) with bootstrap tests of 1000 replicates in MEGA7. The
sequences obtained in this study are included with allele names provided in Table 3 and are shown in red. The sequences of
other Spiroplasma species were retrieved from GenBank.

3.4. Effect of the Genetic Background on Spiroplasma Infection

Based on the estimation of multicollinearity using VIF, the number of degrees of
freedom (Df) was more than 1 for all variables except the year; thus, we calculated the
generalized variance inflation factors (GVIFs). The Df is equal to the number of associated
coefficients for a GVIF. Therefore, we used GVIF1/2Df to make GVIF values comparable
among those with different numbers of Df. High collinearity is usually indicated by
VIF > 20. However, multicollinearity analysis using VIF indicated low multicollinear-
ity with all variables (VIF < 5), suggesting that linear regression models would not be
influenced by a combination of these variables. Multicollinearity analysis showed that
there was a moderate correlation between the predictor variables (season and month;
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district and city/town) (Table S1). Both month and city/town variables were excluded
from further analysis. Then, MCA was performed to identify associations between the
predictor variables. The strongest association was detected between district, species, and
season (Figure S1). LMM analysis using the predictor variables (season, year, sex, and
species) revealed that the introduction of district as the random effect variable improved
the models significantly (p 5 0.001) (Table 4). Moreover, when tick species was used as
the principal predictor, the model for testing Spiroplasma infection in ticks was improved
(p 5 1.73 × 10−75; Table 5).

Table 4. LMM to test the correlation between each predictor with Spiroplasma infection using district as the random
effect variable.

Model Predictor
Variable

Random
Variable AIC BIC logLik Dev Chisq Df Pr (>Chisq)

M1-1 Species No 99.33 195.26 −28.67 57.33 NA NA NA
M1-2 Species District 74.43 174.93 −15.22 30.43 26.90 1 2.14 × 10−7 ***
M2-1 Year No 467.30 481.00 −230.65 461.30 NA NA NA
M2-2 Year District 459.39 477.67 −225.70 451.39 9.90 1 0.00164998 ***
M3-1 Sex No 495.23 513.50 −243.61 487.23 NA NA NA
M3-2 Sex District 451.24 474.08 −220.62 441.24 45.99 1 1.19 × 10−11 ***
M4-1 Season No 538.56 556.83 −265.28 530.56 NA NA NA
M4-2 Season District 465.98 488.82 −227.99 455.98 74.58 1 5.83 × 10−18 ***

NA: Not applicable; AIC: Akaike information criterion; BIC: Bayesian information criterion; logLik: log-likelihood; ChiSq: ANOVA
Chi-square value; Dev: Deviance of the model; Df: Chi-square degrees of freedom; Pr(>Chisq): ANOVA p value. The level of significance
was marked as *** if p < 0.0001 and not marked if p > 0.05.

Table 5. Effect of several variables on the probability of Spiroplasma infection in the LMM.

Model Predictor Variable Random
Variable AIC BIC LogLik Deviance Chisq Df Pr (>Chisq)

M5 NO District 464.22 477.92 −229.11 458.22 NA NA NA
M7 Year District 459.39 477.67 −225.70 451.39 6.82 1 0.00899482 **
M8 Season District 451.24 474.08 −220.62 441.24 10.16 1 0.00143586 **
M9 Sex District 465.98 488.82 −227.99 455.98 0.00 0 NA
M6 Species District 74.43 174.93 −15.22 30.43 425.55 17 8.34 × 10−80 ***

M10 Season + Species District 71.83 181.47 −11.92 23.83 6.60 2 0.03694614 *
M11 Species + Season District 71.83 181.47 −11.92 23.83 0.00 0 NA

M12 Species + Season +
Sex District 69.87 188.64 −8.93 17.87 5.97 2 0.05065574 .

NA: Not applicable; AIC: Akaike information criterion; BIC: Bayesian information criterion; logLik: log-likelihood; ChiSq: ANOVA
Chi-square value; Dev: Deviance of the model; Df: Chi-square degrees of freedom; Pr(>Chisq): ANOVA p value. The level of significance
was marked as *** if p < 0.0001 and not marked if p > 0.05.

The association between Spiroplasma 16S rDNA alleles and host tick species was
estimated separately using the best-fit LMM. This analysis was applicable to six alleles
(G1–G3, G6, G9, and G11). However, the analysis was not appropriate for the other
11 alleles due to the small sample size (less than five). The analysis revealed that the
probability of infection with G1 and G11 was significantly associated with I. ovatus; however,
compared with other tick species, H. kitaokai had a significantly higher probability of
infection with G9 (Table 6 and Table S2–S4).
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Table 6. Association between Spiroplasma 16S rDNA alleles and tick species.

16S rDNA Allele Tick Species (No. of Positive Samples) Significance

G1 I. ovatus (n = 23), I. persulcatus (n = 1) I. ovatus

G2 H. kitaokai (n = 2), I. ovatus (n = 1), I.
persulcatus (n = 3) Not significant

G3 I. ovatus (n = 7) Not significant
G4 I. ovatus (n = 1) NA
G5 I. ovatus (n = 1) NA
G6 I. ovatus (n = 5) Not significant
G7 I. ovatus (n = 2) NA
G8 I. ovatus (n = 1) NA

G9 D. taiwanensis (n = 1), H. kitaokai (n = 23), I.
turdus (n = 1), I. persulcatus (n = 4) H. kitaokai

G10 A. testudinarium (n = 1), I. persulcatus (n = 1) NA
G11 I. ovatus (n = 16) I. ovatus
G12 I. ovatus (n = 2) NA
G13 I. pavlovsky (n = 1) NA
G14 H. kitaokai (n = 1) NA
G15 H. kitaokai (n = 1) NA
G16 I. ovatus (n = 1) NA
G17 I. pavlovsky (n = 1) NA

NA: not applicable.

4. Discussion

Prior to this study, there was only limited information available on the prevalence
and genetic diversity of tick-associated Spiroplasma in Japan. In addition to three tick
species (H. kitaokai, I. ovatus, and I. persulcatus) that were previously revealed to harbour
Spiroplasma [24,32], five additional species, i.e., A. testudinarium, D. taiwanensis, H. flava, I.
pavlovsky, and I. turdus, were found to be infected with Spiroplasma, thus expanding our
knowledge of the host range of tick-associated Spiroplasma in Japan.

The infection rate of Spiroplasma ranged from 0% to 84% depending on the tick species.
To investigate whether this difference in infection rate is determined by the tick species
or other factors, LMM analysis was performed. The results indicated that Spiroplasma
infection was mainly influenced by the species of ticks but less likely to be influenced
by temporal and seasonal factors (Table 5). Although the prevalence of Spiroplasma in
tick populations has not been well understood, several previous studies reported that
the Spiroplasma infection rates are variable between populations such as in I. arboricola,
I. ricinus, and R. decoloratus [28,43]. A study investigating Spiroplasma infection rates in
natural Drosophila populations in the southwestern United States and northwestern Mexico
observed varying infection rates depending on the fly species [44]. In the same study,
there was a difference in Spiroplasma infection rates in two fly species between the two
collection sites. Similarly, in our LMM analysis, the introduction of district as the random
effect variable improved the models significantly (Table 4), indicating that the Spiroplasma
infection status in ticks may be partially influenced by the sampling location.

The highest infection rate was observed in I. ovatus; 82% (32/39) of males and
85% (35/41) of females were positive based on PCR amplification of Spiroplasma 16S rDNA
(Figure 1). Sequencing analysis of PCR amplicons identified 11 Spiroplasma alleles in this tick
species (Table 3). Furthermore, H. kitaokai, the second most infected species (28% (11/40)
of males and 42% (16/38) of females), had four different Spiroplasma alleles. The associa-
tion between specific 16S rDNA alleles (G1, G9, and G11) and their host tick species was
statistically confirmed (Table 6). The presence of these alleles resulted in the high overall
infection rates in I. ovatus and H. kitaokai. These Spiroplasma alleles may have adapted to the
tick environment, which is important for symbionts [45]. The transmission of symbionts
occurs mainly through the vertical or horizontal route. Vertical transmission involves the
dispersal of symbionts and occurs primarily from the mother to offspring. Horizontal
transmission occurs via host-to-host contact and acquisition from the environment [45]. The
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high infection rates observed in I. ovatus and H. kitaokai suggest the vertical transmission
of Spiroplasma in these tick species. Symbionts can positively affect the nutrition, repro-
duction, and defence of their hosts. These positive effects may promote the coexistence
or coevolution of symbionts and their hosts [45]. Therefore, it is of particular interest to
investigate whether Spiroplasma affects tick fitness, as it may help understand the close
association between Spiroplasma and ticks.

Among the three Spiroplasma clades, tick-associated Spiroplasma has only been identi-
fied in the Ixodetis and CCM groups. In the present study, most of the samples were classi-
fied as belonging to the Ixodetis group (n = 98), and only three samples were classified as be-
longing to the CCM group (Figure 3). Considering that most of the Spiroplasma species from
ticks identified in previous studies belong to the Ixodetis group [21,22,24,25,29,30,43,46],
this group of Spiroplasma may be widely distributed in the world. On the other hand, there
is a lack of information on the geographic distribution and host range of tick-associated
Spiroplasma in the CCM group. The alleles G10 and G17 obtained in the present study
showed high sequence identities (99.7% and 99.4%, respectively) to S. mirum, which has
been found to cause persistent infection in the mouse brain [47] and neurological dete-
rioration and spongiform encephalopathy in suckling rats [48,49]. Furthermore, several
ruminants such as deer, sheep, and goats developed spongiform encephalopathy in a
dose-dependent manner when experimentally inoculated with S. mirum in their brains [50].
The alleles G10 and G17 were obtained from A. testudinarium, I. pavlovsky, and I. persulcatus,
whose primary hosts include domestic and wild ruminants such as cattle and sika deer
in Japan [51,52]. Furthermore, A. testudinarium and I. persulcatus are human-biting species
that serve as main vectors for human tick-borne diseases [53,54]. Hence, it is important to
investigate the potential of these Spiroplasma alleles as agents of human and animal diseases.

The 16S rDNA-based genotyping of 101 Spiroplasma-positive samples identified
17 alleles, some of which were observed in more than two different tick species (Table 2).
However, further characterization by sequencing additional genes (ITS, dnaA, and rpoB)
divided them into 31 haplotypes, and only one of them (SP24) was observed in two tick
species (A. testudinarium and I. persulcatus) (Table 3). A previous study suggested the possi-
ble horizontal transmission of Spiroplasma between different ticks and other arthropods,
considering that tick-derived S. ixodetis did not form a tick species-specific clade [30]. Our
results indicated that horizontal transmission among tick species is not common, at least
among the tested tick species. However, the fact that certain alleles (G2, G9, and G15) in
the Ixodetis group were more related to Spiroplasma found in other arthropods than other
alleles found in ticks highlights the important role of horizontal transmission between
arthropods in the spread of Spiroplasma in ticks, as suggested previously [30].

The genes dnaA and rpoB are frequently used in the detection and characterization
of Spiroplasma alleles in various arthropods [1,29,36,40,46,55]. In this study, dnaA and rpoB
were not amplified in nearly half of the haplotypes tested (Table 3). This may be attributed
to nucleotide mismatches in the primer annealing sites. To understand the genetic diversity
of Spiroplasma and clarify the mode of horizontal transmission in ticks, further assays
using different gene targets and primer sets are necessary. A previous study developed
a multi-locus sequence typing method based on five genes (16S rDNA, rpoB, dnaK, gyrA,
and EpsG) by referring the daft genome of S. ixodetis Y32 type [30]. Considering high
PCR success rates reported for ticks and other arthropods, the method might be useful to
genotype Spiroplasma in ticks.

Some species of Spiroplasma are known to affect host reproductive systems through
mechanisms such as male killing [7–10]. For instance, Spiroplasma kills Drosophila males
by inducing male X chromosome-specific DNA damage and activating p53-dependent
abnormal apoptosis in male embryos [56]. In this study, 49 male ticks and 60 female ticks
were infected with Spiroplasma, and there was no statistically significant difference for any
of the tested tick species (Figure 1). This result is consistent with that of LLM analysis,
where sex was not selected as a variable to improve the model of Spiroplasma infection in
ticks (Table 4). Similarly, two previous studies targeting wild populations of R. decoloratus
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and wild and laboratory populations of I. arboricola did not find any association between
sex and Spiroplasma infection [27,30].

In a previous study, Spiroplasma was highly abundant in the salivary glands of I.
ovatus [23]. It is known that S. citri, a plant pathogenic Spiroplasma, propagates in the
salivary glands of arthropod hosts such as leafhoppers and is released along with the saliva
into a new plant during feeding, which leads to transmission from an infected plant to new
arthropod hosts [57,58]. Similarly, the presence of Spiroplasma in the tick salivary glands
may cause horizontal transmission via feeding to unidentified hosts. One recent study
reported that the salivary protein components of Wolbachia/Spiroplasma-infected spider
mites differed from those of uninfected mites [59]. Tick saliva is an important biological
material for various processes such as combating host defences, accelerating blood-feeding
processes, and facilitating the transmission of pathogens to hosts [60]. Therefore, the effects
of Spiroplasma on tick physiology and pathogen transmission involving the tick salivary
glands should be clarified in future experimental studies.

5. Conclusions

Spiroplasma is one of the most common symbionts in arthropods; however, only limited
data are available on species that infect ticks. This study expanded our knowledge of the
host range of tick-associated Spiroplasma in Japan. Modelling analysis using tick samples
with different infection rates indicated that the host tick species was the primary factor
associated with Spiroplasma infection. Moreover, the presence of certain alleles that are
highly adapted to specific tick species may explain the high infection rates in I. ovatus
and H. kitaokai. A comparison of the alleles suggests that the horizontal transmission of
Spiroplasma between tick species may not be a frequent event. Further studies are required
to understand the transmission cycle of Spiroplasma species in wild tick populations and
their roles in ticks.
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