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Abstract
Purpose of Review Amyloidosis is a protein deposition disease whereby a variety of precursor proteins form insoluble fibrils that
deposit in tissues, causing organ dysfunction and, many times, death. Accurate characterization of the disease based on the nature
of the precursor protein, organ involvement, and extent of disease is paramount to guide management. Cardiac amyloidosis is
critical to understand because of its impact on prognosis and new treatment options available.
Recent Findings New imaging methods have proven to be considerably valuable in the identification of cardiac amyloid
infiltration. For treating clinicians, a diagnostic algorithm for patients with suspected amyloidosis with or without cardiomyop-
athy is shown to help classify disease and to direct appropriate genetic testing and management. For patients with light chain
disease, recently introduced treatments adopted from multiple myeloma therapies have significantly extended progression-free
and overall survival as well as organ response. In addition, new medical interventions are now available for those with
transthyretin amyloidosis.
Summary Although cardiac amyloidosis contributes significantly to the morbidity and mortality associated with systemic dis-
ease, new tools are available to assist with diagnosis, prognosis, and management.
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Introduction

Amyloidosis is a collection of diseases characterized by the
progressive extracellular deposition of insoluble fibrillar pro-
teins in tissues, resulting in organ dysfunction, and, many
times, death [1]. All amyloid deposits have a similar structure
consisting of anti-parallel β-strands, measuring 7–13 nm in
diameter and forming the characteristic beta pleated sheets [2,
3]. In addition to fibrils, amyloid deposits contain non-
fibrillary components including glycosaminoglycans
(GAGs) and serum amyloid P component (SAP) [4, 5]. The
specific ultrastructure of amyloid fibrils accounts for their

pathognomonic property of binding Congo red dye in a spatial
manner that produces green birefringence when viewed under
polarized light [6].

The diseases are highly varied; therefore, accurate descrip-
tion and characterization are critical. Cardiac involvement
from amyloid deposition is relatively common and a major
cause of morbidity and mortality. In this review, the major
subtypes of amyloid will be examined, as well as a discussion
on amyloid-related heart disease with updates on diagnostic
tools and management options.

Classification

Amyloidosis is first categorized as either systemic or local-
ized. In localized disease, amyloid fibrils composed of light
chains deposit in just one organ because of in situ production
of amyloidgenic protein by a population of clonal B cells in
the affected tissues. Common sites of localized disease include
the bladder, respiratory tract, and skin. Localized amyloidosis
can also involve the gastrointestinal tract and needs to be
carefully discerned from systemic disease [7]. Localized
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amyloidosis is frequently indolent and managed with local
surgical measures as well as radiation in rare, select cases
[8]. Although localized disease almost never evolves into sys-
temic disease, patients should be monitored after local man-
agement for progressive disease or recurrence [9]. Conversely,
systemic disease is due to systemic production of
amyloidgenic proteins. Multiple organs are either involved
at the time of diagnosis or at risk for progressive involvement
over time.

Amyloidosis is further classified by the nature of the innate
precursor protein that misfolds to form the fibrillar deposits.
The major types of amyloidosis are light chain (AL),
transthyretin-derived (ATTR) amyloidosis, and secondary
amyloidosis (AA). There are now more than 30 proteins
known to form amyloid in humans [4]. Systemic amyloidosis
can either be acquired or inherited. Acquired disease can de-
velop with the onset of underlying plasma cell dyscrasia, un-
controlled inflammation, or advanced age, as seen in AL, AA,
or wild-type transthyretin disease (wtATTR), respectively.
Alternatively, systemic amyloidosis may develop because of
an inherited mutation of the TTR gene (hATTR) or another
less common genetic mutation [10].

Finally, the nature and degree of organ involvement further
define a patient’s illness, with impact on initial presentation,
management, and prognosis. Amyloid fibrils from a systemic
process can deposit anywhere in the body except the central
nervous system. Clinical features are non-specific, mimicking
more common disease presentations, often leading to a delay
in diagnosis. The kidneys are commonly involved in several
forms of systemic disease. Albuminuria and nephrotic syn-
drome are the classic presentations, but renal dysfunction
may also be present. Cardiac involvement occurs in about
50% of patients and is the leading cause of morbidity and
mortality [11]. Amyloid infiltration of the heart typically pre-
sents as a restrictive cardiomyopathy. In addition to infiltrative
heart disease, the circulating precursor light chain in AL am-
yloidosis has direct cardiac toxicity. Improvement in cardiac
function in preclinical models and clinical experience are not-
ed with a drop in light chain concentration [12, 13]. Peripheral
motor sensory as well as autonomic neuropathy is a common
feature of AL amyloidosis as well as hereditary subtypes.
Small fiber-mediated sensations of heat or cold are often the
initial manifestation and easily misattributed as more common
etiologies. Autonomic neuropathy can be particularly debili-
tating, resulting in erectile dysfunction as well as postural
hypotension, early satiety, and diarrhea and/or constipation.
Liver involvement often presents as hepatomegaly with an
elevated alkaline phosphatase. Soft tissue deposition includ-
ing macroglossia and periorbital ecchymosis as well as sali-
vary and sub-mandibular lymph node infiltration are almost
unique to AL amyloidosis [6]. Carpal tunnel syndrome, also
due to soft tissue involvement, is an early often unrecognized
symptom in AL as well as TTR amyloidosis. A 10.2% rate of

amyloidosis was described in a prospective cohort of men
over 50 and women over 60 undergoing surgery for idiopath-
ic, bilateral carpal tunnel syndrome [14]. Common subtypes
of systemic amyloidosis are shown [6] (Table 1).

Epidemiology

Acquired amyloidosis is more common than hereditary sub-
types. AL is the most common, affecting 10–12 persons/
million per year. Wild-type ATTR amyloidosis occurs pre-
dominately in men >70 years of age and primarily impacts
the heart, although soft tissue involvement is often seen.
Studies suggest up to 10–15% of older adults with heart fail-
ure may have unrecognized wtATTR [15]. A third form of
acquired systemic amyloidosis, AA amyloidosis, occurs be-
cause of poorly controlled inflammatory disease and deposi-
tion of the acute-phase reactant serum amyloid A-protein.
While rarely reported, at 1–2 cases/million per year, it is al-
most certainly underdiagnosed [16]. It most commonly affects
the kidneys but can impact other organs in late stages.

The most common form of hereditary amyloidosis results
from a mutation of the TTR gene inherited in an autosomal
dominant manner. More than 130 mutations of the TTR pro-
tein have been identified, the majority of which are noted to
cause systemic amyloidosis, mainly impacting the peripheral
nervous system and the heart [17]. Hereditary ATTR has a
prevalence in the USA of 1 in 100,000 persons [18]. The most
common mutation worldwide, which is associated with famil-
ial amyloid polyneuropathy (FAP), is the Val30Met variant
found in patients of Portuguese, Swedish and Japanese decent.
The most common mutation in the USA, the Val122Ile vari-
ant, is associated with ATTR cardiomyopathy and is carried
by 3–4% of the African American population with variable
penetrance [19]. In addition to TTR, there are other rarer forms
of hereditary amyloidosis, including lysozyme and gelsolin
amyloidosis. Leukocyte chemotactic factor 2 (LECT2) is the
most recently identified form of systemic amyloidosis with
predominant renal and hepatic involvement. This acquired
form of amyloidosis primarily impacts the Hispanic popula-
tion but has been described in South Asians as well.
Appropriate workup and evaluation are critical in identifying
the correct amyloid subtype to direct appropriate therapy (see
Fig. 1).

Cardiac Amyloidosis

Cardiac amyloidosis is the leading cause of morbidity and
mortality in patients with systemic disease but remains
underdiagnosed. In a recent study of 108 patients with heart
failure with preserved ejection fraction (HFpEF),
endomyocardial biopsy demonstrated that 14% of these
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patients had cardiac amyloidosis [20]. Patients with cardiac
amyloidosis often present with non-specific heart failure
symptoms including fatigue, dyspnea, decreased exercise tol-
erance, edema, and weight gain. Low blood pressure and in-
tolerance of medications traditionally used to treat congestive
heart failure are commonly encountered. The diagnosis of
hypertrophic cardiomyopathy in an elderly adult should raise

suspicion for amyloid-related heart disease.When cardiac am-
yloidosis is suspected, a detailed evaluation can define the
subtype, thus guiding management (see Fig. 1).

Patients who may have cardiac amyloidosis should have a
comprehensive evaluation with an EKG, echocardiogram, and
laboratory evaluation including serum troponin as well as NT-
ProBNP, biomarkers used for staging [21]. Because AL is the

Table 1 Systemic amyloidosis subtypes

Amyloid type Acquired or
hereditary

Precursor protein Underlying disorder Heart Kidney
liver

Liver PN/AN ST

AL Acquired Monoclonal immunoglobulin
light chain

Plasma cell dyscrasia +++ +++ ++ + ++

hATTR Hereditary Abnormal TTR Mutated TTR gene +++ - - +++ -

wtATTR Acquired Normal TTR - +++ - - - +

AA Acquired SAA Inflammatory disorders + late +++ + late + -

ALECT2 Acquired LECT2 Uncertain - +++ ++ - -

AGel Hereditary Abnormal gelsolin Mutation in gelsolin gene - + - ++ cranial -

AB2M Acquired or hereditary AB2M Long term dialysis - - - + +

AApoA1 Hereditary Abnormal ApoA1 Mutations in apolipoprotein
A1 Gene

+ ++ ++ + + testis

AL, light chain amyloidosis; hATTR, hereditary transthyretin amyloidosis; wtATTR, wild-type transthyretin amyloidosis; AA, secondary amyloidosis;
ALECT2: leukocyte chemotactic factor 2 amyloidosis; AB2M, beta-2-microglobulin amyloidosis; AApoA1, apolipoprotein A1 amyloidosis; PN, periph-
eral neuropathy; AN, autonomic neuropathy; ST, soft tissue; +++, very common; ++, common; +, less common; -, not reported

Fig. 1 Diagnostic algorithm for systemic amyloidosis. EKG,
electrocardiogram; Tpn, troponin; CMR, cardiac magnetic resonance;
SPEP, serum protein electrophoresis; UPEP, urine protein
electrophoresis; FLC, free light chains; Igs, immunoglobulins; BM,
bone marrow; 99mTc, 99m technetium; PYP, pyrophosphate; DPD, 3,3-

d i p h o s p h o n o - 1 , 2 - p r o p a n o d i c a r b o x y l i c a c i d ; HMDP ,
hydroxymethylenediphosphonate; TTR, transthyretin; wtATTR, wild-
type TTR amyloidosis; hATTR, hereditary TTR amyloidosis; IHC,
immunohistochemistry, CR, Congo red
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most common type of systemic amyloidosis in the developed
world, all patients should undergo evaluation for a monoclo-
nal gammopathy. Treatment and reduction of systemic free
light chains in AL amyloidosis are generally followed by a
reduction in NT-proBNP and troponin and consequent im-
provement in heart failure and long-term survival [22].
Although these biomarkers have been validated in AL amy-
loidosis, they play a role in risk stratification of patients with
ATTR amyloidosis as well.

Whereas cardiac biomarkers may assist in the diagnosis
and management of cardiac amyloidosis, they are highly
non-specific. NT-proBNP levels rise with a multitude of
causes of diastolic heart failure or volume overload, including
renal disease. Troponin is a marker of myocardial injury or
stress from elevated myocardial oxygen demand, thus also
non-specific; therefore, the use of cardiac imaging becomes
paramount in the diagnosis of amyloid heart disease. Primary
modalities utilized include echocardiography, cardiac magnet-
ic resonance (CMR) imaging, and radionuclide imaging.

Echocardiography in patients with cardiac amyloidosis of-
ten demonstrates left ventricular hypertrophy (LVH) with a
sparkling appearance (see Fig. 2). Left ventricular function is
gradually impacted as amyloid deposition within the myocar-
dium progresses. Calculation of stroke volume generally dem-
onstrates a reduction in affected patients. Speckle-tracking-
derived myocardial strain imaging has emerged as a sensitive
tool for evaluation of left ventricular function. We find reduc-
tion in global longitudinal strain to be a marker of early sys-
tolic dysfunction, while left ventricular ejection fraction often
remains preserved until late stages. This clinical phenomenon
is due to an earlier loss of systolic longitudinal contraction,
whereas radial thickening and circumferential shortening re-
main preserved in early stages of disease. A particularly pa-
thognomonic finding of amyloid heart disease is reduction in
global longitudinal strain with sparing of the apex (see Fig. 3).
This myocardial strain pattern has a sensitivity of 93% and

specificity of 82% for distinguishing cardiac amyloidosis from
other causes of LVH [23]. Other echocardiographic features
often noted include thickening of the cardiac valves, right
ventricular dysfunction, pericardial effusion, thickening of
the interatrial septum, and dilatation of the atria. Atrial func-
tion is also impaired, and thrombus in the left atrium and left
atrial appendage may occur in normal sinus rhythm, thus rais-
ing the risk of embolic stroke. Reduction of atrial contractility
results in a restrictive mitral inflow pattern with a diminutive
“a” wave on diastology. When heart failure is present,
Doppler will demonstrate an elevation in left ventricular fill-
ing pressure, increased tricuspid valve regurgitation jet veloc-
ity, and dilatation of the inferior vena cava. Although there is
no prognostic staging system based upon echocardiographic
findings, these parameters are associatedwith worse outcomes
and may be followed over time to evaluate for progression of
disease as well as onset or worsening of heart failure [24•].

Electrocardiography may demonstrate low voltages and
pseudoinfarct patterns [25•]. When combined with echocardi-
ography, a classic finding of voltage-mass mismatch is often
noted, which describes the discordance between the presence
of LVH on echocardiography and low voltages on ECG.
Although echocardiographic findings are generally similar be-
tween AL and ATTR types, a few differences have been de-
scribed. LVH tends to be symmetric in AL type, whereas
asymmetric, sigmoidal-shaped septal hypertrophy has been
noted in ATTR [26]. ATTR is characterized by greater in-
creases in left ventricular mass in comparison to right ventric-
ular mass [27]. Furthermore, patients with wtATTR appear to
have a greater increase in left ventricular mass and more re-
duction in LVEF [25•].

In addition to echocardiography, cardiac magnetic reso-
nance (CMR) imaging is immensely valuable in aiding the
diagnosis of cardiac amyloidosis. Unlike echocardiography,
which has fairly limited tissue characterization power, CMR
allows for detailed examination of the myocardial interstitium

Fig. 2 Parasternal long axis (left) and short axis (right) views of the heart demonstrate significant left ventricular hypertrophy with bright, sparkling left
ventricular myocardium. A pericardial effusion is also evident posterior to the left ventricle
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and evaluation of characteristic changes on late gadolinium
enhancement (LGE) imaging, rendering CMR far more sensi-
tive and specific than echocardiography [28]. Although CMR
cannot distinguish between the AL vs ATTR phenotypes, it
can assist in the early identification of cardiac amyloidosis
before the presence of overt LVH [29]. Whereas echocardiog-
raphy is limited to measurement of LV wall thickness, mag-
netic resonance imaging (MRI) can be utilized to calculate the
extracellular volume within the myocardium. Classic LVH is
characterized by myocyte hypertrophy; however, cardiac am-
yloidosis is caused by deposition of amyloid fibrils in the
extracellular space, thus producing a marked increase in the
extracellular volume. This change can be measured by T1
mapping, as myocardial T1 relaxation values correspond to
the degree of underlying myocardial infiltration, edema, and
fibrosis [24•]. Several differing patterns of enhancement have
been reported on LGE imaging, but the most common distri-
butions involve global subendocardial and transmural change
[24•]. Subendocardial LGE has been found to be the predom-
inant pattern in AL amyloidosis, whereas transmural LGE is

more common in ATTR disease [30]. A typical LGE pattern
has a sensitivity of 85 to 90% for the diagnosis of cardiac
amyloidosis [24•]. LGE imaging can also be used to monitor
progression of disease as amyloid infiltration progresses, thus
allowing the LGE pattern to serve as an independent predictor
of prognosis [31]. Although not well validated, the quantita-
tive power of CMR has also been used to track response to
chemotherapy by assessing for reduction in LV mass and
extracellular volume [32].

Endomyocardial biopsy has been the gold standard for
pathologic confirmation of cardiac amyloidosis, but radionu-
clide scintigraphy with 99mTechnetium labeled bone-avid bis-
phosphonate derivatives has emerged as a highly sensitive and
very specific technique to diagnose ATTR cardiac amyloid-
osis [24•]. Moreover, the degree of myocardial uptake corre-
lates with overall mortality [33]. The three primary tracers in
use include 99mTc-labeled pyrophosphate (PYP), 3,3-
diphosphono-1,2-propano-dicarboxylic acid (DPD), and
hydroxymethylenediphosphonate (HMDP), with 99mTc-PYP
being the most commonly used tracer in the USA. It is unclear

Fig. 3 Three standard views of the heart are shown, as imaged from the
LV apex. The green contours demonstrate calculation of global
longitudinal strain (GLS). GLS values are color coded, with bright red
reflecting normal longitudinal strain, while dark and lighter shades of
pink indicate reductions in GLS. The apex of the heart is clearly spared,
as red contouring is evident at the apical segments in all images, while

strain is reduced in the basal and mid ventricular segments. The lower
right quadrant shows a bull’s eye graph of the left ventricle divided into
16 segments; the preservation of healthy longitudinal strain at the apex
results in a “cherry on top” pattern, pathognomonic for cardiac
amyloidosis
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why there is greater uptake of 99mTc-PYP in hearts afflicted
with ATTR, but it has been postulated that this increased
uptake may be due to a higher calcium content or the compo-
sition of amyloid fibrils in ATTR compared to other forms
[34]. Patients exhibiting the presence of a positive 99mTc-
PYP scan without monoclonal proteins in the blood and urine
may be diagnosed with ATTR without tissue confirmation.
The specificity and positive predictive value of this modality
is >98% [35•]. If a plasma cell dyscrasia is identified, then a
biopsy for histologic diagnosis is still warranted, as up to 20%
of patients with AL cardiac amyloidosis have been reported to
have significant uptake on 99mTc-PYP/DPD/HMDP scanning
[35•]. An elegant and important study describes the ability to
diagnose ATTR amyloidosis without tissue confirmation in
select cases in which patients have heart failure and an echo-
cardiogram or CMR at least suggestive of amyloidosis, as well
as grade 2 or 3 cardiac uptake on a radionucleotide scan and
absence of a detectable monoclonal protein by comprehensive
testing [35•]. A diagnostic algorithm for patients with
suspected amyloid cardiomyopathy is shown to help identify
patients with ATTR and to direct appropriate genetic testing
and management (see Fig. 1).

Positive emission tomography (PET) is emerging as anoth-
er imagingmodality that may prove useful in the identification
of cardiac amyloid infiltration. With multiple tracers under
development and investigation, PET utilizes radiotracers that
directly bind to amyloid fibrils. 11C-Pittsburgh compound B
(PIB) was developed for beta-amyloid imaging, but use is
limited to sites with a cyclotron [24•]. 18F-florbetapir and
18F-florbetaben are two other commonly used PET radio-
tracers proven to distinguish cardiac amyloidosis from other
causes of cardiac hypertrophy [36, 37].

Although development of various arrhythmias has been
attributed to direct myocardial infiltration, this phenomenon
may also be related to amyloid protein deposition impacting
the cardiac innervation system. Autonomic dysfunction has
been notably more common in patients with ATTR cardiac
amyloidosis, particularly hATTR [38]. 123I-meta-
iodobenzylguanidine (mIBG), a modified analogue of norepi-
nephrine stored in presynaptic nerve terminals within the car-
diac conduction system, has been used to image myocardial
denervation [24•]. Although 123I-mIBG imaging is not helpful
in diagnosing cardiac amyloidosis, it can be used to detect
myocardial denervation earlier than detection of myocardial
amyloid by 99mTc-PYP/DPD/HMDP scanning in patients
with an hATTR mutation [39].

The diagnosis of cardiac amyloidosis can be challenging
and is often delayed. Cardiac imaging techniques as described
are often neither sensitive nor specific, and the need for tissue
biopsy with proper histological confirmation requires special-
ized centers and expertise. The diagnosis of wtATTR amy-
loidosis is particularly challenging because it presents at an
older age often in patients with comorbidities. Furthermore, in

contrast to hATTR and AL, there is an absence of supportive
biomarkers in wild-type ATTR, including a TTR gene muta-
tion or monoclonal gammopathy, respectively [40, 41]. With
the advent of new treatments, there is a need to utilize multiple
strategies and modalities to diagnose and characterize cardiac
amyloidosis at the earliest opportunity.

Diagnostic Evaluation

Making a diagnosis of amyloidosis must first begin with a
clinical suspicion (see Fig. 1). Two features make this partic-
ularly challenging: the perceived rarity of the disorder and
non-specific symptomatology. Patients with cardiac disease
present with congestive heart failure, while patients with
non-cardiac involvement present with a range of non-
specific symptoms including sensory and autonomic neurop-
athy, lower extremity edema, diarrhea, constipation, early sa-
tiety, and abdominal distention with or without hepatomegaly.
Symptoms as general as unexplained fatigue and weight loss
may be early presenting symptoms of amyloidosis, particular-
ly in the setting of a monoclonal gammopathy, and should
therefore raise suspicion. When amyloidosis is suspected,
workup should begin with a detailed cardiac examination
and/or extra-cardiac evaluation. Because AL is the most com-
mon form of systemic disease and patients benefit from early
recognition and treatment, all patients with a suspected diag-
nosis of amyloidosis should be evaluated for an underlying
plasma cell dyscrasia.

Pathologic confirmation of amyloid deposition is the gold
standard for diagnosing amyloidosis. In those with systemic
disease, targeting the affected organ can be associated with
complications; therefore, it is preferable to begin with a
lower-risk screening procedure. An abdominal fat pad aspira-
tion can be performed easily in the outpatient setting. With an
overall sensitivity of 80%, the subcutaneous fat pad aspiration
is the preferred method for detecting systemic amyloidosis
[42]. It is important to recognize, however, that the sensitivity
is highest in those with AL when compared to other forms of
systemic disease. In a study of 216 patients with systemic
amyloidosis, the sensitivity of the abdominal fat pad aspirate
in AL, hATTR and wtATTR amyloidosis was 84%, 45%, and
15%, respectively [43]. If the fat pad aspirate fails to show
amyloid deposition and suspicion remains high, a biopsy of an
involved organ must be pursued. Pathologic demonstration of
a fat pad aspirate positive for amyloid deposition is shown (see
Fig. 4).

Once amyloid protein is identified, it is critical to correctly
identify the precursor amyloidgenic protein and thus the path-
ologic subtype of disease. Immunohistochemistry or immuno-
fluorescence can be used in this effort, but these techniques are
often unreliable [44]. In AL, there should be concordance
between the monoclonal light chain type noted by systemic
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plasma cell evaluation and the composition of amyloid fibrils.
The leading method for identifying the amyloid subtype is
laser microdissection mass spectrometry. Validation studies
have demonstrated 100% sensitivity and specificity, which is
far superior to other clinical and laboratory methods but re-
quires tissues to be sent to specialized laboratories [45].
Treatment options for systemic amyloidosis vary considerably
on the basis of the subtype; thus, clear understanding and
definition of the disease is paramount to patient management.

Treatment

Treatment options for patients with systemic amyloidosis
have improved tremendously in recent years. In general, all
treatments for systemic amyloidosis focus on targeting the
underlying production of amyloidgenic protein. In AL amy-
loidosis, treatments have been adopted from those used in
multiple myeloma to target the underlying plasma cell dyscra-
sia. For upfront management, selection of a treatment should
deliver the most rapid and effective reduction in monoclonal
protein that the patient can safely tolerate while taking into
consideration severity of organ involvement, characteristics of
the clone, and the patient’s comorbidities [46]. Early and deep
reduction of the involvedmonoclonal, amyloidgenic protein is
associated with the greatest chance of organ improvement and
prolongation of progression-free and overall survival [47•,
48]. Changes in hematologic and organ-specific biomarkers
have been validated to determine both hematologic and organ
response to treatment [47•, 49–51].

Options for treatment of AL amyloidosis include tradition-
al chemotherapy as well as high-dose melphalan, followed by
autologous stem cell transplantation (ASCT). Careful selec-
tion of those eligible for high-dose therapy is critical in

reducing treatment-related mortality, and only about 20% of
patients are candidates for ASCT on initial presentation. More
may become eligible after effective upfront therapy; however,
in some patients, upfront chemotherapy may induce toxicity
and render a once transplant-eligible patient subsequently in-
eligible. For those with excellent performance status and
≤10% plasma cell burden at presentation, proceeding directly
to ASCT without any induction is an option [52], but induc-
tion chemotherapy prior to transplant has been shown to im-
prove progression-free survival (PFS), such that 2–4 cycles of
induction chemotherapy given prior to stem cell collection are
reasonable to consider [53]. With appropriate patient selection
at experienced centers, outcomes with transplantation can be
superb. A report of 629 patients with AL amyloidosis who
underwent transplantation at Boston University reported a me-
dian overall survival (OS) of 7.6 years. Importantly, the me-
dian OS was significantly better for those who achieved a
complete response (CR), those without cardiac involvement
and those with <2 organ systems involved. A long-term sur-
vival of >20 years occurred in 30% of patients [54].

For transplant-ineligible patients, melphalan and dexa-
methasone had been standard [55]; however, with the advent
of novel, more targeted therapies, bortezomib-based induction
regimens, which are generally well tolerated and efficacious,
now form the backbone of conventional therapy [56]. In pa-
tients with amyloidosis, weekly dosing is better tolerated than
twice weekly dosing, with less neurotoxicity [57]. A random-
ized phase 3 trial comparing melphalan and dexamethasone
with or without bortezomib demonstrated improved hemato-
logic responses of 81% with the triplet, in contrast to 57%
when bortezomib was omitted. OS and organ response rates
were higher as well when bortezomib was added [58]. The
three-drug regimen of cyclophosphamide rather than melpha-
lan in combination with bortezomib and dexamethasone
(CyBorD) is more commonly used in the USA. CyBorD has
resulted in high response rates (>90%) when used as upfront
therapy, with 60% achieving at least a very good partial re-
sponse (VGPR) [59, 60]. The ANDROMEDA study, a large
phase 3 randomized trial, was designed to improve upon the
standard of care by comparing CyBorD with or without the
addi t ion of the ant i -CD38 monoclonal ant ibody
daratumumab. The uncontrolled safety lead-in portion dem-
onstrated an impressive hematologic response rate of 96%
[61]. Preliminary results from the randomized trial show the
four-drug combination to be well tolerated, with significantly
higher hematologic (92 vs 77% overall; 79 vs 49% VGPR)
cardiac (42 vs 22%) and renal (54 vs 27%) responses, leading
to the first FDA-approved treatment for AL amyloidosis and
suggesting a new standard for frontline treatment [62].

For patients with relapsed AL amyloidosis, there is no
clear regimen of choice, and careful selection of anti-
plasma cell strategies used for multiple myeloma should
be considered on the basis of the burden of disease, prior

Fig. 4 Fat pad aspiration sample with Congo red staining viewed under
polarized light displaying green birefringence
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e x p o s u r e s , a n d t h e p a t i e n t ’ s c omo r b i d i t i e s .
Immunomodulatory drugs including lenalidomide and
pomalidomide are effective but often tolerated at lower
doses than those used for multiple myeloma [63, 64]. A
phase 3 study of ixazomib, a first-in-class oral proteasome
inhibitor, vs physician choice failed to meet its primary
endpoint of improved overall hematologic response rate
but did demonstrate improved CR and PFS compared to
physicians’ choice [65]. Daratumumab has shown tremen-
dous promise, with a phase 2 trial of single-agent
daratumumab reporting a remarkable hematologic re-
sponse rate of 90% (CR 41%) for patients with relapsed
AL amyloidosis [66].

For those with ATTR amyloidosis, treatment is also
focused on reducing the supply of precursor protein for
amyloid fibril formation. Until recently, there were no
FDA-approved medications to either reduce the concen-
tration of amyloid fibrils or prevent misfolding of TTR
and thus decrease amyloid formation and prevent further
organ damage. The mainstay of treatment was liver trans-
plantation. In 2018, two new small molecule oligonucle-
otides that inhibit the synthesis of TTR were approved for
the treatment of hATTR amyloidosis in patients with a
confirmed genetic mutation and peripheral neuropathy.
Patisiran, a small molecule RNA interference agent, was
compared to placebo in patients with hATTR and
polyneuropathy. Subjects receiving patisiran had reduced
levels of TTR as well as significantly improvement of
peripheral neuropathy scores and quality of life [67]. A
similar trial using an antisense oligonucleotide approach
with inotersen also resulted in slowing of neuropathy pro-
gression [68]. An alternative approach to decreasing TTR
concentration as management of ATTR is stabilization of
the TTR tetramer. Randomized controlled trials of TTR
tetramer stabilizers, tafamidis and diflunisal, have shown
clinical efficacy and can be used for patients with either
wtATTR or hATTR and neuropathy or cardiomyopathy
[69, 70].

Anti-amyloid strategies to treat fibril deposition in dam-
aged organs have unfortunately failed to yield favorable re-
sults. Efforts are continuing, however, and trials exploring
doxycycline (NCT02207556) and an anti-fibril monoclonal
antibody, CAEL-101 (NCT04512235, NCT04504825), are
ongoing.

Although amyloidosis remains rare, both acquired and
inherited subtypes are likely underdiagnosed. As new
treatments become available and outcomes improve with
the advent of novel approaches to target the production
of amyloidgenic proteins, it is increasingly important for
physicians to identify patients with amyloidosis and
characterize the subtype accurately. Cardiac amyloidosis
contributes significantly to the morbidity and mortality
associated with systemic disease, and new tools are

available to assist with diagnosis, prognosis, and
management.
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