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Abstract The diagnosis of rejection in kidney transplant
patients is based on histologic classification of a graft
biopsy. The current “gold standard” is the Banff 97 criteria;
however, there are several limitations in classifying
rejection based on biopsy samples. First, a biopsy involves
an invasive procedure. Second, there is significant variance
among blinded pathologists in the interpretation of a
biopsy. And third, there is also variance between the
histology and the molecular profiles of a biopsy. To
increase the positive predictive value of classifiers of
rejection, a Banff committee is developing criteria that
integrate histologic and molecular data into a unified
classifier that could diagnose and prognose rejection. To
develop the most appropriate molecular criteria, there have
been studies by multiple groups applying omics technolo-
gies in attempts to identify biomarkers of rejection. In this
review, we discuss studies using genome-wide data sets of
the transcriptome and proteome to investigate acute
rejection, chronic allograft dysfunction, and tolerance. We
also discuss studies which focus on genetic biomarkers in
urine and peripheral blood, which will provide clinicians
with minimally invasive methods for monitoring transplant
patients. We also discuss emerging technologies, including
whole-exome sequencing and RNA-Seq and new bioinfor-
matic and systems biology approaches, which should
increase the ability to develop both biomarkers and
mechanistic understanding of the rejection process.
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A major challenge in clinical transplantation is to improve
long-term graft survival. In kidney transplantation, the
development of new immunosuppressive agents has markedly
reduced the incidence of acute rejection (AR); however, long-
term graft survival has not markedly improved. Because acute
rejection is a major risk factor for the development of chronic
allograft nephropathy leading to graft loss, it was anticipated
that reducing acute rejection would lead to prolonged graft
survival. However, decreases in the incidence of AR have not
translated into improved long-term outcomes. The biological
mechanisms underlying the lack of correlation between
reduced rates of AR and graft survival are not currently
understood. Are the acute and chronic rejection processes
qualitatively different? Are the current immunosuppressive
agents designed and selected to preferentially block the AR
process? What is the relative contribution of immune/
inflammatory versus nonimmune responses to chronic graft
loss? And how can we induce and monitor immune tolerance?
Understanding the answer to these questions is essential for
the development of biomarkers to diagnose and prognose
graft outcomes and also to design novel therapeutic strategies
to improve long-term graft survival. This review will focus on
recent efforts to apply new advances in genomic science and
systems biology to the investigation of these challenges.

The diagnosis of acute renal allograft rejection is
commonly prompted by an increase in serum creatinine
(Cr) indicating renal injury. However, it is well understood
that this is a late marker of rejection only detectable after
substantial injury to the graft. Thus, although Cr can be
monitored by minimally invasive methods from serum, it is
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a poor biomarker for early rejection. Following an increase
in Cr, AR is confirmed by histological analysis of a graft
biopsy based on Banff 97 classification, which is described
in the Transplant Pathology Internet Services (http://tpis.
upmc.com/TPIShome/changeBody.jsp?url=/tpis/schema/
KNCode95.jsp),[1, 2] Graft biopsy requires an invasive
procedure, but is considered the “gold standard” for clinical
diagnosis. However, biopsies have several important limi-
tations [1–5]. First, the tubulitis and arteritis lesions of AR
are often focal creating the potential for underdiagnosis [5].
Second, rejection may be a continuum rather than discrete
categories or levels; for example, “borderline” rejection
lack criteria for AR but show progressive increase in Cr
over time [6]. Third, histological scoring does not incorpo-
rate the underlying molecular parameters, which require
other approaches, including omics technologies, for assess-
ment [7]. Fourth, agreement among multiple observers has
shown variability, particularly in evaluation of borderline
lesions and chronic allograft nephropathy. For example, one
study reported disagreement in 26%, 57%, and 22% of
cases assigning a diagnosis of AR, borderline rejection, and
no AR, respectively [4]. Thus, the Banff 97 classification
has provided a valuable set of criteria to diagnose biopsies
and to evaluate and compare clinical studies; however, the
lack of complete interobserver reproducibility makes the
gold standard far from perfect. To address this challenge,
current efforts are underway to combine both histological
and omics data into a unified diagnostic criteria [8].

Genomics

The human genome project began in 1990 under the
guidance and combined effort of NIH and US Department
of Energy. The generation of a draft genome in 2001
created a great deal of excitement and interest in the field of
genomics and illustrated its potential for application to
disease states, including transplantation [9, 10]. The
availability of the sequence of the human genome facilitated
technological advancements, including analysis of the
transcriptome, proteome, and genome (SNPs), which are
collectively termed as “omics”. The bulk of investigations
in omics in transplantation have been based on microarray
studies of the transcriptome which are discussed in this
review. In addition, we discuss several studies analyzing
the proteome.

Molecular markers in acute rejection

The Organ Procurement and Transplant Network (OPTN)
database indicates that the number of kidney transplants in
the last decade has increased by 31%. The current survival

rate is 84% and 64% for 5 and 10 years, respectively. Thus,
despite the advances in immunosupression, we continue to
observe ARs in approximately 11% [11] of patients in the
post-transplant period and high rates of long-term graft
failure. As discussed, the Banff classification for renal
allograft pathology is the current gold standard for
diagnosing AR and frequently influences therapeutic
decisions. Several groups have applied microarray technology
to investigate AR. Current versions of microarrays can
evaluate more than 55,000 probes [12, 13]. Currently, there
are several commercially available microarray platforms,
including Affymetrix and Illumina. Affymetrix uses a solid
platform, whereas Illumina uses microscopic beads [12]. The
MicroArray Quality Control project evaluated multiple test
sites and alternative technology platforms [14]. They
demonstrated a high level of intraplatform consistency
among different test sites and interplatform concordance in
the identification of differentially expressed genes. Never-
theless, a comparison of results of the analysis of kidney
biopsy samples among multiple groups reveals low correla-
tion in the gene signature identified in each experiment. This
could be due to technical or biological variance, or to
different statistical algorithms applied to the data. Recent
reviews define standards and ontologies and procedures to
normalize and transform microarray data [15, 16].

In an early study of renal biopsy samples with micro-
arrays, Sarwal et al. analyzed AR with cDNA spotted arrays
[17]. They identified significantly modulated genes that
were previously associated with AR, genes with functions
not previously known to be involved in AR, as well as
ESTs. A limitation of these early studies is that modulated
genes were identified only by statistical significance or
expression ratios, thus biological interpretations were based
on prior knowledge.

In an attempt to evaluate specific biological responses in
AR, Halloran and coworkers identified pathogen-based
transcripts (PBTs) that were selected based on studies of
mouse models of rejection. One study analyzed the
response of murine kidneys to recombinant IFNγ and to
transplant rejection to identify IFNγ-dependent rejection-
induced transcripts [18]. They observed a robust overlap
between transcripts modulated during rejection and the
IFNγ-induced transcripts suggesting a major role for IFNγ
during rejection. The response was modulated by both host
and donor IFNγ receptors. Although IFNγ is highly
upregulated during rejection, it is not essential for rejection
in murine models since rejection is not delayed in IFNγ-
knockout strains illustrating the complexity and the
multiple mechanisms involved in the rejection process
[19]. In an analysis of cytotoxic T cell transcripts, the same
group identified modulated transcripts from human cyto-
toxic T cells (CATS) and showed that they correlate with
the burden of CTL and effector memory T cells in human

212 Semin Immunopathol (2011) 33:211–218

http://tpis.upmc.com/TPIShome/changeBody.jsp?url=/tpis/schema/KNCode95.jsp
http://tpis.upmc.com/TPIShome/changeBody.jsp?url=/tpis/schema/KNCode95.jsp
http://tpis.upmc.com/TPIShome/changeBody.jsp?url=/tpis/schema/KNCode95.jsp


kidney transplant biopsies [20]. Furthermore, the CATS
were more accurate than classification based on a single
transcript.

Muellar et al. extended these studies in an analysis of six
pathogenesis-based transcript sets, which were based on
three rejection mechanisms, namely cytotoxic T cell
infiltration, interferon-gamma effects, and parenchymal
deterioration [21]. The PBTs were derived from experi-
mental mouse models and were used to study transcriptome
disturbances in 143 kidney transplant biopsies. The PBT
scores correlated strongly with histopathologic diagnoses of
rejection, which had high scores, and biopsies without
rejection, which had low scores. They found that the PBT
scores correlated well with the Banff classification in most
areas, but there were differences noted particularly in the
borderline diagnosis. The Banff 97 criteria defines T cell-
mediated rejection 1A as having moderate tubulitis lesions
t2; however, the PBT study found that the molecular
scoring did not differentiate biopsies labeled t1 or t2 [2,
7]. In summary, the molecular markers correlated well with
rejection and the authors suggested the use of PBTs as a
quantitative measure in the assessment of rejection in renal
transplants.

Although these studies discussed above identified genes
that were significantly modulated during AR, the correla-
tion between the genes identified in these multiple studies
was low. There are several potential explanations for this
observation. First, although the data was appropriately
analyzed, it is important to consider that approximately
20,000–55,000 features were statistically analyzed in a
small number of samples; thus, the statistical power may be
inadequate to identify all modulated genes. This may be
particularly relevant to genes with low-expression levels
that show decreased reproducibility in quality analysis
evaluations by several groups. Second, since each study
selected a relatively small number of significant genes for
final analysis from a large number of modulated genes,
subtle changes in the statistical analyses could identify
different subsets of modulated genes. Third, it is possible
that clinical or experimental variables confound the studies
making the application of reproducible research of limited
success. A simple solution to this problem would be to
increase the number of samples in a study; however, this is
limited by the high cost of these experiments. Alternatively,
a practical approach is to combine multiple studies in an
integrated analysis.

The NIH and most journals require the deposition of
microarray data in large online databases, such as the
National Center for Biotechnology Information (NCBI)
gene expression omnibus (GEO), which is publicly avail-
able to scientists and researchers and contains raw micro-
array expression data. The NCBI reports that the GEO
database contains more than a billion gene expression

measurements [22]. Availability of such databases provides
experimental, control, and comparison groups, which
obviously increases the power of integrative data analysis
studies.

The integration of data analysis in genetic and genomic
studies has many challenges (reviewed in [23]). In contrast
to traditional meta-analysis studies, which focus on a single
or small number of variables, genomic datasets, including
microarray results, have a large number of variables
(genes). In a multiplex meta-analysis designed to identify
the core immune response genes as defined by the
Molecular Signatures Database [24], a comparative analysis
of five studies of AR from kidney, lung, and heart
transplantation. Their results showed that a parametric
method based on a meta effect estimate was superior to a
non-parametric rank test in identifying immune response
genes in these datasets. This illustrated the importance of
the statistical approach applied in a multiplex meta-analysis
[25].

Saint-Mezard et al. conducted analyses of the GEO
datasets (GSE343, GSE9493, and GSE1563) originally
generated by the transplant centers at Stanford, Cleveland
Clinic, Hopital Penon in Paris, France. This study identified
70 genes defined as AR transcript set, which were
significantly regulated in the three datasets, as well as a
non-human primate model of AR [26]. The authors also
suggested that the gene sets could be used to assess efficacy
of treatment since downregulation of the immune system
could be detected prior to the detection of changes on
histopathology.

Our group has similarly analyzed the publicly available
Alberta dataset (GSE21374) to identify subcategories of
AR and used the Paris dataset (GSE9493) as a validation
set. Preliminary results identified 983 probe sets, which
were significantly different between rejecting and non-
rejecting groups (false discovery rate <0.001). Using
clustering algorithms, we identified clusters that segregated
the acute and borderline groups. One hundred seventy-one
genes were significantly, differentially expressed between
the AR and borderline clusters. To investigate the biological
functions of the differentially expressed genes, we identi-
fied significant Gene Ontology biologic process, which
included 16 genes involved in death and 60 genes involved
in immune response, including positive regulation of
immune system, leukocyte activation, innate immune
response, antigen processing and presentation.

Significant KEGG pathways (http://www.genome.jp/
kegg/) included TLR and chemokine signaling, allograft
rejection, antigen processing and presentation, NK cell
mediated cytotoxicity, graft-versus-host disease, cell adhe-
sion molecules, cytokine–cytokine receptor interaction, FC
gamma R-mediated phagocytosis, leukocyte transendothe-
lial migration, and NOD-like receptor signaling. Represen-
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tation of differential expression with heat maps showed
higher expression of the 171 genes in cluster 1 compared to
cluster 2. Comparison of histologic scores showed
increased glomerulitis and interstitial inflammation scores
in cluster 1. The correlation coefficient between histologic
scores and geometric mean of expression of the 171 genes
was significant for glomerulitis, interstitial inflammation,
tubulitis, and intimal vasculitis. AUC was greater for cluster
1 (0.93) compared to cluster 2 (0.47) for predicting AR
based on the 171 genes. Using Paris set as an independent
data set for validation, rejection samples were also clustered
into two groups using these 171 genes. Cluster with higher
expression of these 171 genes had greater severity of
rejection.

Molecular markers in chronic rejection

According to the OPTN annual report, the 1-year graft
survival for kidney transplants was 91% at 1 year, but
decreases to 43.3% for deceased donor transplants and
59.3% for living donor transplants at 10 years. Even though
immunosuppression has been successful in decreasing the
incidence of AR and increasing 1-year allograft survival
rates to >90%, many grafts develop chronic allograft
nephropathy, which often leads to graft failure.

Nakorchevsky et al. analyzed 33 transplant biopsies that
were classified into Banff stages 0–3 of Interstitial Fibrosis
and Tubular atrophy (IFTA) [27]. They conducted proteo-
genomic analysis of the samples using shotgun proteomics
[27] and grouped the biopsies based on clinical character-
istics [27]. They identified 904 differentially expressed
proteins and noted that for b0 classification (histologically
normal kidney), the proteins were related to normal
biologic functions such as aminoacid metabolism [27].
However, for the remaining stages of IFTA, the upregulated
proteins were related to cell injury, complement system,
fibrosis, and actin cytoskeleton signaling [27]. These results
showed that protegenomic analyses can identify differen-
tially expressed proteins and define the mechanistic path-
ways associated with chronic rejection [27].

Kainz et al. conducted a genome-wide analysis of donor
organs before transplantation and at 1 year post-transplant
dividing the groups based on good or poor graft function
[28]. They identified 52 genes that were differentially
expressed between the two groups [28]. The genes that
were upregulated in subjects with poor graft function were
related to immune system/complement pathway, signal
transduction, and oxidative stress [28]. Genes that were
upregulated in patients with good graft function were
related to normal biologic functions [28].

Scherer et al. analyzed the gene expression profiles of
patients at 3 months following transplant who subsequently

developed IFTA identified in 6-month protocol biopsies
[29]. The comparison group was transplant patients with no
evidence of IFTA on 6-month biopsies [29]. They found
that upregulated genes in the IFTA group were related to
immune sytem, cell signaling, and stress [29]. The second
group of patients without IFTA had upregulated genes
related to cell function and metabolism [29]. The authors
suggested that the molecular signature was present even
prior to observation of any histologic changes on graft
biopsies [29].

Rodder et al. looked at 29 renal allograft biopsies for
cause to assess if matrix mettaloproteinases, belonging to
the metazincin family, were differentially expressed in
CAN [30]. They detected elevated levels of MMP-7,
THBS-2, and other mettaloproteinases related to extracel-
lular remodeling [30].

Kurian et al. also investigated peripheral blood to identify
biomarkers of CAN [31]. They found that their accuracy for
predicting CAN classes based on gene sets was 80% for
mild CAN and 92% for moderate to severe CAN [31]. They
attempted to reduce the number of biomarkers and showed
that with as few as 50 gene sets, they were able to obtain
significant identification of CAN [31].

Minimally invasive methods for monitoring

A major limitation in the analysis of graft biopsy samples by
microarray technology is the requirement for an invasive
biopsy procedure. Due to the invasive nature of the technique,
it is not appropriate for frequent monitoring for AR. Thus,
there is considerable interest in developing minimally
invasive approaches, for example, monitoring peripheral
blood lymphocytes (PBL) to diagnose AR. Flechner et al.
analyzed both PBL and kidney biopsy samples in well-
functioning transplants without rejection, transplants with
AR, and kidneys with dysfunction without AR [32]. They
identified unique signatures of differentially expressed genes
in both the biopsy and PBL samples. Interestingly, the
modulated genes in the graft and PBL, although both
contained immune genes, were poorly correlated, suggesting
that the subsets of cells in the periphery had different states
of activation or differentiation than the cells that migrated to
the graft. Importantly, this study provided proof of principle
that minimally invasive monitoring of PBL could be an
effective tool to diagnose AR.

Gunther et al. conducted a closed-cohort case–control
study, also analyzing whole blood samples from patients
with biopsy-proven rejection who served as cases. Controls
were transplant recipients without rejection, patients with
borderline rejection, and 20 normal subjects [33]. They
discovered 183 probe sets, which generated a refined list of
11 genes, which were differentially expressed in the AR
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group. The probe sets represented three distinct biologic
pathways involving immune mechanisms, signal transduc-
tion, and cytoskeleton reorganization. They also identified
genes related to apoptosis, including ANP32A, a gene which
encodes a proapoptoic factor, so not previously associated
with AR. The role of specific genes and signatures needs to
be evaluated in a larger prospective study.

Peripheral blood monitoring of AR in heart transplant
patients has also been evaluated. Horwitz et al. identified a
gene expression profile that identified AR from control
samples [34]. Interestingly, an analysis of expression
profiles following treatment for AR showed an intermediate
level of expression for most genes suggesting the persis-
tence of low-level inflammation/immunity. Another study
by Deng et al. also identified a panel of modulated genes in
PBL that correlates with AR in heart transplant patients
[35]. Based on genes selected by the microarray studies
plus genes selected based on prior knowledge of immune
responses, a commercial PCR-based assay (AlloMap™)
was produced and FDA-approved for use in diagnosis of
AR in heart transplant patients [36]. Although future
refinements in the diagnostic algorithms will be important,
these studies demonstrate the feasibility of developing
minimally invasive tests for AR.

For kidney transplant patients, an alternative to PBL is
the monitoring of urine samples by PCR. Studies by
Suthanthiran and coworkers have identified AR based on
granzyme B. Notably granzyme B levels differentiated AR
from no rejection, as well as from urinary tract infection. In
a subsequent study, they showed that IP-10 and CXCR3
mRNA in urine correlated with AR. Correlations with acute
kidney injury or development of chronic allograft nephrop-
athy have not yet been identified.

Since translation of mRNA produces proteins that perform
most biological functions, analysis of the differentially
expressed proteins offers an alternative approach for the
diagnosis of AR. Sarwal et al. analyzed biomarkers in 92
samples of urine from kidney transplant patients with AR,
stable grafts, proteinuria, and healthy controls [37]. They
identified 1,446 urinary proteins, plus additional proteins that
correlate with each group. They identified nine urine proteins
unique to patients with AR, and demonstrated reduced levels
of uromodulin in patients with rejecting grafts. The analysis
of the proteome remains technically more challenging than
microarray studies, but offers increased insight into putative
biological functions during AR.

Molecular markers of tolerance

Biomarkers that diagnose or predict AR would provide an
important clinical tool for transplant physicians; however,
to effectively select immunosuppressive agents and adjust

dosages, it will also be important to develop biomarkers to
assess immune tolerance. For this discussion, we will
consider operational tolerance as the absence of graft
rejection in the absence of immunosuppressive therapy.
However, it is important to remember that tolerance is
complex and likely involves multiple mechanisms, includ-
ing regulation (by Treg cells), anergy, clonal deletion, as
well as suppression. Thus, it will also be important for
future studies to delineate the biological mechanisms
underlying “operational tolerance” in transplantation.

Brouard et al. analyzed kidney transplant patients with
stable renal function and taking no immunosuppressive
medications by microarray analysis of peripheral blood
samples [38]. The study was limited to 17 tolerant patients
due to the scarcity of tolerant patients, but included groups
with AR, chronic rejection, minimal immunosuppressive
therapy with steroid monotherapy, stable, and normal. The
tolerant patients were divided into training (n=5) and test
(n=12) sets. Analysis identified a minimal set of 49 genes
that were significantly, differentially expressed in the drug-
free operationally tolerant group. The gene signature
represents reduced costimulatory signaling, immune quies-
cence, apoptosis, and memory T cell responses, which are
consistent with our understanding of tolerance from
experimental models. Interestingly, although TGFβ was
not modulated, 27% of the genes in the tolerance footprint
are regulated by TGFβ. Due to the small number of tolerant
subjects, it will be crucial to confirm these intriguing results
in a prospective study, perhaps by withdrawing immuno-
suppression in stable patients with the tolerant footprint.

It has been observed that liver transplant patients have
fewer episodes of AR and operational tolerance is more
common, occurring in approximately 20% of transplant
recipients. Martinez-Llordella et al. analyzed multiple
parameters, including gene expression with microarrays in
peripheral blood of 16 tolerant liver transplant patients and
identified a signature of “operational tolerance.” Signature
genes included T cell receptor and NK receptors. Interest-
ingly, the significantly modulated genes were poorly
correlated with the tolerance signature in PBL in kidney
transplant patients. These differences may be due to the
differences between kidney and liver transplantation or due
to technical variation in the small sample size, in which
only a small proportion of the tolerant profile are
statistically identified.

In an analysis of immunosuppressive drug-free operational
immune tolerance of 80 drug-free patients with stable renal
function, Braud et al. identified 343 significantly modulated
genes in the tolerant group [39]. Two hundred twenty three of
these genes were also differentially expressed compared with
normal controls. The most significant functional classifica-
tions of the 343 differentially expressed genes by EASE that
were upregulated, included response to wounding, immune
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response and defense response, and functions that were
downregulated included immune response, defense response,
and response to pathogen. The inclusion of immune and
defense responses in both the upregulated and downregulated
group suggest a complex regulation of the genes comprising
these functional classifications.

More recently, Newell et al. found that renal allograft
tolerance was strongly associated with a B cell signature
through microarray analysis [40], which is reviewed in this
edition.

Recent technological advances

There have been several recent technological advances that
should increase our ability to identify biomarkers and
biological mechanisms of tolerance and rejection, following
transplantation. The analysis of genetic variants in trans-
plantation has focused on the MHC due to the strong effect
size of this locus; however, there are likely many additional
variants that affect transplant outcomes. Genome-wide
association studies using microarrays can monitor approx-
imately one million single nucleotide polymorphisms
(SNPs), but despite these powerful approaches, a large
proportion of the genetic basis of many complex diseases
has proven difficult to identify [41, 42]. There are multiple
potential rationales for the unresolved genetic effects
including the role of rare versus common alleles, gene-
environment interactions, and gene–gene epistatic interac-
tions. The increasing feasibility of whole genome and
whole-exome sequencing [43, 44], due to increased speed
of “next generation” sequencers, and decreased cost may
provide powerful tools to increase our understanding of the
genome in transplant outcomes [45].

A limitation of microarray analysis of the transcriptome
is the limited dynamic range of the quantification of
expression values, particularly within the lower levels of
expression. It is well established that PCR has a greater
dynamic range than microarrays. However, the develop-
ment of the RNA-Seq technology has greatly increased the
sensitivity of RNA analysis. This method directly sequen-
ces the RNA sample without hybridization and has several
advantages compared to microarrays. In addition to being
more quantitataive, RNA-Seq identifies novel start and
stops sites and splice junctions, as illustrated by a recent
analysis of T cell activation [46]. RNA-Seq is also a
powerful technology to investigate expression of micro-
RNAs, which have been recognized as important regulators
of mRNA. In addition to advances in sequencing, parallel
advances in bioinformatics and systems biology enhance
the power to develop biological understanding from the
large datasets generated by the genomic technologies.

Biological importance of modulated genes
versus signaling pathway versus network module

With current genomic technologies, it is not difficult to
generate gigabytes of data; thus, our challenge is to develop
and apply bioinformatic and systems biology tools to extract
understanding of the relevant biological functions. The
application of biostatistical approaches to identify significant-
ly modulated genes may select genes that are informative
biomarkers; however, relevant biological functions are not
identified. To increase the harvesting of biological informa-
tion, one approach has been to link modulated genes into
signaling pathways using interaction networks or KEGG
pathways [47, 48]. The focus on pathways increases the
power of the analysis. Based on analysis of interaction
networks, it is apparent that pathways have crosstalk, and
consequently, are linked in subnetworks or modules [49].
Based on these considerations, the analysis of pathways or
modules often provides enhanced biological information
compared to significance tests.

One size fits all versus personalized medicine

Until recently, clinical management of transplant patients
was a “one-size-fits-all” design. However, with the devel-
opment of new immunosuppressive agents, transplant
clinicians have multiple therapeutic options and need to
determine the most appropriate for each clinical case. There
are many factors that make each patient unique, including
genetic polymorphisms in each genome, different primary
disease, different treatments, and environmental effects.
Our long-term goal is to develop individualized personal-
ized medicine for each transplant patients; however, to
implement personalized medicine, we will need to under-
stand the major effects of these factors and develop
therapies appropriate for each case. Since we have not yet
achieved this level of understanding, our immediate
progress should focus on subsets, e.g., subsets of AR. This
is both tractable and should yield valuable information that
could suggest different therapeutic strategies for individual
specific subsets. With the development of whole-genome
sequencing, RNA-Seq and improved proteomic technology,
all integrated with emerging bioinformatic and systems
biology tools in the not-too-distant future, we can envision
our goal of personalized medicine.

Integrated analysis of complimentary datasets

Experimental approaches have traditionally applied a single
technology such as a microarray. To increase the power of
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these studies, one approach is to increase the sample size;
however, an alternative strategy, which provides enhanced
biological insight, is to combine multiple technologies. For
example, an ideal study of transplant biology would combine
genomics plus transcriptomics plus proteomics plus clinical
metadata analyzed by multivariant approaches, and perhaps,
machine learning algorithms. With these integrated
approaches which are costly but all currently feasible, we
should approach our goal of personalized medicine.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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