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Reciprocal inhibition of YAP/TAZ and NF-κB
regulates osteoarthritic cartilage degradation
Yujie Deng1,2, Jinqiu Lu1, Wenling Li2, Ailing Wu1, Xu Zhang2, Wenxue Tong3, Kiwai Kevin Ho3, Ling Qin3,

Hai Song1 & Kinglun Kingston Mak2

Osteoarthritis is one of the leading causes of pain and disability in the aged population due to

articular cartilage damage. This warrants investigation of signaling mechanisms that could

protect cartilage from degeneration and degradation. Here we show in a murine model of

experimental osteoarthritis that YAP activation by transgenic overexpression or by deletion

of its upstream inhibitory kinases Mst1/2 preserves articular cartilage integrity, whereas

deletion of YAP in chondrocytes promotes cartilage disruption. Our work shows that YAP is

both necessary and sufficient for the maintenance of cartilage homeostasis in osteoarthritis.

Mechanistically, inflammatory cytokines, such as TNFα or IL-1β, trigger YAP/TAZ degrada-

tion through TAK1-mediated phosphorylation. Furthermore, YAP directly interacts with TAK1

and attenuates NF-κB signaling by inhibiting substrate accessibility of TAK1. Our study

establishes a reciprocal antagonism between Hippo-YAP/TAZ and NF-κB signaling in reg-

ulating the induction of matrix-degrading enzyme expression and cartilage degradation during

osteoarthritis pathogenesis.
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Osteoarthritis (OA) is one of the most common degen-
erative diseases and the incidence increases significantly
with age. The disease is characterized by progressive

degradation of articular cartilage, subchondral bone thickening,
and osteophyte formation, which ultimately leads to loss of joint
mobility and joint functions. Cartilage loss is caused by multi-
factorial parameters, including excessive production of matrix-
degrading enzymes such as aggrecanases and matrix metallo-
proteinases (MMPs)1, accelerated chondrocyte hypertrophy and
increased focal calcification of joint cartilage. These conditions
are commonly characterized by elevated expression of Col10a1
and alkaline phosphatase2–4. Eventually, cells undergo apoptosis,
which leads to destruction of cartilage tissues5. Articular chon-
drocytes differ from growth plate chondrocytes as they do not
normally undergo proliferation, maturation, hypertrophy, apop-
tosis, and ossification6,7. However, the molecular mechanisms
regulating these processes in articular chondrocytes remain
unclear. These regulatory processes are highly relevant to the
onsets, pathogenesis, and progression of OA.

A variety of cytokines and chemokines are ectopically expres-
sed in OA chondrocytes, synovial macrophages, and fibroblasts.
Pro-inflammatory mediators such as tumor necrosis factor alpha
(TNFα), interleukin-1 beta (IL-1β), and IL-6 are implicated in OA
pathophysiology8. These catabolic factors activate a series of
pathways including NF-κB signaling, which plays a major role in
OA pathogenesis9. It has been shown that NF-κB signaling
orchestrates mechanical, inflammatory, and oxidative stress-
activated processes that contribute to cartilage tissue damage
and thus representing an attractive therapeutic target for OA
treatment10–12. A better understanding of the mechanism in
modulating NF-κB signaling activity stands essential for the
development of effective therapeutic intervention.

Hippo signaling is identified to control organ size and tissue
regeneration in many organs13,14. Central to this pathway is a
kinase cascade consisting of MST1/2, SAV, LATS1/2, and
MOB1A/B. When the Hippo signaling is active, a series of
phosphorylation events via MST and LATS kinases ultimately
leads to the phosphorylation of YAP/TAZ, the key effectors of the
pathway. Phosphorylated YAP is sequestered in the cytoplasm,
which inhibits its transcriptional activity. By contrast, inactivation
of the Hippo pathway increases YAP/TAZ nuclear translocation.
Subsequently, they interact with TEADs or other transcription
factors to regulate downstream signaling cascades in order to
control cell proliferation, apoptosis, differentiation, and matura-
tion15. We have shown that Hippo pathway mediates its effect
through YAP in regulating chondrocyte differentiation at multi-
ple steps during endochondral ossification and bone repair. YAP
promotes chondrocyte proliferation but inhibits subsequent
maturation by binding with different transcription factors
implicated in chondrocyte differentiation16. Whether Hippo
pathway or YAP regulates articular cartilage homeostasis similar
to that of skeletal development remains elusive. Previous studies
have firmly established pivotal role of Hippo-YAP/TAZ pathway
in embryonic development, tissue homeostasis, and tumorigen-
esis. Recently, several studies have uncovered novel roles of
Hippo signaling in regulating innate immunity, autoimmunity,
and cancer immunity17–19. However, whether the Hippo-YAP/
TAZ pathway plays a role in regulating inflammatory response
during OA pathogenesis remains elusive.

Here, we investigated the roles of Hippo pathway and YAP in
maintaining articular cartilage integrity during OA pathogenesis.
We found that Hippo signaling mediates its signals through YAP
to control articular cartilage homeostasis. YAP is necessary and
sufficient to attenuate OA progression by inhibiting inflammatory
responses triggered by NF-κB signaling. Furthermore, inflam-
matory cytokines activates Hippo signaling and promotes YAP

phosphorylation mediated by TAK1 and association with β-
TRCP for proteasome-mediated degradation. Our findings sug-
gest that targeting YAP is a viable strategy for treating OA.

Results
Reduced expression of YAP in osteoarthritic cartilage. To
investigate the function of YAP in articular cartilage maintenance,
we first examined the endogenous expression of YAP, a key
mediator of Hippo signaling, in the knee joints from 1- to 6-
month-old wild-type mice (Fig. 1a, b). When the mice were
young at 1- and 2-month-old, strong YAP expression was
observed in all zones of the articular cartilage. As the mice aged,
we found that YAP expression was gradually reduced and its
expression was remarkably lower in the 6-month-old mice. These
data suggest a gradual reduction of YAP in articular chondrocyte
maturation. As OA is one of the ageing related diseases, we thus
recapitulated the degenerative condition of articular cartilage by
performing surgically induced OA in adult wild-type mice. We
found that injured articular cartilage also showed significant
reduction of YAP expression and its expression level correlated
coherently to the severity of cartilage degradation in OA condi-
tions as shown by knee joint sections at 4 and 10 weeks post
operation respectively (Fig. 1c, d). Furthermore, YAP expression
levels were concomitantly reduced according to the severity and
OARSI grade of OA in human patient samples20 (Fig. 1e, f).
Altogether, our findings suggest that YAP expression is highly
correlated to the pathogenesis of OA.

YAP attenuates cartilage degradation during OA progression.
To elucidate the functional role of YAP in OA pathogenesis
in vivo, we first generated Mst1f/f;Mst2f/f;Col2a1-Cre mutant mice
in which Hippo signaling is inactivated in chondrocytes. The
mutant mice were phenotypically normal with no obvious
skeletal defect including articular cartilage, albeit YAP expression
was strongly upregulated in articular cartilage (Supplementary
Figure 1a, b). Next, we surgically induced osteoarthritic condition
in the mutant mice and examined the articular cartilage degra-
dation. Two months after surgery, we found that the integrity
of articular cartilage of the Mst1f/f;Mst2f/f; Col2a1-Cre mutant
mice was maintained significantly better than that of the control
group under both ACLT (Anterior Cruciate Ligament Transec-
tion) and DMM (Destabilization of the Medial Meniscus) surgical
conditions (Fig. 2a, b and Supplementary Figure 1c). The
expression of YAP was maintained at a higher level in the mutant
mice, but Mmp13 (matrix metalloproteinases 13) expression
was significantly lower (Fig. 2c, d). In addition, inflammation was
less severe in the peripheral fibrous tissues with fewer synovial
lining cells around the knee joint of the mutant mice as shown
by F4/80 and CD11b expression (Supplementary Figure 1d).
Next, we isolated primary chondrocytes from the newborn
mutant mice and treated them with TNFα in culture. Consistent
with the in vivo phenotypes, the ECM (extracellular matrix)
degradation enzymes, such as Mmps and Adamts4/5 (a disin-
tegrin and metalloproteinase with thrombospondin motifs 4/5),
were significantly upregulated, while the expression of the carti-
lage extracellular matrix components (Col2a1 and Aggrecan),
Yap1/Taz and their target genes was greatly inhibited in response
to TNFα treatment in control chondrocytes (Fig. 2e and Sup-
plementary Figure 1e). However, deletion of Mst1/2 in chon-
drocytes attenuated these effects induced by TNFα (Fig. 2e and
Supplementary Figure 1e). Collectively, our data indicate that
activation of YAP in articular chondrocytes attenuates OA
progression.

To further determine the functions of YAP in protecting cartilage
degradation during OA progression, we overexpressed YAP in
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chondrocytes by generating Col2a1-Yap1tg/+ transgenic mice16. No
obvious skeletal phenotype was observed in the articular cartilage of
Yap1 heterozygous transgenic mice (Supplementary Figure 2a, b).
Under osteoarthritic condition, Col2a1-Yap1tg/+ transgenic mice
displayed remarkably better cartilage integrity than that of the
wild-type mice (Fig. 2f, g and Supplementary Figure 2c). In
addition, Mmp13 expression in the articular chondrocytes of
Col2a1-Yap1tg/+ transgenic mice was significantly lower and less
inflammatory cells were recruited as shown by F4/80 and CD11b
expression in the synovial lining cells of Col2a1-Yap1tg/+ transgenic
mice (Fig. 2h, i and Supplementary Figure 2d). TNFα or IL1β
treatment in transgenic chondrocytes led to lower induction of
matrix-degrading enzymes, but higher expression of cartilage ECM
and YAP target genes than those of the wild-type chondrocytes
(Fig. 2j and Supplementary Figure 2e, f). Our results suggest that
YAP protects articular cartilage from degradation during OA
pathogenesis.

Loss of YAP exaggerates cartilage destruction during OA. To
examine whether YAP is required to protect articular cartilage
integrity during OA pathogenesis, we genetically removed Yap1 in
chondrocytes by generating Yap1f/f;Col2a1-Cre mutant mice. No
obvious cartilage defect in the articular cartilage was observed in the
adult Yap1f/f;Col2a1-Cremutant mice (Supplementary Figure 3a, b).
However, under OA condition, cartilage degradation was sig-
nificantly more severe than that of the control mice (Fig. 3a, b).
Immunohistochemical staining revealed substantial reduction of
YAP expression and elevated Mmp13 expression in the articular
cartilage of the Yap1f/f;Col2a1-Cremutant mice under osteoarthritic
condition as compared to the control animals (Fig. 3c, d).
Accordingly, TNFα treatment led to increased expression of matrix-
degrading enzymes and decreased expression of ECM components
and YAP target genes in the primary chondrocytes from Yap1f/f;
Col2a1-Cre newborn mice (Fig. 3e, f). In addition, inflammatory
cells were accumulated in the synovium of Yap1f/f;Col2a1-Cre mice
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Fig. 1 YAP expression is decreased in postnatal cartilage growth and osteoarthritic cartilages. a Safranin O staining (Top) and immunohistochemistry
analysis of YAP expression (Bottom) in wild-type mice with age as indicated. Scale bars, 100 μm. b Statistical analysis of the percentage of YAP+

chondrocytes (brown) in articular cartilage from (a) (n= 6 per group). c Safranin O staining (Top) and immunohistochemistry analysis of YAP expression
(Bottom) of 10-week-old wild-type mice after 4 or 10 weeks anterior cruciate ligament transection (ACLT) surgery respectively. Scale bars, 100 μm.
d Statistical analysis of the percentage of YAP+ chondrocytes (brown) in articular cartilage from (c) (n= 6 per group). e Safranin O staining (Top) and
immunohistochemistry analysis of YAP expression (Bottom) in articular cartilage of human patients with different grade of OA. Scale bars, 100 μm.
f Statistical analysis of the percentage of YAP chondrocytes (brown) in articular cartilages from e. Numbers of samples examined are indicated at the
bottom of the graphs. All data are presented as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, with One-way ANOVA followed by Tukey’s test
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with OA (Fig. 3g), which are mirror results as compared to that of
the Col2a1-Yap1tg/+ transgenic mice. Altogether, our results indi-
cate that YAP is necessary and sufficient to protect cartilage
degradation in OA condition.

Next, we asked whether pharmacological treatment with agents
that regulate YAP activity affects OA progression similarly to the
genetic manipulation of the Hippo pathway. Lysophosphatidic
acid (LPA) has been shown to inhibit LATS1/2 thereby activating
YAP21. Conversely, verteporfin (VP) binds to YAP and inhibits
its interaction with TEADs22. We first validated the effects of
these agents in primary chondrocytes. As expected, LPA
treatment inhibited YAP phosphorylation and stabilized YAP
proteins in primary chondrocytes (Supplementary Figure 4a),
whereas VP treatment inhibited YAP activities and thereby led to
its degradation (Supplementary Figure 4b). Next, we examined
their effects in articular cartilage in vivo under OA condition.

Consistent with our mouse genetic models, alginate beads soaked
with either LPA or VP and implanted into the articular joint
cavity of wild-type mice immediately after OA surgery exhibited
similar effects on articular cartilage integrity as Yap1 transgenic
or knockout mice, respectively (Supplementary Figure 4c–f).
Moreover, co-treatment of IL-1β or TNFα with LPA or VP in
culture showed consistent results in the expression of matrix-
degrading enzymes and ECM, respectively, as the Mst1/2 or Yap1
mutant chondrocytes (Supplementary Figure 4g, h). Thus, our
data indicate that pharmacological activation of YAP protects
osteoarthritic cartilage degradation.

Inflammatory cytokines promote YAP degradation. As pro-
inflammatory cytokines, such as TNFα, IL-1β, and IL-6, are
implicated in OA pathophysiology9,23, the effect of these
inflammatory cytokines on Hippo signaling was examined in
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Fig. 2 Activation of YAP attenuates cartilage degradation during OA progression. a Safranin O staining of sagittal sections of knee joints of Mst1f/f; Mst2f/f;
Col2a1-Cre mice 2 months after ACLT surgery. Scale bars, 100 μm. b OARSI scores of samples shown in a. c Immunohistochemistry of YAP and Mmp13
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matrix-degrading enzymes (Adamts4, Adamts5, Mmp3, Mmp9, and Mmp13) and extracellular matrix components (Aggrecan and Col2a1) in primary articular
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primary chondrocytes to mimic the pathological conditions of
OA. We found that the expression of Mst1/2 and Lats1/2 dis-
played no obvious changes upon treatment with TNFα or IL-1β
(Supplementary Figure 5a). Notably, the expression of Yap1/Taz
and their target genes Ctgf and Cyr61 was reduced in response to
TNFα treatment in primary chondrocytes (Fig. 4a and Supple-
mentary Figure 5a). Consistently, Gal4/TEAD4-luciferase repor-
ter activity was inhibited in response to TNFα treatment in a dose
dependent manner in primary chondrocytes (Fig. 4b). Moreover,
TNFα treatment also suppressed YAP-induced Gal4/TEAD4-
luciferase reporter activity in HEK293A cells (Fig. 4c). However,
at protein level, MST1 and LATS1 were strongly activated as
shown by increased phosphorylation levels shortly after TNFα
or IL-1β stimulation, respectively (Fig. 4d). The phosphorylation
levels of both YAP and TAZ were greatly increased (Fig. 4d).
Moreover, we found that the total protein levels of YAP and TAZ
were reduced after TNFα or IL-1β treatment in primary chon-
drocytes (Fig. 4e). As ubiquitin-mediated proteolysis is one of
the most common mechanisms for protein degradation, we
examined whether YAP is removed through proteasome upon
TNFα stimulation. We found that YAP protein levels were
restored upon proteasome inhibitor MG132 treatment, but not
lysosomal inhibitor chloroquine (Chlq) (Fig. 4f). In addition,
TNFα treatment resulted in remarkable poly-ubiquitination

modification and degradation of YAP (Fig. 4g, h). Furthermore,
immunofluorescence analysis revealed that YAP was exported to
the cytoplasm after TNFα stimulation in primary chondrocytes or
in IL-1β-treated HeLa cells (Fig. 4i and Supplementary Figure 5b).
Taken together, our data indicate that inflammatory cytokines
trigger Hippo pathway activation and promote proteasomal
degradation of YAP.

TAK1 associates with and phosphorylates YAP/TAZ indepen-
dent of LATS. The direct phosphorylation of YAP/TAZ by
LATS1/2 kinases leads to YAP/TAZ cytoplasmic retention and
degradation mediated by SCF/β-TRCP E3 ubiquitin ligase in
response to various stimuli24,25. We asked whether TNFα-
induced YAP/TAZ phosphorylation and degradation are depen-
dent on LATS1/2. Intriguingly, a decrease of YAP/TAZ protein
levels was still observed in LATS1/2 DKO (double knockout)
HEK293A cells in response to TNFα stimulation (Fig. 5a). In
addition, the reduced YAP/TAZ protein levels were restored
when cells were treated with MG132, but not chloroquine (Fig. 5a
and Supplementary Figure 6a). These results suggest that TNFα-
induced proteasomal degradation of YAP/TAZ is independent
of LATS1/2 kinases. As we observed an increased phosphoryla-
tion of YAP/TAZ upon TNFα treatment in chondrocytes,
this prompted us to test whether kinases in the TNFα-activated
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NF-κB pathway are involved in the phosphorylation of YAP/
TAZ. We co-expressed YAP with a series of kinases related to the
NF-κB pathway in HEK293T cells (Fig. 5b). Of note, Flag-tagged
YAP or TAZ displayed a significant mobility shift only when
TAK1 kinase was co-expressed (Fig. 5b and Supplementary Fig-
ure 6b). Moreover, the kinase-dead mutant of TAK1 (TAK1-KD)
was unable to promote the mobility shift of YAP or TAZ in
phos-tag gel assay (Fig. 5c). These results suggest that YAP/TAZ
are the targets of TAK1 for phosphorylation modification. In
addition, overexpression of YAP-5SA where all LATS1/2 kinases
phosphorylation sites were mutated, also displayed a remarkable
mobility shift on SDS-PAGE in the presence of TAK1 kinase
in wild-type or LATS1/2 DKO cells respectively (Fig. 5d, e).

These data indicate that TAK1 phosphorylates YAP through a
LATS1/2 kinases independent mechanism.

To further investigate the molecular mechanisms how
TAK1 regulates YAP activity, we tested whether TAK1 directly
associates with and phosphorylates YAP. By co-
immunoprecipitation assay, we observed an interaction of
TAK1 and YAP in endogenous proteins or using overexpression
of reciprocal tagged proteins in HEK293T cells (Fig. 5f, g and
Supplementary Figure 6c). Next, we used an in vitro kinase assay
to test whether TAK1 directly phosphorylates YAP. We found
that TAK1 purified from HEK293T cells phosphorylated YAP
purified from a separate set of HEK293T cells or GST-YAP
recombinant proteins isolated from Escherichia coli (Fig. 5h, i).
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Since phosphorylation of YAP at S127 leads to its cytoplasmic
retention, and we found that TNFα treatment stimulates YAP
translocation into cytoplasm (Fig. 4i and Supplementary
Figure 5b). These observations prompted us to test whether
TAK1 phosphorylates YAP at S127. Our in vitro kinase assay
showed that S127 of GST-YAP recombinant protein was
phosphorylated in the presence of TAK1, but not TAK1-KD
(Fig. 5j). Furthermore, expression of TAK1 enhanced S127
phosphorylation of Flag-tagged YAP in LATS1/2 DKO HEK293A

cells (Fig. 5k). To identify additional and potential phosphoryla-
tion sites on YAP by TAK1, we next performed mass spectro-
metry analysis of Flag-tagged YAP co-expressed with HA-tagged
TAK1 or TAK1-KD. We observed a substantial increased
percentage of several phosphorylation sites of YAP in the
presence of TAK1 (Supplementary Figure 6d and Supplementary
Dataset 1, 2). We subsequently generated a series of YAP
mutations targeting these sites (Supplementary Figure 6e).
However, we did not identify specific sites targeted by TAK1 by
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examining the mobility shift of YAP induced by TAK1. Thus, our
data indicate that TAK1 directly phosphorylates YAP at multiple
sites.

TAK1 inhibits YAP activity through β-TRCP. Next, we tested
whether TAK1 promotes YAP degradation. We found that TAK1
expression triggered degradation of endogenous YAP and TAZ in
a dose dependent manner in HEK293T cells (Fig. 6a). Conversely,
the basal levels of YAP and TAZ were increased in TAK1-KO
HEK293T cells (Fig. 6b). More importantly, TNFα-induced
degradation of YAP/TAZ was significantly compromised in the
TAK1-KO HEK293A cells (Fig. 6c). Next, we investigated whe-
ther TAK1 modulates YAP/TEAD transcriptional activity. As
expected, there was an increased expression of YAP target genes,
such as CTGF and CYR61, in TAK1-KO HEK293T cells (Fig. 6d).
Expression of TAK1 inhibited Gal4/TEAD4-luciferase reporter
activity as compared to the control and TAK1-KD mutant
(Fig. 6e). Furthermore, YAP induced a higher reporter activity in
TAK1-KO HEK293T cells (Fig. 6f). Consistently, TNFα-induced
reduction of reporter activity was also compromised in TAK1-KO
HEK293T cells (Fig. 6g). These results indicate that TAK1 pro-
motes YAP degradation and suppresses its activity.

To further explore how TAK1 contributes to YAP degradation,
we first examined whether TAK1 promotes YAP ubiquitination.
We found that the expression of TAK1 enhanced K48-linked
poly-ubiquitination modification of YAP protein (Fig. 6h).
Previous study demonstrates that Hippo-regulated YAP degrada-
tion is through SCF-β-TRCP-mediated ubiquitination25. There-
fore, we tested whether β-TRCP is involved in YAP degradation
regulated by TAK1. Notably, expression of TAK1, but not TAK1-
KD mutant, greatly enhanced the interaction of YAP with β-TRCP
(Fig. 6i). Conversely, knockout of TAK1 inhibited YAP poly-
ubiquitination modification and abrogated YAP–β-TRCP inter-
action (Fig. 6j, k). In addition, endogenous YAP and TAZ proteins
were remarkably stabilized in the TAK1-KO HEK293T cells,
but degraded quickly over time in HEK293T cells in a CHX
(Cycloheximide) chase experiment (Fig. 6l). Together, our results
support the functional importance of TAK1 in inhibition of YAP
activity by stimulating β-TRCP-mediated YAP ubiquitination and
degradation during inflammatory cytokine stimulation.

YAP attenuates NF-κB pathway by inhibiting IKKα/β activa-
tion. One of the complications for OA pathogenesis is inflam-
mation23. Inflammatory cytokines TNFα and IL-1β are
implicated in cartilage degradation through regulating NF-κB and
JNK signaling pathways11,12,26. We asked whether YAP mod-
ulates the activity of TNFα signaling and its subsequent actions in
regulating articular cartilage integrity during OA condition. In

primary chondrocytes, overexpression of YAP inhibited TNFα-
induced JNK and p65 activation (Supplementary Figure 7a).
Treatment of JNK inhibitor SP600125 only inhibited TNFα-
induced upregulation of Adamts5 and Mmp3. However, treat-
ment of TAK1 inhibitor 5Z-7-Oxozeaenol (5Z-7-O) greatly
inhibited all TNFα or IL1β effects and evoked a broad suppres-
sion of Adamts and Mmp expression (Supplementary Figure 7b, c
and d). In Col2a1-Yap1tg/+ transgenic chondrocytes, we found
that NF-κB signaling activity was greatly attenuated after TNFα
stimulation as shown by reduced phosphorylation of p65 while
JNK signaling was only slightly inhibited by YAP (Fig. 7a and
Supplementary Figure 7e). To further verify that YAP modulates
NF-κB signaling activity, we examined the cellular localization of
p65 in response to YAP overexpression. p65 was translocated into
the nucleus under IL-1β treatment in primary chondrocytes
(Fig. 7b). However, when YAP was overexpressed, IL-1β-induced
nuclear translocation of p65 was significantly inhibited (Fig. 7b).
More importantly, a significantly reduced expression of phos-
phorylated p65 in the Col2a1-Yap1tg/+ mutant chondrocytes
under osteoarthritic condition was observed as compared to the
controls (Fig. 7c). These data strongly suggest that YAP expres-
sion attenuates NF-κB signaling to protect cartilage degradation
during OA.

To explore the molecular basis of YAP/TAZ in regulating the
activity of NF-κB pathway, we first examined the effect of YAP/
TAZ on NF-κB luciferase reporter. As measured by the NF-κB
luciferase reporter, we observed a profound inhibition of TNFα-
induced NF-κB transactivation by both YAP-5SA and transcrip-
tionally inactive YAP-6SA, similar to that of wild-type YAP
(Fig. 7d). Furthermore, YAP greatly suppressed TAK1-, IKKα/β-
(inhibitor of nuclear factor kappa-B kinase subunit alpha/beta),
or IKKγ-induced NF-κB reporter activity (Fig. 7e–h,). However,
YAP only slightly inhibited p65-induced NF-κB reporter activity
(Fig. 7i,). These data suggest that YAP acts upon the components
upstream of p65. Similarly, TAZ exhibited consistent inhibitory
effects as YAP on NF-κB luciferase reporter assays (Supplemen-
tary Figure 8a-e). These observations suggest that YAP/TAZ-
mediated suppression on NF-κB activity might be a direct effect
rather than through their transcriptional targets.

To further explore the mechanism of how YAP inhibits NF-κB
signaling activity, we examined whether YAP interacts with the
components upstream of p65 in the NF-κB pathway. Intriguingly,
an interaction of YAP with IKKα/β and IKKγ was detected by co-
immunoprecipitation assays (Fig. 7j). Next, we examined whether
YAP inhibits NF-κB activity through suppressing the TAK1-IKKs
cascade activation. TRAFs-mediated TAK1 K63-linked poly-
ubiquitylation is critical for TAK1 activation. We found that K63-
linked poly-ubiquitylation and phosphorylation of TAK1 were
not affected by YAP overexpression (Supplementary Fig. 8f, g).

Fig. 6 TAK1 inhibits YAP activity through β-TRCP-mediated ubiquitination and proteasomal degradation. a Immunoblot analysis of endogenous YAP in
HEK293T cells transfected with increasing TAK1 plasmid. b Western blot analysis of lysate of wild-type and TAK1-KO HEK293T cells. c Western blot
analysis of lysate of wild-type and TAK1-KO HEK293A cells treated with MG132, CHX, and TNFα as indicated. d Gene expression analysis of YAP target
genes in wild-type or TAK1-KO HEK293T cells by qRT-PCR assay. e Luciferase assay of Gal4/TEAD4 reporter activity after transfection of wild-type
or TAK1-KD plasmid in HEK293T cells. f Luciferase assay of Gal4/TEAD4 reporter activity after transfection of control or YAP plasmid in wild-type or
TAK1-KO HEK293T cells. g Luciferase assay of Gal4/TEAD4 reporter activity after treated with TNFα for 6 h in wild-type or TAK1-KO HEK293A cells
transfected with control or YAP plasmid. h Ubiquitination assay of Flag-tagged YAP with overexpression of TAK1 or TAK1-KD in HEK293T cells detected by
anti-K48-Ubiquitin antibody. i Immunoprecipitation assay of YAP and β-TRCP interaction with overexpression of TAK1 or TAK1-KD in HEK293T cells.
j Ubiquitination assay of Flag-tagged YAP in wild-type or TAK1-KO HEK293A cells with overexpression of HA-tagged Ubiquitin after treatment with
MG132 (10 μM) for 2 h and then treated with TNFα at 5 ng/ml for 4 h. k Immunoprecipitation assay of YAP and β-TRCP interaction in wild-type or
TAK1-KO HEK293A cells. l Analysis of YAP/TAZ stability in wild-type and TAK1-KO HEK293T cells by CHX chase experiments. Protein synthesis was
blocked by treatment with 50 μg/ml CHX for the indicated time. Quantification of the relative expression level of YAP/TAZ related to GAPDH in samples
are shown in the right panel. All experiments were repeated three times independently and all data are presented as mean ± SD. *p < 0.05, **p < 0.01,
***p < 0.001. e, g One-way ANOVA followed by Tukey’s test was performed. d, f Two-tailed Student’s t-test was performed
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Fig. 7 YAP attenuates NF-κB signaling by inhibiting IKKα/β activation. a Immunoblot analysis of primary chondrocytes with genotypes as shown after
treatment with TNFα at 5 ng/ml. b Immunofluorescence analysis for p65 cellular localization in primary chondrocytes transfected with GFP-tagged YAP for
24 h and followed by treatment with IL-1β at 5 ng/ml for 1 h. Arrows indicate primary chondrocytes positively transfected with GFP-tagged YAP.
c Immunohistochemistry of phospho-p65 expression in articular cartilage of mice 2 months after ACLT surgery with genotypes as shown. Scale bars,
50 μm. Statistical analysis of the percentage of p-p65 positive chondrocytes in articular cartilage of samples are shown in the right panel. d Luciferase assay
of NF-κB luciferase reporter in HEK293A cells transfected with YAP, YAP-5SA, or YAP-6SA plasmid followed by treatment with TNFα for 6 h before
collecting cell lysate. e–i Luciferase assay of NF-κB luciferase reporter 24 h after transfection of YAP with respective NF-κB component plasmids as
indicated in HEK293T cells. j Immunoprecipitation assay to detect the association of YAP with indicated kinases related to NF-κB signaling in
HEK293T cells. s.e. short time exposure of film. l.e. long time exposure of film. k Immunoprecipitation assay of IKKα and TAK1 with or without
overexpression YAP in HEK293T cells. l Immunoblot analysis of the phosphorylation of IKKα with overexpression of YAP in HEK293T cells. m Immunoblot
analysis of the phosphorylation of IKKα with expression of different dose of YAP in HEK293T cells. n Western blot analysis of lysate of HEK293A cells
transfected with Flag-tagged YAP after treatment with TNFα as indicated time. o Immunoblot analysis of the phosphorylation of endogenous p65 after
treatment with TNFα as indicated time in WT or YAP-KO HEK293T cells. All data are presented as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001. One-way
ANOVA followed by Tukey’s test was performed. All experiments were repeated three times independently
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Intriguingly, YAP overexpression abrogated the association of
TAK1 with IKKα (Fig. 7k) and the phosphorylation of IKKα and
IKKβ was significantly impeded by YAP or TAZ expression,
respectively, in HEK293T cells (Fig. 7l, m, and Supplementary
Figure 8h-k). All of these data suggest that YAP/TAZ antagonize
NF-κB activity by preventing TAK1 substrate accessibility and
subsequent activation of IKKα/β.

Activated IKKs complex induces phosphorylation and degrada-
tion of IκBα and subsequent activation of p65 and translocation of
p50/p65 heterodimer into the nucleus. As β-TRCP complex is the
ubiquitin ligase for ubiquitination of IκBα27–29, we first examined
whether YAP impeded the interaction of IκBα with β-TRCP. The
ubiquitination of IκBα and the interaction between IκBα and β-
TRCP were greatly reduced when YAP was overexpressed
(Supplementary Figure 8l, m). Next, we examined p65 activation
in the presence of YAP. Consistent with the reduced IKKα/β
activation, the phosphorylation of p65 was attenuated in response
to TNFα stimulation when YAP or TAZ was overexpressed in
HEK293A cells, respectively (Fig. 7n and Supplementary Figure 8n).
In addition, purified GST-YAP protein from Escherichia coli was
sufficient to inhibit the phosphorylation of p65 by IKKα/β as
revealed by the in vitro kinase assay (Supplementary Figure 8o, p).
Together, our findings indicate that YAP inhibits TAK1 substrate
accessibility, abrogates IKKα/β activation and suppresses IκBα
degradation, and p65 activation and nuclear translocation, which
results in attenuation of NF-κB signaling activity.

To further investigate the role of YAP in NF-κB signaling more
specifically, we knocked down Yap1 in primary chondrocytes
isolated from newborn mice. TNFα treatment in Yap1-knockdown
chondrocytes resulted in consistent results as in the Yap1f/f;
Col2a1-Cre mutant chondrocytes with increased expression of
Adamts4/5 and Mmp genes (Supplementary Figure 9a). Next, we
generated YAP-KO HEK293T cells using CRIPSR/Cas9 system.
There was an increased phosphorylation of p65 and IKKα/β in the
YAP-KO HEK293T cells (Fig. 7o and Supplementary Figure 9b).
In line with the results from YAP-knockdown chondrocytes,
complete removal of YAP in the HEK293T cells resulted in a more
sensitive response to TNFα stimulation as reflected by NF-κB
luciferase reporter assay (Supplementary Figure 9c). These results
indicate that YAP deficiency potentiates NF-κB signaling activity.

Collectively, our results suggest a reciprocal antagonism between
Hippo-YAP/TAZ and NF-κB signaling in articular chondrocytes
during the OA pathogenesis (Supplementary Figure 9d). Inflam-
matory cytokines promote YAP proteasomal degradation via
TAK1-mediated YAP phosphorylation and ubiquitination. Reci-
procally, YAP inhibits cartilage degradation through association
with TAK1 and IKKs complex, which prevents the IKKα/β
activation and subsequent NF-κB translocation into the nucleus.

Discussion
This study shows that YAP mediates the function of Hippo
pathway to control articular cartilage homeostasis during OA
by antagonizing NF-κB signaling. In particular, genetic removal
of both Mst kinases in chondrocytes displays the same
phenotypes as YAP transgenic mice in protecting articular
cartilage. This effect can also be achieved by LPA treatment,
which activates YAP during osteoarthritic condition. By con-
trast, removal of Yap1 in chondrocytes exaggerates cartilage
degradation. Upon excessive mechanical stress, which is com-
mon risk factors for OA, inflammatory cytokines such as TNFα
or IL-1β are secreted and trigger NF-κB signaling activation.
Our study reveals that these inflammatory cytokines are able to
activate the Hippo pathway. Since extracellular growth factors
responsible for the activation of the Hippo pathway remain
largely unclear, our study provides new insight in the control of

the Hippo pathway. Previous studies showed that mechanical
stimuli such as cell–cell contact and high cell density activate
Hippo pathway and inhibit YAP activity. These effects are
mediated through junction proteins such as α-catenin30,31,
polarity proteins32, GPCR signaling21, or mechanical stress33.
Our findings further unravel additional signaling cues that are
able to activate Hippo pathway in regulating tissue homeostasis
and provide insights into how Hippo-YAP/TAZ signaling
coordinate cell growth and various environmental stimuli in
physiological and pathological conditions.

Our current study shows that YAP associates with TAK1 to
prevent IKKα/β activation, and thus inhibiting NF-κB signaling
(Supplementary Figure 9d). It has been previously shown that
YAP can be phosphorylated by LATS1/2 subsequently undergo
proteasomal degradation mediated by β-TRCP complex after
CK1-mediated phosphorylation25. Alternatively, YAP undergoes
lysosomal degradation upon phosphorylation by IKKε at S43118.
Here, we demonstrate that TAK1 is able to directly phosphorylate
YAP at multiple sites independently of LATS and subsequently
presents and interacts with the complex with β-TRCP for pro-
teasomal degradation. Our finding reveals another mechanism on
regulating the activity of YAP and delineates the reciprocal
antagonistic relationship between Hippo and NF-κB signaling. In
our model, YAP attenuates NF-κB signaling activation and results
in reduced ECM degradation by inhibiting the induction of
matrix-degrading enzymes. Indeed, a number of NF-κB inhibitors
have been reported to play anti-inflammatory functions in OA.
For instance, glucocorticoids are potent NF-κB inhibitors that
induce the expression of IκBα and increase cytosolic retention of
NF-κB34,35. In our study, YAP or its activator also inhibits TNFα-
induced IκBα degradation and NF-κB nuclear localization. Thus,
it is not surprising that YAP preserves cartilage integrity by
modulating NF-κB signaling activity, which is a major pathway
implicated in OA pathogenesis. In addition, it has been recently
shown that cactus, a Drosophila IκBα homolog, is a direct target
of Yorkie in regulating innate immunity system in fruit fly36.
Interestingly, a recent study showed that YAP activates NF-κB
activity through suppression of USP31, a negative regulator of
NF-κB signaling, in soft tissue sarcomas37. These findings suggest
that the crosstalk between Hippo pathway and NF-κB signaling
are highly conserved in regulating inflammatory responses with
distinct mechanism. Of note, our data also demonstrate that
YAP/TAZ interfere with IKKα/β activation and IκBα stability in
the mammalian system by inhibiting TAK1 function. Indeed,
TAK1 inhibitor 5Z-7-O has been shown to have therapeutic
values in inflammatory diseases38. As such, simultaneous target-
ing of Hippo and NF-κB pathway or more specifically YAP/TAK1
is a plausible strategy for better outcome of OA therapy.

Previous studies showed that Lubricin, a proteoglycan that is
abundantly expressed in articular cartilage, which functions to
protect cartilage integrity39,40, also regulates the expression and
localization of NF-κB during OA41. It seems that regulation of NF-
κB pathway is a key mechanism in controlling articular cartilage
homeostasis. Our findings that Hippo pathway or YAP modulates
NF-κB signaling activity provide additional insights on how the NF-
κB signaling activity could be fine-tuned or precisely controlled
during OA pathogenesis. Recent studies demonstrate a direct reg-
ulation between Hippo-YAP/TAZ and innate antiviral pathways,
which are involved kinases such as TBK1 and IKKε kinases17,18.
Our study uncovered TAK1/IKKα/β kinases and YAP/TAZ com-
plex as a hub linking inflammatory responses triggered by NF-κB
signaling and chondrocyte proliferation and survival regulated by
YAP/TAZ during OA pathogenesis. Interestingly, TAK1, TBK1,
and IKKε directly interact with YAP/TAZ, and YAP/TAZ sub-
stantially suppress the activity of both TAK1 and TBK1. Our study
also showed that TAK1 phosphorylates YAP/TAZ at multiple sites
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independent of LATS1/2, although the functional significance of
these sites was not investigated in the current study. Further work
is required to identify and clarify the TAK1-mediated YAP/TAZ
phosphorylation. Structural analysis on how YAP interacts with
TAK1, TBK1, or IKKα/β will offer new insight into the molecular
basis of inhibitory effect of YAP on these kinases.

During postnatal cartilage growth and osteoarthritic-induced
cartilage degradation, we observed that YAP expression was
gradually reduced. This expression pattern is highly similar to
that of chromatin protein Hmgb2 (High mobility group box
protein 2), a marker of chondroprogenitor cells in the articular
cartilage that function to maintain cartilage integrity42,43. As YAP
also regulates chondroprogenitor cell proliferation and is required
for its maintenance16, it is tempting to suggest that YAP can
also be used as a marker for the integrity of articular cartilage.
Furthermore, both YAP and Hmgb2 are transcriptional reg-
ulators and it is possible that they work co-operatively to regulate
articular cartilage homeostasis. Interestingly, Hmgb2 has been
identified as a potential transcriptional target of YAP/TEADs in
a genome-wide ChIP assay44. Their specific mechanistic inter-
actions warrant further investigation.

Our previous work demonstrated that YAP regulates multiple
steps during chondrocyte differentiation and maturation and it is
also implicated in bone repair16. In contrast to its inhibitory role
in bone repair, our current study shows that YAP attenuates
cartilage degradation during OA progression and preserves car-
tilage integrity. Indeed, YAP plays similar roles in inhibiting
chondrocyte maturation during skeletal development, postnatal
cartilage growth, and fracture healing. The impairment of carti-
laginous callus formation during bone repair is a result of inhi-
bition of chondrocyte maturation. However, during early stage of
bone repair, cell proliferation of chondroprogenitor cells and
early committed chondrocytes are increased with YAP expres-
sion. Similar results were obtained in ATDC5 cells45, and
C3H10T1/2 cells46. In addition, a recent study also showed that
YAP expression is upregulated in the Gdf5-lineage cells in the
synovium during cartilage repair47. The cell population con-
tributing to cartilage repair is dependent on and regulated by
YAP. All these findings are consistent with our current study that
YAP plays positive roles in cartilage repair.

Our work here showed that inflammatory cytokines trigger
YAP/TAZ degradation mediated by TAK1. However, both
YAP and TAK1 have been implicated in response to mechanical
stimuli. TAK1 is activated upon cartilage injury48 and YAP
activity is inhibited upon mechanical stress33. It seems that
the trigger on TAK1/YAP action is multifactorial in OA devel-
opment, in which both mechanical stress and inflammatory
stimuli will result in similar actions on TAK/YAP. As recent
views suggest that mechanical injury predisposes cartilage to
OA development and it is believed to be the most critical
etiologic factors49,50, and that mechanical injury also triggers the
secretion of inflammatory cytokines, our findings in the current
study may also be contributed by excessive mechanical load. The
involvement of TAK1/YAP actions stimulated by both mechan-
ical and inflammatory stimuli raises the importance of this
pathway to be a potential target for therapeutic strategy for OA
treatment.

Methods
Human subjects. Tibial plateau and femoral condyle specimens from human
subjects with osteoarthritis undergoing total knee joint replacement surgery were
collected with the approval by the Department of Health of Hong Kong and The
Institutional Review Board of The Chinese University of Hong Kong. Full written
consents were obtained before the operative procedure. The specimens were pro-
cessed for histological examination and were categorized according to the Inter-
national Cartilage Repair Society (ICRS) scoring system.

Mice. The Mst1f/f51, Mst2f/f51, Yap1f/f52, Col2a1-Cre53, and Col2a1-Yap116 mouse
lines have been described previously. All animal experiments were performed
according to procedures approved by the Animal Experimentation Ethics Com-
mittee of the Chinese University of Hong Kong and Zhejiang University.

Experimental OA animal models. ACLT or DMM surgery was performed using
10-week-old male C57/B6 mice at the right knee joint54,55. Briefly, 12-week-old
mice undergo the anterior cruciate ligament transection (ACLT) surgery via an
incision on the medial para-patellar of the right knee joint capsule with long-
itudinal incision on the anterior cruciate ligament (ACL) and menisci resection.
The destabilization of the medial meniscus DMM surgical instability models of
osteoarthritis is similar to the ACLT surgery but without resection of menisci. A
sham operation with the control mice of the same age was performed with a similar
incision at the right joint capsule without anterior cruciate ligament incision and
menisci resection. Animals were killed at 4 or 8 weeks after surgery. Dissected
joints were processed for either histopathological or molecular analysis.

Chemicals and reagents. Verteporfin (VP) (SML05434), MG132 (C2211), 5Z-7-
Oxozeaenol (O9890), and IL-1β (SRP6169 (human) and SRP8033(mouse)) were
purchased from Sigma. SP600125 (T3109) was purchased from TargetMol. Lyso-
phosphatidic acid (LPA) (sc-201053) was purchased from Santa Cruz. Cyclohex-
imide (CHX) (2112 s) and TNFα (5178 (mouse) and 8902 (human)) was purchased
from Cell Signaling. The Phos-tag TM Acrylamide AAL-107 was purchased from
the NARD Institute. Kinase-dead TAK1 (TAK1-KD) construct was created by
mutating lysine 63 to tryptophan. Kinase-dead IKKα (IKKα-KD) construct was
created by mutating lysine 44 to alanine. Kinase-dead IKKβ (IKKβ-KD) construct
was created by mutating lysine 44 to methionine.

Cell culture and transfection. HEK293A (ATCC), HEK293T (ATCC), and HeLa
(ATCC) cells were cultured in DMEM medium with 10% FBS. All the cells were
cultured at 37 °C in cell culture incubator with humidified environment in 5% CO2.
Lipofectamine 3000 (Invitrogen) or polythylenimine (PEI) (Polysciences) trans-
fection reagents were used for plasmid transfection. All cell lines used were tested
for mycoplasma contamination using the Mycoplasma Test Kit (Shanghai Yise
Medical Technology Co. Ltd, PM008).

CRISPR/Cas9-mediated genomic editing for knockout constructs. Guide RNA
sequences targeting TAK1, LATS1, LATS2, or YAP were cloned into the plasmids
PX459 (Addgene #62988). Constructs were transfected into HEK293A or
HEK293T cells by PEI transfection reagent. Twenty-four hours after transfection,
cells were selected by puromycin (1.5 μg/ml) for 72 h. Single colonies were picked
and identified by immunoblotting. Guide RNA, shRNA, and siRNA sequences are
listed in Supplementary Table 1.

Isolation of articular chondrocytes. Primary chondrocytes were isolated from the
P1–P3 newborn mouse according to the previous protocol56. Briefly, skin and soft
tissues were removed from the hind limb of the pups. Tibial plateau, femoral heads,
and femoral condyles were dissected and harvested under sterile conditions. The
collected tissues were washed in PBS for 20 min at 37 °C. The cartilage tissue was
digested using Collagenase type I (200 U/ml, Roche) for 20 min at 37 °C to remove
the soft tissue. Cartilage pieces were retrieved and incubated with digestion buffer
(Collagenase type I (200 U/ml) and Collagenase type D (0.5 mg/ml)) for 60 min at
37 °C. After digestion, cell suspension was subjected to centrifugation at 400×g for
5 min. Primary chondrocytes were seeded in culture plates. Only the first passage
cells were used for experiments.

RNA extraction and quantitative RT-PCR. Total RNA from cultured cells was
isolated using TRIzol Reagent (Invitrogen, USA) according to the manufacture’s
protocol. Two microgram total RNA was reversely transcribed using M-MLV
Reverse Transcript Kit (Invitrogen, USA). Quantitative PCR was then performed
using SYBR Green 2X PCR Master Mix (Applied Biosystems) on an Applied
Biosystems 7900 system (Applied Biosystems, USA). Target gene threshold cycles
(Ct values) were normalized to Gapdh as an endogenous control. The sequences of
the primers are listed in Supplementary Table 1.

Luciferase assay. Primary chondrocytes or HEK293T cells were transfected with
either pGL3-basic, NF-κB or Gal4/TEAD4-luciferase reporter plasmid together
with pRL-TK vector (Promega, USA) as reference controls using Lipofectamine
3000 (Invitrogen, USA). Cells were subjected to luciferase activity measurement as
described in Dual luciferase reporter assay kit (Promega, USA). NF-κB reporter
plasmid was a gift from Dr. Zongping Xia (Zhejiang University). Gal4/TEAD4
luciferase reporter was a gift from Dr. Bin Zhao (Zhejiang University).

SDS-PAGE, Phos-tag SDS-PAGE, and immunoblot analysis. Gels for SDS-
PAGE or Phos-tag SDS-PAGE were prepared according to the manufacturer’s
instructions (NARD Institute). Equal amount of protein was loaded into each well
and separated by SDS-PAGE or Phos-tag SDS-PAGE. After blocking in 5% milk or
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3% BSA, the membrane was incubated with primary antibody at 4 °C overnight.
The membrane was washed and subjected to incubation with the HRP-conjugated
secondary antibody for 2 h at room temperature. Antibody information is descri-
bed in Supplementary Table 2. Uncropped blot images are provided in Supple-
mentary Figure 10.

Immunoprecipitation. After transfection with indicated plasmid for 24 h,
HEK293T cell lysates were collected on ice. Twenty microliter Anti-Flag M2
magnetic beads or Anti-Myc Agarose Affinity Gel antibody was added to the lysate,
incubated at 4 °C for 8 h under gentle agitation. The beads were washed with
washing buffer for five times. Finally, the beads were eluted with 2 × SDS loading
buffer. The eluted protein was analyzed by SDS/PAGE and followed by immu-
noblot analysis.

Ubiquitination assay. Primary articular chondrocytes or HEK293T cells were
transfected with plasmids expressing Flag-YAP, Flag-IκBα, or HA-ubiquitin. Cells
were pre-treated with MG132 at 10 μM for 2 h and then treated with TNFα at 5 ng/
ml. Cell lysates were harvested and rocked with 20 μl Anti-Flag M2 magnetic beads
at 4 °C for 8 h. The beads were washed five times. Bound proteins were boiled and
analyzed by SDS/PAGE followed by immunoblot analysis. HA-ubiquitin plasmid
was donated from Dr. CHEUNG Wing Tai (The Chinese University of Hong
Kong). HA-K63-ubiquitin plasmid was a gift from Dr. Zongping Xia (Zhejiang
University).

In vitro kinase assay. HA or Flag-tagged TAK1, IKKα/β, p65 and HA-YAP
proteins were purified from HEK293T cells. GST-tagged YAP proteins were pur-
ified from E.coli by glutathione agarose slurry and eluted with glutathione. Purified
proteins were washed with kinase washing buffer (40 mM Hepes and 200 mM
NaCl, pH 7.5) for three times, and once with kinase assay buffer (30 mM Hepes, 50
mM KAC, and 5 mM MgCl2, pH 7.5). Purified kinase and YAP proteins were
mixed with ATP or ATP-γ-S (500 μM) in kinase assay buffer. After 30 min kinase
reaction in 30 °C, EDTA (final concentration 20 mM, pH 8.0) was added to ter-
minate the reaction at 30 °C for 5 min. Then, PNBM (final concentration 2.5 mM)
was added to form a thiophosphate ester side chain at 25 °C for 40 min. Western
blot was performed using anti-Thiophosphate ester antibody or phospho-specific
antibody to analyze the kinase activity.

Nano-liquid chromatography-tandem mass spectrometry analysis. Nano-
liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) analysis for
protein identification and label-free quantification was performed by Phoenix
National Proteomics Core service57. YAP proteins were trypsin digested at
37 °C for 16 h and desalted using C18 Zip-Tips (Millipore) according to the
manufacturer’s instructions. Next, the samples were resuspended in water and
subjected to LC-MS/MS. The samples were separated using in-house made 12 cm
length reverse phase columns (150 μm id) packed with Ultimate XB-C18 1.9 μm
resin (Welch materials). The liquid chromatography was performed using an Easy
nanoLC system (Thermo Fisher Scientific, USA). Phosphorylated peptides and site
quantitation were carried out based on the extracted ion current chromatograms of
the monoisotopic peaks. Tandem mass spectra corresponding to the putative
phosphorylation-modified peptides and sites were verified by manual inspection of
their fragmentation pattern.

Immunofluorescence and imaging analysis. Primary articular chondrocytes or
HeLa cells were plated on coverslips. After treatment with TNFα or IL-1β at 5 ng/
ml for 0, 15, 30, or 60 min, cells were then fixed with pre-cooled methanol on ice
for 20 min. Cells were then washed with PBST (PBS, 0.1% Triton X-100), followed
by blocking with 3% BSA at room temperature for 30 min. Cells were incubated
with primary antibodies for YAP or p65, diluted in 3% BSA at 1:100 for 2 h at room
temperature. After three washes with PBST, cells were incubated with secondary
antibodies in 3% BSA for 2 h. Nuclei were stained with 0.5 μg/ml of DAPI (PBST)
at room temperature for 10 min. Cells were mounted with ProLong® Gold Antifade
(P36930, Thermo Fisher) and viewed with a Confocal system with inverted
microscope (Olympus FV1000). Images were analyzed using the scientific software
module of Imaris.

Safranin O staining. Safranin O staining was carried out according to the previous
protocol (IHC World). The bone section slides were rehydrated to distilled water
and stained with Weigert’s iron hematoxylin for 10 min. After washing in running
water, the slides were stained with 0.05% Fast Green solution. The slides were put
into 1% acetic acid directly without washing and incubated for no more than 15 s.
Slides were stained with 0.1% Safranin O solution for 5 min. After washing in
running water for 1 min, the slides were dehydrated and cleared with 95% ethyl
alcohol, absolute ethyl alcohol, and xylene. Slides were mounted using resinous
mounting medium.

Immunohistochemistry. Immunohistochemistry was performed according to the
manufacture’s protocol of Histostain-Plus IHC Kit (Invitrogen, USA). Briefly, after
deparaffinization and rehydration, slides were quenched in 3% H2O2 in methanol,

rinsed three times in PBS. The slides were subjected to antigen retrieval using
Trypsin for 20 min at 37 °C. After washing 3 times in PBS, the slides were incu-
bated with blocking reagent for 30 min. The slides were incubated with primary
antibodies, biotinylated secondary antibodies, enzyme conjugated substrate and
developed with diaminobenzidine (DAB) chromogen.

Statistical analysis. The comparisons between multiple groups, such as OARSI
scores, were performed using multiple comparisons by one-way ANOVA followed
by Turkey’s test. For qRT-PCR data expressed as relative fold changes, Student’s t-
test and one-way ANOVA with Dunnett’s test were used for pairwise comparisons
and multi-group comparison, respectively. Results are represented as mean ± s.d. p
values < 0.05 were considered to be significant. Equal variances were assumed. All
analyses were performed with GraphPad Prism software (Version 6.0). No statis-
tical methods were used to predetermine sample size. The experiments were not
randomized and the investigators were not blinded to allocation during experi-
ments and outcome assessment.

Data availability
The mass spectrometry proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE partner repository with the dataset iden-
tifier PXD01125658. All data supporting the conclusions are either provided in the
manuscript or available from the authors upon request.
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