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Oncogenic mechanism-based

pharmaceutical validation of therapeutics
targeting MET receptor tyrosine kinase

Hang-Ping Yao, Xiang-Min Tong and Ming-Hai Wang

Abstract: Aberrant expression and/or activation of the MET receptor tyrosine kinase is
characterized by genomic recombination, gene amplification, activating mutation, alternative
exon-splicing, increased transcription, and their different combinations. These dysregulations
serve as oncogenic determinants contributing to cancerous initiation, progression,
malignancy, and stemness. Moreover, integration of the MET pathway into the cellular
signaling network as an addiction mechanism for survival has made this receptor an attractive
pharmaceutical target for oncological intervention. For the last 20years, MET-targeting
small-molecule kinase inhibitors (SMKIs], conventional therapeutic monoclonal antibodies
(TMABSs), and antibody-based biotherapeutics such as bispecific antibodies, antibody-drug
conjugates (ADC), and dual-targeting ADCs have been under intensive investigation.
Outcomes from preclinical studies and clinical trials are mixed with certain successes but
also various setbacks. Due to the complex nature of MET dysregulation with multiple facets
and underlying mechanisms, mechanism-based validation of MET-targeting therapeutics

is crucial for the selection and validation of lead candidates for clinical trials. In this review,
we discuss the importance of various types of mechanism-based pharmaceutical models in
evaluation of different types of MET-targeting therapeutics. The advantages and disadvantages
of these mechanism-based strategies for SMKIs, conventional TMABs, and antibody-based
biotherapeutics are analyzed. The demand for establishing new strategies suitable for
validating novel biotherapeutics is also discussed. The information summarized should
provide a pharmaceutical guideline for selection and validation of MET-targeting therapeutics

for clinical application in the future.
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Introduction

MET, a name abbreviated from the carcinogen
N-Methyl N nitroso guanidine from previous
studies that eventually led to the discovery of
truncated MET fused with sequences from the
translocate promoter region (TPR-MET),!
belongs to a unique subfamily of receptor tyrosine
kinases (RTKSs) with distinct structural features
and biological activities (Figure la).? The MET
gene is located in chromosome 7 (7q31.2) with
21 exons encoding a 180 kDa protein.? The MET
extracellular sequence contains several important

domains, including a semaphorin (SEMA)
domain followed by a plexin-semaphorin-integrin
(PSI) domain, and four immunoglobulin-plexin-
transcription (IPT) motifs (Figure 1b).-> The
SEMA domain harbors a ligand-binding pocket
responsible for interacting with hepatocyte growth
factor (HGF) (Figure 1c¢) and is critical for recep-
tor dimerization and subsequent phosphoryla-
tion.!~> The PSI domain acts as a wedge between
the SEMA domain and IPT motifs and facilitates
the formation of a MET homodimer with inter-
face formed by the SEMA domain from both the
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Figure 1. Schematic representation of structures of the MET gene, MET, and its ligand hepatocyte growth factor (HGF). (a) The MET
gene is located in the 7p31 locus of chromosome 7. It contains 21 exons separated by 21 introns. The classical promoter contains
two transcription factors including specificity protein 1 (SP1) and activating protein-2 (AP2])-binding elements and is responsible

for the transcription of full-length MET with 1408 amino acids. (b) MET is first synthesized as a biologically inactive single-chain
precursor (pro-MET). Proteolytic conversion is required to activate MET. Mature MET is composed of a 45 KDa a-chain and a 145
kDa B-chain linked by a disulfide bond. Structurally, the MET a-chain is an extracellular component containing a portion of the
semaphorin (SEMA) domain. The extracellular sequence of the MET B-chain contains a large portion of the SEMA domain, followed
by a plexin-semaphorin-integrin (PSI) domain, and 4 immunoglobulin-like plexin and transcription (IPT) motifs. The intracellular
sequence harbors a short transmembrane (TM) segment followed by a juxtamembrane domain (JM), a tyrosine kinase (TK] domain,
and a C-terminal tail. Regulatory tyrosine residues, Y1003 in the JM domain and Tyr'2% and Tyr'2% in the TK domain are indicated.
Also, Tyr'34? and Tyr'3% in the MET C-terminal tail, which form the functional docking site, respectively, are marked. (c) HGF is first
synthesized as a biologically inactive single-chain precursor known as pro-HGF. Proteolytic cleavage results in a biologically active
two-chain form of mature HGF. The HGF a.-chain contains a hairpin loop (HPL) followed by four kringle domains (K1 to K4). The HGF
B-chain contains a serine protease-like domain with substation of amino acids in the active site. The high-affinity MET-binding site is
in the HGF a-chain and the low-affinity MET-binding site is in the HGF B-chain.

o~chain and B-chain.! The MET intracellular
sequence consists of a juxtamembrane (JM)
domain, a tyrosine kinase (TK) domain, and a
C-terminal multifunctional docking site.!** The
JM domain contains several important amino
acid residues including Y1003, which interacts
with casitas B-lineage lymphoma (Cbl) and leads
to ubiquitin-dependent MET degradation.5 This
process is a mechanism of a negative feedback
loop, which controls the MET activation sta-
tus.1:35 The TK domain, upon phosphorylation

of Y1234 and Y1235, undergoes a conforma-
tional change resulting in increased TK activ-
ity,>* which leads to phosphorylation of two
tyrosine residues, Y1339 and Y1356, in the dock-
ing site (Figure 1b).3* The docking site is respon-
sible for recruiting adaptor molecules and
transduction of different signals to activate multi-
ple downstream signaling pathways (Figure 2).3:%

Cancerous MET expression and activation are fea-
tured by genetic recombination, gene amplification,
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Figure 2. Dysregulated MET activation, signaling pathway, and tumorigenic consequence. Activation of MET in cancer cells, in
general, is mediated through multiple mechanisms including ligand binding, activating mutation, receptor overexpression, aberrant
splicing/alternative initiation, and transactivation through other receptor tyrosine kinases such as EGFR, IGF-1R, and RON. HGF-
induced MET activation, a classical model, is functional through phosphorylation of several critical tyrosine residues and creates the
C-terminal functional docking site, which recruits cytoplasmic molecules such as SOS and GRB2. The negative modulator c-CBL, a
ubiquitin ligase, also binds the docking site and mediates MET endocytosis and degradation. Multiple signaling cascades, such as
RAS/MAP kinase, PI3K/AKT, Wnt/B-catenin, and TGF-B/SMAD pathways, are activated upon MET phosphorylation in cancer cells,
which creates a complex intracellular signaling network. The biological consequence is to induce cell proliferation with a malignant
phenotype known as EMT, which leads to increased cellular survival, invasiveness, chemoresistance, and tumorigenic stemness.
AKT, BCL-2, B cell lymphoma-2; Cbl, protein kinase B; EMT, epithelial to mesenchymal transition; GRB2, growth factor receptor-bound protein-2;
MAP, mitogen-activated protein kinase; PI3K, phosphatidyl-inositol 3 kinase; RAS, reticular activating system; Smad, small mothers against
decapentaplegic; SOS, son of sevenless; TGF-f, transforming growth factor-f.

point mutation, alternative exon-splicing, increased
transcription, increased protein accumulation, and
their different combinations (Figure 3).613 The out-
comes from these changes imply a complex picture of
MET dysregulation, which provides the opportunity
to target MET for cancer therapy.!* Currently, thera-
peutics such as small-molecule kinase inhibitors
(SMKIs) (Table 1),1527 conventional therapeutic
monoclonal antibodies (cTMABs),?833 and anti-
body-based biotherapeutics targeting MET (Table 2)
have been validated in preclinical studies and many

of them have advanced into clinical trials.34-46
Significantly, four SMKIs, crizotinib, cabozantinib,
tepotinib, and capmatinib, have been approved for
clinical application (Table 1) (www.FDA.gov).
Nevertheless, MET-targeting cTMABs, although
some of them under clinical trials for almost
10years, have made little progress. Up to now, none
of the cTMABs or antibody-based biotherapeutics
have been approved by the FDA. In addition, recent
progress in MET-targeted therapy has led to the
preclinical development of MET-specific chimeric
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Figure 3. MET dysregulations observed in cancer cells from different tissues and therapeutics suitable for
the targeted therapy. Different types of cancerous MET dysregulation are depicted in red oval circles. Various
forms of therapeutics specific to MET that are suitable for targeting MET-expressing cancer cells are indicated

in yellow boxes.

antigen receptor (CAR) T cells and natural killer
cells for the treatment of cancers overexpressing
MET.44 Moreover, dual-functioning CAR T
cells targeting both MET and programmed death-1
(PD-1) has also been described as a strategy for
therapy of solid tumors.50

The communication presented here focuses on
pathogenic mechanism-based validation of MET-
targeting therapeutics for clinical trials. Based on
complex mechanisms of MET dysregulation in
different types of cancer, our objective is to sum-
marize the latest development of strategies in
pharmaceutical validation of MET-targeting
therapeutics. Due to the page limitations, MET-
targeting CAR T-cell therapy will not be dis-
cussed in this communication. As the first step in
pharmaceutical development, mechanism-based
validation serves as a key principle in selecting
lead candidates for potential clinical trials.
Considering the biological role of MET in tumo-
rigenesis and its complex nature of dysregulation

with various underlying mechanisms, the impor-
tance of a validation strategy used in the pharma-
ceutical development process should not be
underestimated.

MET dysregulation and underlying

mechanism

Aberrant MET expression and activation during
tumorigenic progression have multiple facets with dif-
ferent underlying mechanisms (Figures 2 and 3).6-14
At present, the identified forms of MET dysreg-
ulation include DNA recombination/rearrange-
ment,1:6:55%7273  gene amplification,”’+7¢  point
mutation,®76-79 alternative exon skipping,®-80-82
somatic insertion or deletion,®0-82 increased tran-
scription,10:83-85 impaired protein degradation,!1-80-82
and abnormal protein accumulation.’-10,74-76,83-85
Several features of these abnormalities are worth
mentioning. First, the form of MET dysregulation
is different in different types of cancer.5-1¢ Second,
the majority of MET abnormalities directly lead to
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Figure 4. Activating mutations in the different functional domains of MET. (a) Various mutations in the tyrosine
kinase domain of MET. Point mutations in more than 16 amino acid residues in the kinase domain have been
documented in different types of primary cancer samples. These mutations often result in a conformational
change that facilitates the kinase domain to convert into an active mode with increased kinase activity.

(b) Missense mutations in the exon 14 ubiquitination site. The JM domain is encoded by MET exon-4. The
tyrosine residue Tyr'03 in the JM domain is responsible for the interaction with the ubiquitin E3 ligase, which
promotes MET degradation, a negative feedback mechanism for controlling levels of MET activation. The
mutation results in the inability of Tyr'93 to interact with ubiquitin E3 ligase, leading to an increase in stability
of MET. (c] Alterations in the exon-14 splice site often results in exon-14 skipping, leading to formation of a
MET slicing variant known as MET exon-14 skipping. The consequence is that this MET variant is resistant

to ubiquitin-mediated protein degradation with increased stability and kinase activity. (d] Various mutations
are documented in the SEMA domain of MET. Since the SEMA domain contains the MET-binding pocket; it is
speculated that these mutations will affect the ability of HGF binding to MET with reduced affinity. However,
pathological implication of these mutations in association with clinical oncological events currently are largely
unknown.

S-S~

splicing, particularly exon-14 skipping, is cur-
rently a hot topic due to its clinical significance
associated with oncogenesis.®80-82  Exon-14
encodes the JM domain of MET,? which regu-
lates the MET metabolic degradation through the

Cbl-directed ubiquitin pathway.%80-82 Alternative
exon-14 skipping is caused by insertion/deletion
in the acceptor or donor regions or by missense
mutations in certain tyrosine residues including
Y1003 (Figure 4). This results in the inability of
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the JM domain to interact with Cbl E3 ligase, 811,81-83
and ultimately leads to the accumulation of a
large amount of MET protein with increased sta-
bility and elevated kinase activity.”-10:80-82 The fre-
quency of MET exon-14 skipping occurs 3—4% of
patients with NSCLCs. The alteration is further
enriched in patients with sarcomatoid carcinomas
(9-22%), an aggressive subtype of NSCLC.8
The mechanism that causes cancerous MET
overexpression is complex. Transcriptional
upregulation appears to be the major cause.10:83-85
For instance, hypoxia-initiating factor (HIF)-1a
is one of the triggering factors responsible for
increased MET transcription.83 Activation of
signaling proteins such as reticular activating sys-
tem (RAS) also upregulates MET expression
through the transcriptional event.8> Moreover,
both gene amplification and exon-14 skipping are
involved in abnormal accumulation of large
amounts of MET protein.’+76:80-82 The docu-
mented MET overexpression in primary tumor
samples determined by immunohistochemical
staining include prostate cancer (~55%), gastric
cancer (~65%), HCC (~50%), CRC (~55%), tri-
ple-negative breast cancer (TNBC, ~15%), and
NSCLC (~50%).86 Thus, various mechanisms
are involved in cancerous MET overexpression.

MET therapeutics with different
mechanisms of action

Small-molecule kinase inhibitors

SMKIs discussed here are structurally designed
and chemically synthesized small molecules that
are specific to a unique kinase domain of MET
and other proteins with similar kinase structure.
The use of SMKIs has several pharmaceutical
advantages and has been clinically proven to be
effective. The principle of using SMKIs for can-
cer therapy is based on cellular oncogenic signal-
ing addiction/dependence.!5-27 Currently,
chemical design and large-scale synthesis of
SMKIs are not a technical challenge due to the
use of computer-aided structural analysis and
synthetic chemistry platforms. The use of these
advanced technologies, in general, ensure to gen-
erate MET-specific SMKIs with variable target-
ing specificity. Besides four SMKIs specific to
MET, including crizotinib, cabozantinib, tepo-
tinib, and capmatinib, that have already been
approved by the FDA (Table 1), additional
SMKIs such as AMG-337, bozitinib (APL-101),
glesatinib (MGCD265), Golvatinib (E7050),
merestinib (LY2801653), savolitinib, Sar125844,

and others appear to be promising in clinical trials
(Table 1).1527 Mechanistically, SMKIs are the
choice for inhibiting both cell-surface and intra-
cellular MET protein that displays both an inac-
tive and active status in the TK domain. An
inhibitory effect is achieved by SMKIs binding to
the critical region in the TK domain, either com-
peting with adenosine triphosphate (ATP) for
binding to the ATP-binding pockets in the TK
domain or by preventing the conversion of the
TK domain from an inactive conformation into
an active mode.!>27 Moreover, the therapeutic
activity of SMKIs is independent of HGF-
mediated MET activation regardless of the pres-
ence or absence of HGF in the tumor
microenvironment or via a cancer cell autocrine-
producing fashion. The major disadvantage of
SMKIs is that their anticancer action is heavily
dependent on the strength of MET signaling inte-
grated into the cellular signaling network and the
addictive levels acquired by cancer cells for
growth and survival.!>27 In the preclinical stud-
ies, mechanism-based validation appears to be
able to objectively determine the effectiveness of
individual MET-targeting SMKIs. Nevertheless,
in clinical trials and practice, the status of MET
signaling addiction by cancer is difficult to assess.
Although immunohistochemical (IHC) staining,
fluorescence i situ hybridization (FISH), and
next-generation sequencing (NGS) have been
used as biomarkers for patient selection,!3-80,87
these methods are unable to determine the addic-
tive status of cancer cells to MET signaling.

Therapeutic monoclonal antibodies

Therapeutic monoclonal antibodies (mAbs)
described here are defined as natural or recombi-
nant mAbs specific to MET (¢cTMABs) or to
both MET and other signaling proteins (bispe-
cific mAbs) without drug, cytotoxin, or radioiso-
tope conjugation. Both ¢cTMABs and bispecific
antibodies have been evaluated as MET-targeting
biotherapeutics. Representative c¢TMABs are
ARGX-111, emibetuzumab, onartuzumab,
SAIT301, telisotuzumab, and SymO015, which
have been in different phases of clinical trials.28-33
Anti-HGF TMABs ficlatuzumab and rilotu-
mumab are also under clinical trials.?3-°¢ However,
none of the therapeutic mAbs specific to MET or
HGTF have currently been approved by the FDA.

The objective of using cTMABs is to suppress
HGF-dependent and -independent MET activa-
tion, resulting in inhibition of cell proliferation,
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induction of cellular apoptosis, and regulation of
host immune activity.28-33:93-95 In this sense, the
induction of these activities is a biological crite-
rium for the selection of MET-targeting cTMABs
for clinical application. However, the mechanisms
of action by these cTMABSs rely on the levels of
cellular addiction to MET signaling. Preclinical
studies have demonstrated that anti-MET
¢TMABs have therapeutic activities against dif-
ferent types of cancer. Nevertheless, the observed
efficacies vary significantly among individual
TMABs tested.2833:93-95 Moreover, outcomes
from clinical studies at different phases are disap-
pointing.?3-190 Currently, conventional anti-MET
TMABES, although under clinical trials for almost
10years, have not been approved for clinical
application, mainly due to the lack of therapeutic
efficacy but not pharmacokinetic or toxicological
issues.?3-100

Five MET-based bispecific antibodies targeting
partner proteins, including EGFR, VEGFR-2,
epithelial cell adhesion molecule (EpCAM), and
programmed cell death (PD)-1, have been pre-
clinically evaluated (Table 2).343° The rationale
to select these partner targets is either to achieve
a coordinated inhibition of two signaling path-
ways or to regulate the immune response by tar-
geting immunocheckpoint molecules to enhance
anticancer activity.343° Inhibition of two signal-
ing pathways has clinical relevance for treatment
of tumors that develop resistance to chemothera-
peutics or kinase inhibitors. Similarly, restoration
of T-cell activity by targeting PD-1 is an approach
in the format of a bispecific antibody.38:39:101,102
Currently, only two bispecific antibodies, ami-
vantamab and LLY3164530 (both targeting MET
and EGFR), have entered into clinical trials
(Table 2).3%35:80,95 Amivantamab is effective in
NSCLC patients with EGFR exon-20 insertional
mutation, which has led the FDA to grant it the
Breakthrough Therapy Designation status (wWww.
FDA.gov). Interestingly, the role of amivantamab
in targeting MET is not mentioned in this group
of NSCLC patients. LY3164530 has been termi-
nated in clinical trials due to toxicity.3>

Single and dual-targeting antibody-drug
conjugates

Antibody—drug conjugates (ADCs) are a class of
targeted biotherapeutics consisting of a target-spe-
cific mAb, a versatile chemical linker, and a highly
potent cytotoxic payload.!03:104 The combination
of antibody-based antigen specificity with payload

cytotoxic potency results in an increased thera-
peutic index, favorable pharmacokinetic profile,
and acceptable toxicological activity.4-46 Up to
now, the FDA has approved nine ADCs, includ-
ing gemtuzumab ozogamicin, brentuximab vedo-
tin, trastuzumab deruxtecan, sacituzumab
govitecan and others, for oncological application
(www.FDA.gov). These ADCs target HER2,
CD22, CD30, Trop-2, and others for treatment
of various types of cancer. Currently, all MET-
targeting ADCs are still under clinical trials with-
out any approval by the FDA. The major
mechanisms of action by ADCs are mediated by
antibody-directed delivery of a cytotoxic payload
for cancer cell killing. Other activities exerted by
antibodies, such as antibody-dependent cell-
mediated cytotoxicity, are also involved in cancer
cell killing.40-46 Currently, five single targeting
ADC:s specific to MET, namely ABBV-399 (teli-
sotuzumab vedotin), SHR-A1403, TR1801-ADC,
HucMet27-based ADC, and cIRCR201-dPBD
have been preclinically validated (Table 2).40-44
The obtained results indicate that these MET-
targeting ADCs are highly effective against cancer
cellular models and patient-derived xenografts
(PDXs) that harbor different forms of MET dys-
regulation. These forms of dysregulation include
overexpression, amplification, exon-14 skipping,
and activation mutation regardless of the level of
MET signaling status involving cancer cell addic-
tion.*-4* Two MET-based dual-targeting ADCs,
including B10v5x225-H/M-vc-MMAE (targeting
both MET and EGFR) and PCMdt-MMAE (tar-
geting both MET and RON) have been preclini-
cally studied (Table 2).4546 B10v5x225-
H/M-vc-MMAE is a dual-targeting ADC specific
to both MET and EGFR.#> Preclinical studies
indicate that B10v5x225-H/M-vc-MMAE coor-
dinately binds to both MET and EGFR, blocks
ligand-induced MET and EGFR activation, and
induces both receptors to internalize. These
activities i witro result in inhibition of MET/
EGFR-mediated tumorigenic signals and cyto-
toxicity of various types of cancer cells.#> PCMdt-
MMAE is a MET and RON dual-targeting ADC
developed by PCM TargeTech in Texas.4 RON
belongs to the MET family, important in epithe-
lial tumorigenesis, and is a validated drug tar-
get.105 Results from both i vitro and n vivo
studies have demonstrated that PCMdt-MMAE
is highly effective against the growth of xenograft
tumors mediated by various types of cancers that
express different levels of MET, RON, or both
receptors with a favorable pharmacokinetic pro-
file.#6 Currently, PCMdt-MMAE is ready for
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government-regulatory approval and transition
into clinical development.

Mechanism-based evaluation

of MET-targeted therapeutics

Tremendous efforts have been made during the
last 20 years to optimize mechanism-based valida-
tion strategies for MET-targeting SMKIs and
¢TMABs.!5-33 Pharmaceutical innovation result-
ing in novel biotherapeutics also pushes for the
development of new strategies to meet validation
demands. The principle of a mechanism-based
validation strategy depends on the type of MET-
targeting therapeutics being tested. Practically,
the therapeutic efficacy of SMKIs, cTMABs, and
bispecific antibodies highly rely on the addictive
status of cellular models to MET signaling for
growth and survival.15-3° In contrast, the activity
of ADC-based biotherapeutics is associated with
levels of MET expression and sensitivity of cancer
cells to cytotoxic payloads attached to the mAb.40-46
Thus, logical selection of a proper mechanism-
based drug validation strategy is the first step
required for drug evaluation.

Increased MET expression as a validation
mechanism

Quantitative MET analysis has made this model
highly attractive for initial drug screening. For
instance, 49 gastric cancer cell lines with inte-
grated genomic profiling have been analyzed to
establish a pattern of MET expression as a refer-
ence.!% Moreover, MET amplification, HGF
production, and expression of other oncogenic
kinases such as RAS, EGFR, HER2, and PI-3
kinase have been matched in many individual cell
lines.1%® The use of this 49-cell-based model is
highly valuable for validating various types of
MET-targeting therapeutics, particularly ADCs,
which depends on the level of MET expression
and their subsequent internalization for deliver-
ing cytotoxic payloads. As indicated in a previous
study, the ADC-mediated responsiveness in vitro
is proportionally correlated with levels of cancer-
ous MET expression.¥® A similar correlation
trend has also been observed in animal studies, in
which the effectiveness of MET-targeting ADCs
is positively correlated with xenograft tumors
expressing different levels of MET expression.40-44
Moreover, the use of advanced drug-linker tech-
nologies and the selection of highly potent pay-
loads have dramatically lowered the threshold of
MET expression required for an ADC to exert

significant cytotoxicity.4>4* These observations
have potential implication in clinical trials for
selecting patient populations showing variable
levels of MET expression.

Levels of MET expression as a validation marker
has limitations. Increased MET expression is
only a phenotypic appearance, which reflects only
alterations by a particular genetic or cellular path-
way. However, these aberrations, alone or in
combination, contribute to increased MET
expression.t-1474-76,83-85  Importantly, levels of
MET expression, including overexpression, are
not equivalent to a MET-dependent or addictive
status by cancer cells.8¢:87 Nevertheless, overex-
pression indeed results in MET phosphorylation
with activation of downstream signaling path-
ways, which leads to increased cellular activities
such as malignant phenotypes.’%5%73-85 However,
the detection of MET signaling activation by no
means implies that cancer cells are addicted to
MET for growth and survival.86-87 Clinical studies
show that increased MET expression is not
directly associated with the efficacy of MET-
targeted therapy wusing either SMKIs or
cTMABs.8%87 The lack of signaling addiction or
low levels of MET signaling addiction is the major
reason for the inefficacy of MET-targeted thera-
peutics regardless the level of MET expression.
Thus, MET overexpression is not a reliable bio-
marker and performs poorly for predicting clini-
cal benefits for MET-targeting SMKIs and
conventional TMABs.15-33,86,87

MET amplification as a validation mechanism

Validation of therapeutics for MET-amplified
tumors is an essential pharmaceutical step.
Amplification is a distinctive feature of MET dys-
regulation and often shows increased signaling
activation with advanced oncogenesis.’+76
Currently, more than 20 cancer cell lines harbor-
ing variable degrees of amplification (Table 3)
have been used to evaluate the effectiveness of
MET-targeting therapeutics.!>-33 This evaluation
has helped identify those, such as AMG-337, that
are highly effective against tumor models caused
by MET-amplified cancer cells.!® The cellular
MET amplification model is also suitable for
analysis of MET-targeting cTMABSs, bispecific
antibodies, ADCs, and dual-targeting ADCs.
This is mainly due to MET overexpression by
MET-amplified cancer cells. In this sense, the
pharmaceutical principle of applying the MET-
amplified validation strategy is highly similar to
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that showing MET overexpression as described
above. Regardless, results from using both MET-
amplified cell lines and PDXs in testing the effi-
cacy of MET-targeting TMAB SymO015, and
ADCs TR1801, ABBV-399, and SHR-A1403
have proven that this model is highly
reliable.33:42-46

The limitation of the MET-amplified validation
model is the extremely low frequency of MET
amplification in clinical samples.”476:86:87 In this
sense, the use of MET amplification as the bio-
marker for patient selection is a challenge. It
requires to have an advanced laboratory with
sophisticated technologies for performing FISH,
NGS, and other methods, resulting in an increase
in clinical cost and expenditures. In addition,
cancer cells with MET amplification are not
always responsive to SMKIs or conventional
TMABs. As described above, certain proteins
with oncogenic mutations in the MET signaling
pathway with disruptive cascades can support
cancer cell growth and survival independent of
the presence of MET-targeting SMKIs or
cTMABs.21:107

MET exon-14 skipping as a validation

mechanism

The use of MET exon-14 skipping as a validation
approach has gained special attention due to
exciting results from MET-targeted clinical trials
of NSCLCs.22:108,109 QOncogenic evidence has
shown that MET exon-14 skipping acts as a vital
oncogenic driver,198:109 but its frequency is low
with minor occurrence in lung (~4%), stomach
(~7), and colorectal (~5%) cancers.!0%10% These
observations suggest that cancer patients with
MET exon-14 skipping is a particular population
suitable for MET-targeted therapy.

Currently, the cellular models that truly reflect
the oncogenic effect of MET exon-14 skipping
are still lacking. Only two cell lines, Hs746T and
NCI-H596, have MET exon-14 skipping (Table
3). However, Hs746T cells are accompanied with
MET overexpression and gene amplifica-
tion.108:109 Tn contrast, levels of MET expressed
by H596 cells are relatively low (Table 3). Thus,
precaution must be taken in interpretation of
results from using these two cell lines.
Establishment of a mouse model expressing
mouse MET exon-15 deletion (equivalent to
human MET exon-14 skipping) through a molec-
ular approach has been reported resulting in the

formation of mouse lung adenoma, but not ade-
nocarcinoma.!!? The use of this animal model has
shown that crizotinib is able to stabilize tumor
progression but the efficiency is relatively low.110
Two PDX models with confirmed MET exon-14
skipping, namely LU2503 and 1.LU5381, are avail-
able from Crown Bioscience (www.
crownbiscience,com). They have been tested for
their responsiveness to MET-targeting SMKISs,
such as glesatinib,??2 and to cTMABs including
Sym015.35 Their pharmaceutical values are con-
firmed from results showing the responsiveness of
both models to the action of MET-targeting
SMKIs and conventional TMABs.?2:33

MET mutation as a validation mechanism

The strategy using single or multiple MET
mutation(s) as a model to validate MET-targeting
therapeutics has not been reported in detail. Only
a subset of MET point mutations found in papil-
lary renal cell carcinoma, such as V1092I,
H1094R, and others, have been tested with an
enzymatic assay for the action of several
SMKIs.22:255L111 Ag shown in Figure 4, numer-
ous MET mutations in the different domains of
MET have been identified. Results from preclini-
cal studies have confirmed the role of MET muta-
tions in tumorigenesis.8%87 Nevertheless, it is
probably not practical to test the responsiveness
of individual mutations to determine efficacies of
MET-targeting therapeutics. The lack of availa-
ble cell lines is probably due to the overwhelming
numbers of MET mutations discovered in differ-
ent regions of the MET sequence. With the grow-
ing interest in development of novel
MET-targeting therapeutics, it is hoped that a
strategy will be developed to validate MET-
targeting therapeutics using models harboring
individual mutations in the critical region of MET
sequences/domains.

PDXs with defined MET dysregulation as a
validation strategy

The use of PDXs with different MET dysregula-
tions has been a favored choice for the last several
years.22:29:32,33,41,42,51 The underlying reasons are
obvious, owing to pathogenic features of PDXs
highly resembling those from primary tumors.
Currently, MET-based PDX models derived
from lung, gastric, CRC, and head & neck can-
cers with MET overexpression, amplification and
exon-14 skipping have been established.?2:29,32,33:41,42,51
SMKIs, cTMABs, and ADCs have all been tested
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in PDX models with acceptable therapeutic
responsiveness.22.29:32,33,:41,42,51 For instance, gle-
satinib at a therapeutic dose of 60 mg/kg is highly
effective against PDX LU2503 and LU5381
models with MET exon-14 skipping.2? Similarly,
TR1801-ADC, a second-generation MET-
targeting ADC at a single-dose injection of 0.125
to 1mg/kg, has been validated in PDX models
derived from stomach, CRC, and head & neck
cancer samples with demonstrated therapeutic
activity.#2 Thus, PDX models are an exciting
addition to the list of currently used validation
strategies and should have pharmaceutical
advantages in conjunction with traditional mod-
els for objectively evaluating MET-targeting
therapeutics.

Additional MET alterations as a validation
mechanism

Development of novel MET-targeting thera-
peutics, such as bispecific antibodies and dual-
targeting ADCs, demands a proper strategy for
validation. A MET-based bispecific antibody has
a co-targeting antigen-binding arm that regulates
the partner signaling pathway or T-cell activity,
respectively.34+39 Validation of these agents
requires selection of proper cellular models to
determine anticancer activities of both antigen-
binding arms. Several models including PDX-
derived ex vivo 3D spheroids have been developed
to evaluate the efficacy of MET-targeting thera-
peutics such as TR1801-ADC.3*+% However,
comprehensive analyses at mechanistic levels of
these models in terms of the strength of signaling
integration, levels of addictive status, biological
responsiveness, and activity coordination have
not been studied in detail. For instance, efficacies
of three MET-based bispecific antibodies target-
ing PD-1, as evaluated in several cellular models,
are not impressive in terms of tumor growth inhi-
bition and levels of T-cell activation.3%3° Thus,
the complexity in mechanism of action and tumo-
rigenic feature included in the models must be
considered to objectively evaluate the efficacy of
these novel MET-targeting therapeutics.

Pharmaceutical criteria for mechanism-

based drug validation

Utilizing a mechanism-based validation strategy
has significantly contributed to the progress and
success in the development of MET-targeting
therapeutics. Approval of four SMKIs by the
FDA is an example. Nevertheless, strategies used

to validate the efficacy of MET-targeting
cTMABs appear to have some issues. Results
from preclinical studies seem to be promising;
however, outcomes from clinical trials, which
have been conducted for almost 10years, are dis-
appointing.28-33 This raises serious concerns
about the reliability of these strategies for validat-
ing MET-targeting cTMABs. Thus, it is time to
evaluate current approaches in order to identify
deficiencies that cause unobjective conclusions,
and to avoid mistakes of moving these unjustified
MET-targeting TMABs into clinical trials. The
following is a summary of criteria to be consid-
ered when a mechanism-based validation strategy
needs to be applied.

It is vital to select a mechanism-based validation
strategy that suits the purpose of a particular ther-
apeutic to be tested. MET dysregulation occurs pre-
dominantly in certain types of tumors such as those
from stomach, lung, kidney, and liver.>1,5572-92
The majority of validation programs have pre-
determined objectives favoring particular types of
cancer. Dependent on the nature of drug candi-
dates, some studies screen drug efficacy by
employing a large number of cancer cell lines in
order to find defined MET-targeting activity. For
instance, AMG-337, a type I, ATP-competitive,
and highly MET-selective SMKI, has been pro-
filed against a diverse panel of 260 cancer cell
lines.!® Only two cell lines, SNU-5 and Hs746T
with MET amplification, have shown sensitivity
to AM-337.1° Studies then focused on cellular
models with MET amplification for further vali-
dation.!® In contrast, other studies have utilized
an approach of focusing on a unique MET abnor-
mality. An example is glesatinib, a unique type II
MET SMKI, which is evaluated in lung cancer
models harboring MET exon-14 skipping and
mutation-associated resistance to type I MET
SMKIs.22 Such a focused strategy increases the
potential for selecting a lead candidate moving
into clinical trials. Thus, selection of a mecha-
nism-based validation strategy must be consid-
ered in a balanced way.

Understanding the mechanism of MET dysregu-
lation helps in selecting a proper validation strat-
egy. The mechanism of action exhibited by
individual MET-targeting therapeutics is funda-
mentally different. For instance, type I and II
SMKIs act at different regions in the TK domain
of MET with different structure conformations
(active versus inactive).1>27 As described above,
the TK domain of MET can be activated under
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various conditions and manifested through single
or multiple events.5%72-91 In this sense, cellular
models featured by HGF-dependent and inde-
pendent MET activation have to be carefully
selected before different types of MET-targeting
SMKIs are applied. Similarly, different MET-
targeting TMABSs that bind to different regions in
the MET extracellular sequences result in differ-
ent biochemical impacts, such as preventing HGF
binding, inducing MET internalization/degrada-
tion, attenuating MET signaling, or enhancing
immune regulatory activity.28-46 All these activi-
ties must be considered when a validation strat-
egy is selected.

The status of cellular MET signaling integration/
addiction in individual cellular models is a factor
determining the success of a validation strategy.
The therapeutic efficacy of MET-targeting
SMKIls, cTMABs, and bispecific antibodies is
highly dependent on the level of addictiveness of
the cancer cell to MET or partner protein signal-
ing for growth and survival.2846 In preclinical
studies, many MET-targeting SMKIs and
TMABs display only moderate inhibitory effects
on cellular models showing limited levels of
addiction. Clearly, these “positive results” are not
sufficient to be reflected in clinical trials. In con-
trast, only those showing the strongest anticancer
activity with complete growth inhibition in cellu-
lar models with full MET signaling addiction
have the chance to achieve an objective response
in cancer patients.?8-4¢ Thus, studies validating
SMKIs, ¢TMABs, and bispecific antibodies
should select cellular models that exhibit full
MET-signaling addictive status.

Consideration of acquired drug resistance is
another strategy for validation of MET-targeting
therapeutics. Aberrant MET expression and sign-
aling have been established as a compensation
mechanism during the treatment of cancer with
SMKIs targeting EGFR and other signaling pro-
teins.1%! The compensated MET pathway signifi-
cantly contributes to the acquired drug resistance
in various types of cancer undergoing chemo and
targeted therapy.!°! In this sense, targeted inhibi-
tion of MET signaling using SMKIs or antibody-
based biotherapeutics has clinical relevance. The
use of MET-targeting SMKIs for treatment of
tumors resistant to EGFR inhibitors is currently a
recommended clinical practice. Demonstration of
the effectiveness of antibody-based biotherapeu-
tics to these drug-resistant tumors is also an objec-
tive in the validation procedures, and is highly

anticipated in many MET-targeting clinical trials.
Clinically, different types of cancer with variable
levels of drug-resistant phenotypes have different
drug sensitivity and/or treatment profiles. In this
sense, the use of drug resistance as a biological cri-
terium to validate the effect of MET-targeting
therapeutics should be highly recommended.

Last but not least is the strategy of using MET-
targeting therapeutics to target cancer stem cells
to achieve a therapeutic objective. Aberrant MET
expression and activation contribute to cancer
stemness in certain types of cancer.!12-115 For
instance, increased MET expression in cancer
stem cells from CRC and glioblastoma contrib-
utes to malignant phenotypes and behaviors,112-115
which has therapeutic value. Thus, the use of
MET-targeting ADCs that have mechanisms of
action independent of signaling addiction is an
attractive approach to eradicate cancer stem cells
as a therapeutic objective. ADCs targeting other
RTKs, such as RON and leucine-rich repeat-con-
taining G protein-coupled receptor 5 (LGRS5),
are examples for eradicating cancer stem
cells.116:117 Thus, the same strategy should be
applied to determine the effectiveness of MET-
targeting ADCs to kill cancer stem cells. The out-
come will help us not only dissect the pathogenic
role of MET in oncogenesis, but also broaden our
understanding about the underlying mechanism
of MET-targeting therapeutics in clinical
application.

Conclusion

Pathogenic mechanism-based evaluation of dif-
ferent types of MET-targeting therapeutics is
critical to select and validate lead candidates for
clinical trials and approval for patient application.
Technological innovation resulting in novel ther-
apeutics also requires appropriate new models to
meet the pharmaceutical demand. During the last
20years, the achievement in dissecting oncologi-
cal MET dysregulation and its underlying mecha-
nism has significantly improved the quality of
mechanism-based validation by using well-
defined models with characterized biochemical
and biological features. These models not only try
to mimic the clinical complexity of MET-driven
tumorigenesis, but also serves as a pharmaceuti-
cal tool for drug screening and evaluation. At pre-
sent, novel MET-targeting biotherapeutics, such
as bispecific antibodies, ADCs, and dual-target-
ing ADCs, have emerged as new players in MET-
targeted cancer therapy.3©-5%72 The mechanisms
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of action by these biotherapeutics are different
from previously established SMKIs and cTMABs.
Thus, development and optimization of novel
mechanism-based drug validation strategies is an
urgent need, which will greatly facilitate the clini-
cal approval of MET-targeting therapeutics for
oncological application.
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