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Abstract

This study examined the suitability of sigmoidal (SIG) and exponential (EXP)

functions for modeling HR kinetics at the onset of a 5-min low-intensity

cycling ergometer exercise test (5MT). The effects of training status, absolute

and relative workloads, and high versus low workloads on the accuracy and

reliability of these functions were also examined. Untrained participants

(UTabs; n = 13) performed 5MTs at 100W. One group of trained participants

(n = 10) also performed 5MTs at 100W (ETabs). Another group of trained

participants (n = 9) performed 5MTs at 45% and 60% _VO2 max (ET45 and

ET60, respectively). SIG and EXP functions were fitted to HR data from

5MTs. A 30-s lead-in time was included when fitting SIG functions. Functions

were compared using the standard error of the regression (SER), and test-ret-

est reliability of curve parameters. SER for EXP functions was significantly

lower than for SIG functions across all groups. When residuals from the 30-s

lead-in time were omitted, EXP functions only outperformed SIG functions in

ET60 (EXP, 2.7 � 1.2 beats�min�1; SIG, 3.1 � 1.1 beats�min�1: P < 0.05).

Goodness of fit and test–retest reliability of curve parameters were best in

ET60 and comparatively poor in UTabs. Overall, goodness of fit and test–retest
reliability of curve parameters favored functions fitted to 5MTs performed by

trained participants at a high and relative workload, while functions fitted to

data from untrained participants exercising at a low and absolute workload

were less accurate and reliable.

Introduction

In both athletic and clinical populations there is no sim-

ple and reliable measure of an individual’s response to

training in order to inform the immediate and long-term

training adjustments required to optimize performance

(Buchheit 2014). Heart rate (HR) indices such as resting

HR, HR variability, and postexercise HR recovery have

received some use for this purpose (Buchheit 2014; Bel-

lenger et al. 2016). Recently, studies have sought to model

HR on-kinetics at the onset of constant load exercise in

order to estimate HR acceleration, and thus provide a

level of assessment of the ability of the autonomic ner-

vous system to rapidly meet the hemodynamic demands

of exercise (Hettinga et al. 2014; Nelson et al. 2014;

Thomson et al. 2016). Commonly, an exponential curve

type is used to model the HR response at the onset of

exercise, with monophasic functions used for trained

individuals exercising at intensities up to 60% of _VO2

max (Krzeminski et al. 1991; Feroldi et al. 1992). At
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higher exercise intensities biphasic models may be more

suitable due to a rising sympathetic contribution follow-

ing initial vagal withdrawal (Feroldi et al. 1992). Recently,

the accuracy of sigmoidal curves fitted to HR data leading

up to, and during, steady-state exercise has also been

investigated, with the aim of providing a more accurate

estimation of autonomic responsiveness (Thomson et al.

2016).

Cross-sectional studies have shown that trained athletes

have a more rapid HR acceleration (i.e., time constant) at

the onset of exercise than sedentary controls (Feroldi

et al. 1992; Winlove et al. 2010; McNarry et al. 2011).

Moreover, in triathletes the acute fatigue induced by a

single 2-h training session has been shown to decrease the

maximal rate of HR increase (rHRI) estimated from the

first derivative of both exponential and sigmoidal func-

tions (Thomson et al. 2016). Perhaps more importantly,

in cyclists and triathletes the change in the rHRI follow-

ing 2 weeks of increased training load has been shown to

correlate with the change in the performance of a 5-min

cycling time trial (Nelson et al. 2014; Bellenger et al.

2015). However, notwithstanding these findings limited

research has been undertaken to determine the optimal

test characteristics and methods of analysis of HR acceler-

ation data obtained from the onset of exercise. While pre-

vious research has demonstrated that only the rHRI

derived from a sigmoidal curve tracked changes in exer-

cise performance when controlling for differences in base-

line HR (Thomson et al. 2016), the reliability and

goodness of fit of exponential and sigmoidal functions

remain equivocal, while the influence of individual train-

ing status and the relative workload of the exercise stimu-

lus have not been examined (Nelson et al. 2014; Bellenger

et al. 2015; Thomson et al. 2016).

A previous investigation of rHRI test–retest reliability

demonstrated some disparity between sigmoidal and

exponential functions (Thomson et al. 2016). When HR

data from 13 trained male cyclists were fitted to a sig-

moidal function, the coefficient of variation (CV) for

rHRI was 6.3% for a 5-min 100W cycling test (Nelson

et al. 2014; Thomson et al. 2016). However, a subsequent

analysis of exponential functions fitted to HR data from a

group of 14 male triathletes demonstrated a CV for rHRI

of 13.6% (Thomson et al. 2016). Several different metrics

can be used to determine goodness of fit, including the

coefficient of determination (r2), the mean square error

(MSE), and the standard error of the regression (SER)

(Bitondo et al. 2011). Indeed, the data collected for the

5-min 100 W cycle test from triathletes showed on aver-

age that a sigmoidal function produced a higher r2 than

the exponential function, despite no difference in the

MSE (Thomson et al. 2016). However, there are questions

regarding the validity of the use of r2 for nonlinear

regressions (Spiess and Neumeyer 2010). Critically, in

nonlinear regressions the assumption that the total sum

of squares is equal to the explained sum of squares plus

the residual sum of squares is not met (Anderson-Spre-

cher 1994). In addition, the previous comparison of func-

tions included HR data during a 30-s lead-in period to

the 5-min cycle test when fitting with sigmoidal functions

but not when fitting with exponential functions. The

result was markedly different mean HR values throughout

the recording period between the two function types and

greater total sum of squares and favorable r2 values in sig-

moidal functions (Thomson et al. 2016). In comparing

such functions it may instead be advantageous to consider

the use of SER, which represents the standard deviation

of data about the regression line and is measured in the

same units as the independent variable (i.e., HR

in beats�min�1) (Manache and Melching 2008; Bitondo

et al. 2011). This approach permits more informative

comparisons of sigmoidal and exponential functions, as

the limitations of comparing functions fitted to HR data

with differing means are overcome.

With regard to the test characteristics, prior studies

only examined HR on-kinetics for a cycling test with an

absolute workload (100 W) without consideration of fit-

ness and subsequent use of a relative workload (Nelson

et al. 2014; Bellenger et al. 2015; Thomson et al. 2016).

While the influence of individual training status and the

relative workload of the exercise stimulus has been specu-

lated (Bellenger et al. 2015), it has not been experimen-

tally examined. Research also suggests that there may be

merit in using a greater workload for such tests given that

reductions in the rHRI have been more strongly associ-

ated with performance when measured during a 5-min

treadmill running test performed at a higher relative

intensity (Bellenger et al. 2015). Similarly, when compar-

ing the HR response of marathon runners during exercise

at 30% and 60% of maximum oxygen uptake ( _VO2

max), the HR overshoot effect was reduced at 60% of
_VO2 max, which appears to support the notion that

higher intensities may be better suited for modeling the

changes in HR at the onset of exercise (Feroldi et al.

1992). Determining the most accurate and reliable

method to model HR kinetics at the onset of exercise is

likely to have relevance in applied scenarios where knowl-

edge of changes in HR kinetics may provide a basis for

real-time modifications of athlete training load.

While evidence suggests using a sigmoidal function and

a test exercise intensity that is relatively high to model

HR at the onset of exercise, no study has compared the

suitability of sigmoidal with exponential functions on the

basis of SER and test–retest reliability of curve parameters

in the context of different exercise intensities and levels of

aerobic fitness. Therefore, the aims of this study were to
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determine the suitability of sigmoidal versus exponential

functions to assess HR kinetics at the onset of exercise

using SER values and reliability of curve parameters. In

addition, to examine the effect of training status (fitness),

use of an absolute versus relative cycling workload, and

use of a high versus low cycling workload on these func-

tions for modeling HR kinetics at exercise onset.

Methods

Participants

A total of 32 male participants were recruited to partici-

pate in this study. Of these, 13 were untrained (UT,

23 � 2 year, 181.7 � 5.3 cm, 76.5 � 6.8 kg, 51 �
5 mL�min�1�kg�1, mean � SD) and 19 were endurance

trained (ET, 28 � 6 year, 180.6 � 8.3 cm, 76.1 � 8.7 kg,

60 � 6 ml�min�1�kg�1, mean � SD). Participants were

considered endurance trained if involved in competitive

cycling or triathlon training on at least 3 days per week.

UT participants had not undertaken a structured exercise

program for at least the previous 6 months. Prior to

inclusion, participants provided written informed consent

and completed a prescreening health questionnaire. Par-

ticipants were excluded if presenting with musculoskeletal

or neurological injury, vascular disease, or if currently

taking prescribed medication for blood pressure control.

The study was approved by the Deakin University Human

Ethics Advisory Group.

Study design

A diagrammatic representation of the study design is

shown in Figure 1. All participants were required to

attend the laboratory for one familiarization session and

two testing sessions, each separated by 1 week. A ran-

domly assigned subset of ET participants (n = 9,

28 � 7 year, 180.4 � 10 cm, 77.2 � 10.7 kg,

58 � 6 mL�min�1�kg�1, mean � SD) subsequently com-

pleted an additional two testing sessions (four sessions in

total), each separated by 1 week. Participants were asked

to refrain from consuming caffeine and alcohol on the

day of each session, and from vigorous exercise in the

48-h preceding each session. The familiarization session

comprised measurements of anthropometric variables

(height and body mass), after which an incremental

cycling test to volitional exhaustion on an electronically

braked cycle ergometer (Excalibur Sport, Lode; Gronin-

gen, the Netherlands) controlled by a computer-running

Lode Ergometry Manager software (LEM 9.3.1.0 Lode

B.V., Groningen, The Netherlands) was performed to

determine maximal oxygen uptake ( _VO2 max) and venti-

latory threshold (VT).

Each testing session required participants to complete

a 5-min low-intensity exercise test (5MT) on the cycle

ergometer. UT (n = 13) performed the 5MT at an abso-

lute intensity of 100 W (UTabs). ET participants were

randomly assigned to perform the 5MT at either an

absolute intensity of 100 W (ETabs, n = 10, 29 � 5 year,

180 � 6.7 cm, 74.7 � 5.8 kg, 62 � 6 mL�min�1�kg�1,

mean � SD) or at relative intensities of both 45% _VO2

max and 60% _VO2 max (ET45 and ET60, respectively,

n = 9, 28 � 7 year, 180.4 � 10 cm, 77.2 � 10.7 kg,

58 � 6 mL�min�1�kg�1, mean � SD), thus completing

two tests at each intensity. These relative intensities were

chosen given that 45% _VO2 max for trained individuals

approximates a workload of 100 W, while 60% _VO2

max elicits a sufficient sympathetic response to limit the

HR overshoot phenomenon that occurs with submaxi-

mal intensity exercise when there is a feeble sympathetic

response (Feroldi et al. 1992). The HR overshoot effect

results in a notch in the HR on-response at the begin-

ning of exercise, making it less conducive to a monoex-

pontential curve fitting process (Feroldi et al. 1992). For

ET45 and ET60, 5MT intensity was randomized to mini-

mize the influence of learning effects over the four test-

ing sessions on outcome measures. HR was continuously

recorded throughout the testing session on a beat-to-

beat basis (RS800cx, Polar Electro; Kemple, Finland) for

subsequent analysis of the HR kinetic response to the

5MT.

Procedure

Incremental cycling test to exhaustion

The incremental cycling test to exhaustion commenced at

a workload of 75 W and increased by 50 W every 3 min.

After 9 min, workload increased by 25 W every 1 min

until volitional fatigue. Breath-by-breath gas exchange

was measured throughout the test using an Innocor meta-

bolic system (DK-5260, Innovision, Odense, Denmark) to

determine _VO2 max: VT was determined using the V-

slope method (Beaver et al. 1986).

5MT

The 5MT required participants to sit resting on the

cycle ergometer for a 30-s period and then cycle at a

predetermined power output for 5 min. The cycle

ergometer was set to pedal rate independent mode and

participants were allowed to select their own cadence

within the range 80–100 rpm. Participants were una-

ware of the starting time of each 5MT so as to avoid

an anticipatory increase in HR prior to the test (Krogh

and Lindhard 1913).
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Data management and statistical analyses

HR kinetics

Beat-to-beat HR data recorded during each 5MT were

transferred to Table Curve 2D software (SYSTAT Software

Inc., San Jose, California, USA) and fitted to a sigmoidal

function according to equation (1) (SIG), and a monoex-

ponential function according to equation (2) (EXP) using

a nonlinear least squares approach.

HR beats �min�1
� � ¼ aþ A

1þ e�sSIGðt�HR50Þ

� �
(1)

HR beats �min�1
� � ¼ aþ A 1� e

�ðt�TDÞ
sEXP

� �
(2)

a, baseline HR value (beats�min�1); A, amplitude of HR

response (beats�min�1); t, time (s); HR50, time at which

half of HR response amplitude was reached (s); TD, time

delay before HR increases sharply (s); sSIG, SIG function

curvature parameter (s); sEXP, EXP function curvature

parameter (s).

Equations (1) and (2) were inputted as user-defined

functions in the Table Curve 2D software equation set.

For SIG, beat-to-beat HR data from the 30-s prior to

the commencement of the 5MT were included in the

5MT HR data and were included in the curve fitting

process. For both the SIG and EXP functions graphical

adjustment was performed prior to fitting to determine

appropriate starting estimates and constraints for each

parameter (Findlay and Dillard 2007). Where the initial

fitting process yielded a baseline HR value outside a

range encompassed by �1.96 SD from the average HR

during the 30-s resting period prior to the commence-

ment of cycling, baseline HR was constrained to fit

within this range. For EXP functions, where the initial

fitting process yielded a TD value outside the range 0–5
s, the TD was then constrained to fit within this range

as this is the typical TD range for the HR response to

increases in workload (Broman and Wigertz 1971; Miya-

moto et al. 1982).

The rHRI (beats�min�1�s�1) was determined from the

first derivative maxima from the SIG and EXP functions

according to equation (3) and equation (4), respectively.

rHRI beats �min�1 � s�1
� � ¼ A sSIG e�sSIG t�HR50ð Þ� �� �

e�sSIG t�HR50ð Þ þ 1ð Þ2
(3)

Figure 1. Overview of study design.
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rHRI beats �min�1 � s�1
� � ¼ A

e
�1 t�TD

sEXP

� � !

sEXP
(4)

Statistical analyses

All data are expressed as mean � SD unless otherwise

stated. The goodness of fit for the SIG and EXP func-

tions fitted to 5MT HR data was assessed using the stan-

dard error of the regression (SER). SER was calculated

by taking the square root of the mean square error

(MSE) of each function fitted to HR data. A time-

adjusted SER was also determined for SIG functions by

excluding residuals during the 30 s of the 5MT prior to

commencement of exercise to allow for more meaningful

comparison of the goodness of fit between SIG and EXP

functions. Within-group comparisons of SER, time-

adjusted SER, baseline HR, HR amplitude, and rHRI val-

ues between SIG and EXP functions were performed

using a paired sample t-test. The curve parameters HR50,

TD, sSIG, and sEXP were excluded from within-group

comparisons, as these parameters were not common

across SIG and EXP functions. Prior to paired sample

t-test analysis, the distribution of each variable was

examined with a Shapiro–Wilk normality test. In

instances where data were skewed a log transformation

was performed to allow parametric statistical compari-

son. Between-group comparisons of SER, time-adjusted

SER, curve parameters, and rHRI values for SIG and

EXP functions were performed using a one-way

ANOVA, except in the case of comparisons between

ET45 and ET60 data, where a repeated-measures one-way

ANOVA was used. Significant effects were examined

using the Tukey–Kramer post hoc test. Data that vio-

lated the Levene test of homogeneity were log trans-

formed prior to analysis.

Coefficients of variation (CV) and Bland–Altman’s lim-

its of agreement (LoA) (�1.96 SD) were calculated for

SER, time-adjusted SER, curve parameters, and rHRI for

SIG and EXP functions fitted to 5MT HR data to assess

test–retest reliability.

Results

Incremental cycling test to exhaustion

5MT cycling workloads, _VO2 max, and VT data for all

groups are shown in Table 1. Fitness ( _VO2 max) and VT

were greater for all ET groups compared with UTabs, and

while 5MT cycling workloads were similar between UTabs,

ETabs, and ET45, these were all lower than for ET60.

Goodness of fit

SER

SER was significantly lower for EXP compared with SIG in

all groups (P < 0.05) (Table 2). SER for UTabs was signifi-

cantly greater than all other groups for both SIG and EXP

(SIG, 6.5 � 1.7 beats�min�1; EXP, 6.1 � 1.6 beats�min�1:

P < 0.05). Only for EXP was SER significantly lower for

ET60 (2.7 � 1.2 beats�min�1) compared with ETabs

(3.9 � 1.1 beats�min�1: P < 0.05). Test–retest reliability

for SIG appeared better in ETabs (17% CV, 95% LoA -1.8-

0.7) and ET60 (17% CV, 95% LoA -1-1.6) compared with

UTabs (21% CV, 95% LoA -4.1-3.5) and ET45 (29% CV,

95% LoA -2-2.5).

Time-adjusted SER

For UTabs, ETabs, and ET45 groups, time-adjusted SER

was not different between SIG and EXP. However, for

ET60 time-adjusted SER was greater for SIG (3.1 � 1.1

beats�min�1) compared with EXP (2.7 � 1.2 beats�min�1:

P < 0.05). Time-adjusted SER for SIG was significantly

greater in UTabs (6.4 � 1.7 beats�min�1) than all other

groups (P < 0.05). Test–retest reliability for SIG appeared

best in ET60 (16% CV, 95% LoA -0.99-1.4).

Curve parameters

Baseline HR

Baseline HR was not different between SIG and EXP for

ETabs and ET45. However, baseline HR for UTabs and

ET60 was lower for SIG than EXP (69 � 14 beats�min�1

vs, 76 � 16 beats�min�1 and 72 � 11 beats�min�1 vs.

79 � 9 beats�min�1, respectively: P < 0.05). Test–retest

Table 1. _VO2 max, VT, and workload data from incremental

cycling test to exhaustion.

Group

_VO2 max

(mL�min�1�kg�1)

VT

(mL�min�1�kg�1)

Workload

(W)

UTabs 51 � 5 39 � 4 100 � 0

ETabs 62 � 6* 50 � 5* 100 � 0

ET45 58 � 6* 48 � 8* 104 � 13

ET60 58 � 6* 48 � 8* 162 � 19†

All values expressed as mean � SD. UTabs: Untrained, absolute

intensity; ETabs: Endurance trained, absolute intensity; ET45: Endur-

ance trained, 45% _VO2 max; ET60: Endurance trained, 60% _VO2

max.
*Significant difference versus UTabs (P < 0.05).
†Significant difference versus UTabs, ETabs, and ET45 (P < 0.05).
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Table 2. Goodness of fit, curve parameters, and rate of heart rate increase mean � SD and test–retest reliability for SIG and EXP curves

across all groups.

SIG EXP

95% Limits of agreement 95% Limits of agreement

Mean � SD CV (%) Bias (� 1.96 SD) Mean � SD CV (%) Bias (� 1.96 SD)

SER (beats�min�1)

UTabs 6.5 � 1.7 21 �0.3 (3.8) 6.1 � 1.6* 20 �0.1 (3.2)

ETabs 4.1 � 1.1† 17 �0.5 (1.2) 3.9 � 1.1*† 20 �0.4 (2.7)

ET45 3.4 � 0.7† 29 0.2 (2.2) 3.2 � 0.7*† 25 0.0 (2.0)

ET60 3.4 � 1.1† 17 0.3 (1.3) 2.7 � 1.2*†‡ 23 0.2 (1.4)

Time-adjusted SER (beats�min�1)

UTabs 6.4 � 1.7 21 �0.4 (3.8) 6.1 � 1.6 20 �0.1 (3.2)

ETabs 3.9 � 1.0† 19 �0.4 (2.5) 3.9 � 1.1† 20 �0.4 (2.7)

ET45 3.2 � 0.7† 30 0.2 (2.4) 3.2 � 0.7† 25 �0.0 (2.0)

ET60 3.1 � 1.1† 16 0.2 (1.2) 2.7 � 1.2*†‡ 23 0.2 (1.4)

Baseline HR (beats�min�1)

UTabs 69 � 14 7 �2 (24) 77 � 16* 11 5 (32)

ETabs 66 � 9 6 �4 (15) 65 � 8 8 �3 (20)

ET45 72 � 9 7 �6 (14) 74 � 9 6 �3 (17)

ET60 72 � 11 8 2 (19) 79 � 9*‡ 3 1 (8)

HR amplitude (beats�min�1)

UTabs 44 � 11 14 6 (20) 38 � 13* 24 �1 (28)

ETabs 30 � 5† 12 3 (13) 31 � 6 13 1 (14)

ET45 44 � 9‡ 11 5 (14) 41 � 11 13 3 (22)

ET60 65 � 11†‡§ 4 �1 (9) 59 � 8*†‡§ 9 0 (17)

HR50 (s)

UTabs 12 � 8 39 �4 (12)

ETabs 8 � 3 30 �1 (7)

ET45 10 � 4 23 �2 (9)

ET60 16 � 5‡ 20 2 (12)

TD (s)

UTabs 0.5 � 1.4 121 �0.6 (4.1)

ETabs 0.9 � 1.2 91 �0.1 (2.6)

ET45 1.1 � 1.8 105 �0.7 (2.3)

ET60 0.7 � 1.2 93 0.1 (1.8)

sSIG (s)

UTabs 0.1 � 0.1 30 0.0 (0.3)

ETabs 0.4 � 0.3† 32 �0.1 (0.9)

ET45 0.2 � 0.1 24 0.0 (0.2)

ET60 0.1 � 0.0‡ 9 0.0 (0.1)

sEXP (s)
UTabs 27 � 21 51 �10.7 (49.5)

ETabs 8 � 3† 33 �0.4 (7.1)

ET45 12 � 4 15 �0.3 (7.5)

ET60 22 � 6‡ 13 3.3 (8.9)

rHRI (beats�min�1�s�1)

UTabs 1.5 � 1.2 34 0.1 (2.6) 2.4 � 2.1* 38 0.4 (3.7)

ETabs 2.5 � 1.6 31 �0.6 (4.3) 5.4 � 2.9*† 32 �0.5 (8.2)

ET45 2.1 � 1.1 21 0.4 (1.8) 4.4 � 2.5* 14 0.4 (2.5)

ET60 1.5 � 0.4 12 �0.1 (0.7) 3 � 1.0* 13 �0.5 (1.2)

All values expressed as mean � SD unless otherwise stated. UTabs, Untrained, absolute intensity; ETabs, Endurance trained, absolute intensity;

ET45: Endurance trained, 45% _VO2 max; ET60, Endurance trained, 60% _VO2 max; SER, Standard error of regression; HR50, Time taken for half

of HR response amplitude to be reached; TD, Time delay before HR increases sharply; sSIG, SIG function curvature parameter; sEXP, EXP func-

tion curvature parameter; rHRI, Rate of heart rate increase.
*Significant difference versus SIG (P < 0.05).
†Significant difference versus UTabs (P < 0.05).
‡Significant difference versus ETabs (P < 0.05).
§Significant difference versus ET45 (P < 0.05).
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reliability for baseline HR was similar between groups for

SIG. However, for EXP test–retest reliability was best in

ET60 (3% CV, 95% LoA -6-9) and poorest in UTabs (11%

CV, 95% LoA -27-37). Individual differences in baseline

HR for EXP across the two 5MTs performed in all groups

are shown as Bland–Altman plots in Figure 2A–D. Test–
retest reliability for UTabs was better for SIG (7% CV,

95% LoA -26-22) compared with EXP (11% CV, 95%

LoA -27-37), while for ET60, baseline HR test–retest relia-
bility was better for EXP (3% CV, 95% LoA -6-9) com-

pared with SIG (8% CV, 95% LoA -17-22).

HR amplitude

HR amplitude was not different between SIG and EXP

for ETabs and ET45. However, HR amplitude for UTabs

and ET60 was higher for SIG than EXP (44 � 11 vs.

38 � 13 beats�min�1 and 65 � 11 vs. 59 � 8

beats�min�1, respectively: P < 0.05). While HR amplitude

for EXP was not different among UTabs, ETabs, and ET45,

it was greater than all groups in ET60. However, HR

amplitude for SIG was progressively greater from ETabs to

UTabs and ET45, and to ET60.

Test–retest reliability for HR amplitude was better for

SIG in UTabs (14% CV, 95% LoA -14-26), ET45 (11%

CV, 95% LoA -9-19), and ET60 (4% CV, 95% LoA -11-8)

than for EXP (24% CV, 95% LoA -29-26; 13% CV, 95%

LoA -18-25; and 9%, 95% LoA -17-17, respectively).

Test–retest reliability was best in ET60 for SIG (4% CV,

95% LoA -11-8) and poorest in UTabs for both SIG

(14% CV, 95% LoA -14-26) and EXP (24% CV, 95%

LoA -29-26).

Hr50

HR50 for SIG was not different among UTabs (12 � 8 s),

ETabs (8 � 3 s), and ET45 (10 � 4 s), with ETabs being

significantly lower than ET60 (16 � 5 s: P < 0.05). Test–
retest reliability was poorest in UTabs (39% CV, 95% LoA

-16-9).

Figure 2. Bland–Altman analyses of baseline HR measurements from 5MT1 and 5MT2 when fitted with an exponential function (EXP) in (A)

UTabs, (B) ETabs, (C) ET45, and (D) ET60. Solid lines represent the average difference between 5MT1 and 5MT2 (i.e., bias) and the dotted lines

represent the upper and lower 95% confidence limits of agreement.
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TD

TD for EXP functions was not different between groups.

sSig

For SIG functions, sSIG was greater in ETabs (0.4 � 0.3 s)

compared with UTabs (0.1 � 0.1 s) and ET60 (0.1 � 0.0 s:

P < 0.05). Test–retest reliability for sSIG was best in ET60

(9% CV, 95% LoA -0.1-0.1), followed by ET45 (24% CV,

95% LoA -0.2-0.2), UTabs (30% CV, 95% LoA -0.3-0.3),

and then ETabs (32% CV, 95% LoA -1.0-0.7).

sEXP

For EXP functions, sEXP was lower in ETabs (8 � 3 s)

compared with UTabs (27 � 21 s) and ET60 (22 � 6 s:

P < 0.05). Test–retest reliability for sEXP was best in ET60

and ET45 (13% CV, 95% LoA -5.6-12.2 and 15% CV,

95% LoA -7.8-7.2, respectively), followed by ETabs (33%

CV, 95% LoA -7.5-6.7), and then UTabs (51% CV, 95%

LoA -60.2-38.8).

Maximal rate of HR increase

rHRI

The rHRI for EXP was significantly greater compared

with SIG in all groups (P < 0.05). Test–retest reliability

for rHRI was best in ET60 across both SIG and EXP func-

tions (SIG, 12% CV, 95% LoA -0.9-0.6; EXP, 13% CV,

95% LoA -1.7-0.7). Test–retest reliability tended to be

poorest in UTabs (SIG, 34% CV, 95% LoA –2.5-2.7; EXP,
38% CV, 95% LoA -3.3-4.1) and ETabs (SIG, 31% CV,

95% LoA -4.9-3.7; EXP, 32% CV, 95% LoA -8.7-7.7)

across both SIG and EXP.

Discussion

The main findings of this study when examining HR

kinetic data collected at the onset of a 5-min low-inten-

sity constant load cycling exercise bout (5MT) were that

(1) EXP functions demonstrated superior goodness of fit

to SIG functions; (2) while this difference was largely

eliminated when comparing EXP and SIG functions using

a time-adjusted SER, it was still evident in trained partici-

pants undertaking the 5MT at a slightly higher exercise

intensity (ET60); (3) goodness of fit and test–retest relia-
bility of curve parameters tended to be favorable in func-

tions fitted to HR data from 5MTs undertaken by trained

participants at a high workload and a relative workload,

while for untrained participants functions fitted to HR

data demonstrated relatively poor goodness of fit and

curve parameter test–retest reliability, particularly at a low

workload and an absolute workload. The use of HR

kinetics at the onset of exercise provides a novel approach

to potentially inform about autonomic function immedi-

ately prior to exercise training or performance and these

data suggest that examination of HR kinetic data from

5MTs may be more suited to trained participants when

used at a high and relative workload, and when modeled

using an exponential function.

Comparison of functions

Previous studies have compared the goodness of fit of

EXP and SIG functions to HR data collected at the onset

of exercise using the coefficient of determination (r2)

and mean square error (MSE) (Thomson et al. 2016).

This study used the square root of MSE (SER) for good-

ness-of-fit evaluation as r2 has limitations when applied

to nonlinear models and when comparing goodness of fit

of functions fitted to datasets with different sample

means (Spiess and Neumeyer 2010). The present study

also included a comparison between the SER of EXP

functions and SIG functions in which residuals during

the 30 s prior to the commencement of exercise were

excluded given that residual plots revealed a tendency for

high fluctuations in HR during the 30-s prior to exercise,

thus causing the SER to be inflated for SIG functions.

Examples of residual plots for the SIG, time-adjusted

SIG, and EXP functions fitted to HR data from one

5MT of an ET45 participant are shown in Figure 3A–C.
However, even when comparing against the time-

adjusted SER for SIG functions, EXP functions still

demonstrated superior goodness of fit at a high relative

intensity in endurance-trained participants (ET60). This

may be explained by the higher exercise intensity result-

ing in a longer time until the HR plateau, as evidenced

by greater HR50 values under this condition, as well as a

greater number of data points during the plateau phase

due to the shorter R-R intervals compared with exercise

at a lower intensity (Tulppo et al. 1998; Bellenger et al.

2015). These characteristics result in ET60 data being less

conducive to a symmetrical sigmoidal function fit. Sig-

moidal functions applied to data from ET60 favored fit-

ting to the third inflection point (concave down) before

the upper HR plateau and were compromised around

the first (concave up) inflection point where there were

fewer data points, especially for non-time-adjusted SER

from SIG functions that include the 30-s resting data

prior to exercise. As such, EXP functions are able to

minimize SER due to only having a single inflection

point and thus make EXP functions more likely to be

appropriate for fitting to HR kinetic data at the onset of

exercise under most circumstances.
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As well as goodness of fit, test–retest reliability of

curve parameters informs the process of determining the

most suitable function, training status, and exercise

intensity for modeling HR kinetics at the onset of exer-

cise. Better test–retest reliability of baseline HR and HR

amplitude points to a more consistent curve fitting pro-

cess. Thus, when applied practically in the field, any

changes associated with fatigue or training adaptations

may be more reliably identified as real, rather than being

false positives. In addition, rHRI and the curvature

parameters sEXP and sSIG, which can also be used to

characterize cardiac acceleration given that they dictate

the shape of the curve, have been correlated with exer-

cise performance and should also exhibit minimal vari-

ability between trials in order to have potential value in

the assessment and management of fatigue and recovery

immediately prior to exercise that may be used to

inform about modifications to training load (Bunc et al.

1988; Thomson et al. 2016).

Across all exercise intensities, test–retest reliability in

HR amplitude was lower when SIG functions were fitted.

This is an important finding that practitioners should

consider when fitting functions to HR data at lower exer-

cise intensities where there is no difference in goodness of

fit between EXP and time-adjusted SIG functions.

rHRI test–retest reliability overall was poorer than

has previously been reported (Thomson et al. 2016).

However, there was no marked difference between SIG

and EXP functions across all groups, which conflicts

with findings from Thomson et al. (2016) who reported

better test–retest reliability in rHRI derived from SIG

functions. These discrepancies may have been due to

slight methodological differences compared with the

present study, including the software used to model

functions, constraints and starting estimates applied to

functions, and the use of HR data averaged over 1-s

intervals as opposed to beat-to-beat data used in the

present study (Thomson et al. 2016). Using beat-to-beat

data allows practitioners to compare HR on-kinetics

with heart rate variability data during rest and exercise

periods, which also shows promise as an indicator of

training-induced autonomic fatigue (Buchheit 2014).

Thomson et al. (2016) also reported an inverse relation-

ship between baseline HR and rHRI, pointing to a link

between the two parameters. As such, the higher CVs

for rHRI in the present study may be a result of more

variable baseline HR data.

Effect of training status

Trained participants exhibited lower HR amplitude and

greater rHRI compared with untrained participants exer-

cising at commensurate intensity, which has been demon-

strated in previous research (Mcardle et al. 1977;

Wilmore et al. 1996; Hettinga et al. 2014). These observa-

tions have been attributed to cardiovascular adaptations,

including improved oxygen transport and hemodynamics,

and increased resting vagal tone among trained individu-

als, allowing for greater parasympathetic withdrawal and

faster tachycardia at the onset of exercise (Bunc et al.

1988; Chacon-Mikahil et al. 1998; Hettinga et al. 2014).

Importantly, this study also showed that the goodness of

fit of curves fitted to HR data from untrained participants

was poorer, and several curve parameters including

A

B

C

Figure 3. Residual plots for (A) SIG function, (B) time-adjusted SIG

function, and (C) EXP function fitted to HR data from a 5MT

performed by a representative ET45 participant. Residuals <1 SD

from the regression line are shown as blue colored bars; residuals ≥

1 SD and < 2 SD from the regression line are shown as green

colored bars; residuals ≥ 2 SD and < 3 SD from the regression line

are shown as yellow colored bars; residuals ≥ 3 SD from the

regression line are shown as red colored bars.
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baseline HR for EXP functions, HR amplitude, HR50,

sEXP, and rHRI tended to show greater variability between

exercise trials when compared with trained participants.

While the reasons for these differences in goodness of fit

and curve parameter variability remain unclear, noticeable

fluctuations in HR at the onset of exercise can occur as a

result of transient increases in vagal tone associated with

changes in arterial pressure and the baroreceptor reflex

(Fagraeus and Linnarsson 1976). Endurance-trained indi-

viduals demonstrate inhibited arterial baroreceptor reflex

activity in response to phenylephrine-induced increases in

mean arterial pressure compared with individuals of aver-

age fitness (Shi et al. 1993), which may point to greater

fluctuations in HR at the onset of exercise and hence less

favorable goodness of fit and curve parameter test–retest
reliability among untrained individuals.

Effect of absolute versus relative exercise
intensity

There was no difference in goodness of fit of functions

when data from participants exercising at an absolute

intensity of 100 W were compared with that of partici-

pants exercising at a relative intensity of 45% _VO2

max. However, test–retest reliability of key curve

parameters including sEXP, sSIG, and rHRI was mini-

mized under the 45% _VO2 max condition. Therefore,

exercise bouts at relative workloads may therefore be

more appropriate in applied scenarios and provide

greater information about autonomic responsiveness on

an individual athlete basis.

Comparisons between goodness of fit of curves on the

basis of intensity also revealed that EXP functions fitted

to 5MTs performed at 60% _VO2 max had superior good-

ness of fit compared with 5MTs performed at 100 W.

This is likely due to trained individuals exhibiting lower

HR variability and thus more uniform R-R intervals con-

ducive to a better EXP fit when exercising at higher inten-

sities (Al Haddad et al. 2011).

Effect of high versus low exercise intensity

While there was no difference in goodness of fit between

functions fitted to 5MTs undertaken at 60% _VO2 max

compared with 45% _VO2 max, time-adjusted SER, HR

amplitude, and sSIG for SIG functions, baseline HR for

EXP functions, and rHRI across both functions were all

more reliable at the higher intensity. It has been suggested

that rHRI may better track exercise performance when

5MTs are performed at intensities greater than 100 W

(Bellenger et al. 2015), and the findings of this study pro-

vide further support for the use of higher-intensity 5MTs

(e.g., 60% _VO2 max).

Limitations and future research

A limitation of this study was that given UTabs performed

the 5MT at a low, absolute intensity only, the assertion

that using HR kinetics for an assessment of autonomic

responsiveness to a 5MT is more accurate and reliable in

a fitter population should be made with caution. It

remains unclear the extent to which exercising at a

higher, relative intensity improves the accuracy of HR

kinetic modeling in untrained individuals.

In addition, while the highest-intensity 5MTs gave rise

to HR data that were able to be modeled most accurately,

questions remain about whether functions fitted to such

5MTs will detect changes in parasympathetic modulation

following a period of heavy training given that the

higher-intensity workload elicits a greater sympathetic

response (Le Meur et al. 2013; Bellenger et al. 2016).

Future research should seek to address this and should

focus on attempting to track fatigue- and training-

induced changes in exercise performance using the most

appropriate conditions, function, and curve parameters

identified in this study.

Future research may also investigate the effects of set-

ting relative workloads according to percentages of ath-

letes’ maximum HR, as well as _VO2 max. Setting the

intensity of 5MTs as a percentage of maximum HR may

allow for easier application in the field.

In the context of previous research in which the rHRI

derived from sigmoidal functions was best able to track

changes in exercise performance (Thomson et al. 2016),

the current findings suggest that an exponential function

and its associated parameters should not be discounted as

a potential method of tracking autonomic responsiveness

and subsequent exercise performance, and may even be

favorable based on the present curve fitting approach. In

addition, the good test–retest reliability of curvature

parameters and rHRI among trained individuals supports

the use of these parameters, which have previously been

shown to be positively related to exercise performance

(Bunc et al. 1988; Nelson et al. 2014; Bellenger et al.

2015; Thomson et al. 2016).

Conclusion

Analysis of HR kinetics at the onset of submaximal exer-

cise appears to be a promising means by which to moni-

tor athlete fatigue, recovery, readiness for further training

and competition, and possibly fitness adaptations. This

study sought to determine the exercise conditions that are

most conducive to an accurate and reliable analysis of HR

kinetic data with the view to providing practitioners with

a methodological framework for undertaking such analy-

sis. The level of autonomic recovery or adaptation as
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assessed by a HR kinetic analysis may ultimately inform

modifications to training workloads prior to a training

session, as well as expectations of performance and strate-

gies with regard to player management during competi-

tion (e.g., substitutions and interchanges). This study

compared functions on the basis of SER, which is a more

appropriate measure of goodness of fit than r2 in the con-

text of nonlinear data with varying sample means. Results

showed that when 5MTs are performed at a higher inten-

sity, that is, 60% _VO2 max, the use of EXP functions to

model HR data is particularly favorable, but likely more

reliable under most 5MT exercise conditions. Using curve

parameters to track adaptations or changes in perfor-

mance of untrained individuals may be limited given that

functions tended to fit poorly to HR data from these

individuals, while curve parameters were also more vari-

able. Curve parameters from functions fitted to HR data

from 5MTs performed at a relative intensity also appear

more reliable than at an absolute intensity, with functions

fitted to HR from 5MTs undertaken at a high, relative

intensity of 60% _VO2 max providing the most reliable

curve parameters. Therefore, based on these findings,

practitioners using rHRI and other curve parameters as

performance trackers in trained individuals should con-

sider using curve parameters from EXP functions fitted to

HR data from 5MTs performed at 60% _VO2 max.
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