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OBJECTIVE—The accumulation of old and damaged proteins
likely contributes to complications of diabetes, but currently no
methodology is available to measure the relative age of a specific
protein alongside assessment of posttranslational modifications
(PTM). To accomplish our goal of studying the impact of insulin
deficiency and hyperglycemia in type 1 diabetes upon accumu-
lation of old damaged isoforms of plasma apolipoprotein A-1
(ApoA-1), we sought to develop a novel methodology, which is
reported here and can also be applied to other specific proteins.

RESEARCH DESIGN AND METHODS—To label newly syn-
thesized proteins, [ring-13C6]phenylalanine was intravenously
infused for 8 h in type 1 diabetic participants (n � 7) during both
insulin treatment and 8 h of insulin deprivation and in nondia-
betic participants (n � 7). ApoA-1 isoforms were purified by
two-dimensional gel electrophoresis (2DGE) and assessment of
protein identity, PTM, and [ring-13C6]phenylalanine isotopic en-
richment (IE) was performed by tandem mass spectrometry.

RESULTS—Five isoforms of plasma ApoA-1 were identified by
2DGE including ApoA-1 precursor (pro-ApoA-1) that contained
the relatively highest IE, whereas the older forms contained
higher degrees of damage (carbonylation, deamidation) and far
less IE. In type 1 diabetes, the relative ratio of IE of [ring-
13C6]phenylalanine in an older isoform versus pro-ApoA-1 was
higher during insulin deprivation, indicating that de novo synthe-
sized pro-ApoA-1 more rapidly accumulated damage, converting
to mature ApoA-1.

CONCLUSIONS—We developed a mass spectrometry–based
methodology to identify the relative age of protein isoforms. The
results demonstrated accelerated oxidative damage to plasma
ApoA-1, thus offering a potential mechanism underlying the
impact of poor glycemic control in type 1 diabetic patients that
affects a patient’s risk for vascular disease. Diabetes 59:2366–

2374, 2010

T
here is substantial evidence to indicate that
oxidative stress and subsequent oxidative dam-
age is a major factor in the pathogenesis of
diabetic complications (1,2). Oxidative damage

of plasma proteins has been reported in patients with type
1 diabetes (3–5), and the accumulation of these damaged
proteins is associated with many chronic complications of
type 1 diabetes (4,6,7). Each protein does not exist as a
homogenous pool within a tissue, but rather exists as a
heterogeneous mix of isoforms of the same protein at
different ages for which different amounts of time have
passed following translation. A key determinant of the
composition of the proteome is the rate at which the
proteins are synthesized and removed (degraded) from a
tissue, and this turnover, which replaces aged, damaged
proteins with de novo synthesized proteins, is likely to
maintain a relatively healthy composition of the proteome.
A relative increase in isoforms of oxidatively damaged
proteins can occur because of accelerated oxidative dam-
age if these damaged proteins are not removed by degra-
dation and replaced by de novo synthesized proteins. A
better understanding of the oxidative damage to proteins,
and their accumulation in proteins such as lipoproteins, is
critical to further understand the pathophysiology of dia-
betic complications, especially since atherosclerosis and
cardiovascular complications are common in people with
diabetes. However, there has been no methodology to
measure the relative age of proteins, and thus, hypotheses
related to the accumulation of aged proteins could not yet
be tested.

In two-dimensional gel electrophoresis (2DGE) of tis-
sues or body fluids, numerous protein gel spots can be
identified, each representing the same protein identity
(8–19). Often these numerous spots exist as charge vari-
ants and thus present as a train of spots horizontally
adjacent to one another on the gel (8–19), each with
similar molecular weights but with different isoelectric
points (pI). This phenomenon has been observed for
various proteins that have known relevance to disease,
such as prostate-specific antigen (PSA) (18), heat shock
proteins (15), fibrinogen (14), apolipoprotein A-1 (ApoA-1)
(9–14), and many others. We hypothesized that the differ-
ent protein isoforms in spot trains are related to different
ages of proteins, and we hoped that experiments to further
understand the nature of these proteins would improve the
understanding of diseases that are related to an accumu-
lation of aged proteins. Based on principles of tracer
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incorporation into proteins, it is reasonable to assume that
during an intravenous infusion of a tracer such as [ring-
13C6]phenylalanine, both tracer and tracee will be incor-
porated into proteins synthesized during the course of the
infusion. However, no [ring-13C6]phenylalanine would be
incorporated into proteins that were synthesized before
the infusion, such as hours, days, or even years earlier.
Thus, the young de novo synthesized proteins that were
most recently translated will have relatively higher
amounts of isotopic label than the protein isoforms that
have primarily accumulated from the past. It is likely that
high levels of oxidative damage and other modifications
would be detected in older protein isoforms because they
are exposed to the environmental stresses over longer
periods of time.

We studied insulin deprivation and treatment in type 1
diabetes, as it is known that insulin deprivation and
subsequent hyperglycemia in type 1 diabetes leads to
oxidative stress and an increased accumulation of oxi-
dized plasma proteins (3–5). We focused our investigation
on ApoA-1, which is a key protein component of HDL and
is involved in cholesterol clearance from arteries. Consid-
ering preliminary knowledge of ApoA-1 isoforms (10,11),
the importance of ApoA-1 in vascular health, the increased
risk of macrovascular disease in type 1 diabetic patients
(20), and our experience with resolving its isoforms on
2DGE, we chose ApoA-1 for the current study. We hypoth-
esized that withdrawal of insulin treatment in type 1
diabetes would result in increased oxidative damage to the
newly synthesized proteins and that these proteins with
damage-induced charge alteration would be found at the
locations in 2DGE where the older proteins are typically
found.

RESEARCH DESIGN AND METHODS

Study protocol and sample collection. Seven participants with type 1
diabetes (3 women, 4 men) with an average diabetes duration of 18.7 (range
7–35) years were matched with 7 nondiabetic healthy participants (ND) (3
women, 4 men). The characteristics of study participants are shown in Table
1. The study protocol and sample collections were approved by the Institu-
tional Review Board and have been reported previously (21,22). On the day
before tracer infusion, participants were admitted at 5:00 P.M. and insulin
infusion was started at 6:00 P.M. in type 1 diabetic participants on each of two
separate visits. The insulin regimen of type 1 diabetic participants changed
during the 3 days before the study in those who were taking long-acting insulin
(n � 4 of 7 participants). They were instructed to use ultra rapid-acting insulin

(aspart or lispro, recombinant insulins) before each meal and bedtime based
on their blood glucose. Participants on an insulin pump (n � 3) using ultra
rapid-acting insulin continued their regimen. All participants maintained their
blood glucose between 4.4 and 6.6 mmol/l. On the evening before the study, all
participants were admitted to the Clinical Research Unit. On the insulin-
treated day in type 1 diabetic participants (type 1 diabetes insulin-treated state
[I�]; performed first), an intravenous insulin infusion was administered and
plasma glucose was maintained between 4.44 and 5.56 mmol/l. On the
insulin-deprived day (type 1 diabetes insulin-deprived state [I�]; performed
second, 10 days after the first study day), insulin infusion was discontinued
from 4:00 A.M. to 12:00 P.M. (8 h) and replaced with normal saline. At 4:00 A.M.,
after taking baseline arterialized-venous samples for isotopic measurements
(IE), a continuous infusion of L[ring-13C6]phenylalanine (Cambridge Isotope
Laboratories, Andover, MA) was given for 8 h at a rate of 1.0 mg/kg fat-free
mass [FFM] per hour preceded by a priming dose (1.0 mg/kg FFM). ND
participants were studied only once with normal saline infusion. Blood
samples were then drawn at 2-h intervals in anticoagulant tubes and centri-
fuged, and plasma was stored at �80°C until analysis.
Plasma concentration of ApoA-1. An automated turbidimetric method
(Roche Diagnostics, Indianapolis, IN) was used to measure ApoA-1 in plasma
in the final sample drawn (after 8 h of tracer infusion). The sample was first
incubated with an antibody diluent. After initial incubation and measurement
of the sample, blank, undiluted antiserum specific to human ApoA-1 was
added. When sample solution is mixed, insoluble antigen-antibody complexes
begin to form. These complexes produce turbidity in the mixture and increase
the amount of light scatter. The decrease in light transmittance resulting from
the antigen-antibody reaction was measured as a function of the concentra-
tion of ApoA-1. Measurements were taken at 700 and 340 nm.
Purification of ApoA-1 isoforms. Each plasma sample was subjected to
affinity chromatography for the depletion of six highly abundant proteins
(albumin, IgG, antitrypsin, IgA, transferrin, and haptoglobin) in a single step,
with a Multiple Affinity Removal Column Hu-6 (Agilent Technologies, Santa
Clara, CA) using a BioLogic HR Chromatography System (BioRad, Hercules,
CA) running buffers A and B according to specifications of the column
manufacturer. This selective immuno-depletion process provides one en-
riched pool of low-abundant plasma proteins containing ApoA-1 in the column
flow-through. The flow-through was later concentrated using a 5-kDa molec-
ular weight cutoff filter, and protein estimation was done by Bradford’s
method (BioRad) before being subjected to 2DGE.

ApoA-1 was isolated from the depleted plasma by performing large,
high-resolution 2DGE, using 24-cm, pH 3–10, 4–7, and 4.7–5.9 immobilized pH
gradient (IPG) strips (BioRad). The ApoA-1 gel spots were visualized by silver
staining. Duplicate 2DGEs for each sample were done for IE analyses and one
gel per sample for the analysis of posttranslational modifications (PTMs). The
method to identify proteins by mass spectrometry is described below.
Protein identification and PTM analyses. To identify proteins in each gel
spot and test for PTMs, ApoA-1 spot trains isolated from blood samples drawn
at 8 h of isotopic tracer infusion were analyzed. The silver-stained SDS-PAGE
gel spots were excised, destained, and subjected to in-gel trypsin digestion.
The extracted peptides were analyzed for protein identification by nano-flow
liquid chromatography electrospray tandem mass spectrometry (nanoLC-ESI-
MS/MS) using a ThermoFinnigan LTQ Orbitrap Hybrid Mass Spectrometer
(ThermoElectron, Bremen, Germany) coupled to an Eksigent nanoLC-2D
HPLC system (Eksigent, Dublin, CA).

Tandem mass spectra (MS/MS) were extracted by BioWorks, version 3.2.
All MS/MS spectra were analyzed using Mascot (Matrix Science, London, U.K.,
version 2.2.04), set to search the Swissprot database (699,052 entries) desig-
nating the digestion enzyme as trypsin and searching with a fragment ion mass
tolerance of 0.80 Da and a parent ion tolerance of 10.0 parts per million.
Variable modifications chosen were oxidation of methionine and tryptophan,
deamidation of asparagine and glutamine, lysine to allysine, lysine to amino-
adipic acid, formylation of lysine, dioxidation of tryptophan and methionine,
and arginine to glutamic semialdehyde. Mascot-generated data files were
manually studied, and any modifications with an ion score below 20 were not
considered. We report the level of a particular modification as the ratio of that
modified peptide to that of the total number of unmodified peptides.
Western blot analyses to detect protein identity and oxidative damage.

ApoA-1 from plasma samples were separated by 2DGE. The 6 � 10 cm gel
areas corresponding to the location of ApoA-1 spot trains (as identified by the
mass spectrometry analyses described above) were cut and transferred to
polyvinylidene fluoride membrane by a semidry electro-transfer apparatus
(BioRad). A monoclonal antibody against ApoA-1 (Abcam, Cambridge, MA)
was used to probe the membrane in 1:200 dilution. Anti-mouse horseradish
peroxidase (HRP)-conjugated antibody was used as the secondary antibody in
1:10,000 dilutions. The reaction was detected by chemiluminescence (ECL-
Plus, GE Health Care). For the detection of carbonylation, an Oxyblot kit
(Millipore, Billerica, MA) was used. Briefly, after the IEF step in 2DGE, the

TABLE 1
Characteristics of study participants

Nondiabetic
subjects

Type 1 diabetic
subjects

Age (years) 29.7 � 3 30 � 3
Body weight (kg) 81 � 6.4 78.2 � 5
BMI (kg/m2) 25 � 1.1 26.2 � 1.3
Fat mass (%) 33.2 � 4 31.6 � 4.1
Fat-free mass (kg) 51 � 5 51 � 4
A1C (%) 5.0 � 0.05 7.2 � 0.5§
Duration of type 1

diabetes (years) 18.7 � 4
I� I�

Glucose (mmol/l) 4.9 � 0.1 17.0 � 0.6§‡ 5.2 � 0.2
Insulin (pmol/l) 23.4 � 4.52 3.9 � 1.36§‡ 69.8 � 17.8§
ApoA-1 (g/l) 1.34 � 0.08 1.39 � 0.12 1.36 � 0.07

Data are means � SE; n � 7 per group. Statistical analyses by 1 � 2
and 1 � 3 ANOVA. I�, insulin-deprived state; I�, insulin-treated state.
§Different from ND, P � 0.05; ‡different from I�, P � 0.05.
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IPG strips were incubated in 1� DNPH reagent for 10 min, followed by the
second dimension gel separation. The transfer of protein was done as
described above. The remaining steps were done per the instructions in the
Oxyblot kit.
IE of ApoA-1 isoforms in spot trains. IE measurements were conducted
using gas chromatography/tandem mass spectrometry (GC/MS/MS). ApoA-1
spot trains isolated from plasma samples obtained at 2, 4, 6, and 8 h were used
for GC/MS/MS analysis. Plasma protein gel spots were excised and hydrolyzed
using 6 M HCl overnight at 110°C to obtain free amino acids. The free amino
acids were isolated using BioRad AG-50W �8 cation exchange resin and
excess solvent evaporated to dryness. The amino acid residues were derivat-
ized to their N-heptafluorobutyryl methyl esters and analyzed by tandem mass
spectrometry using either a ThermoFinnigan TSQ 7000 (ThermoElectron,
Waltham, MA) or a Quattro-Micro GC (Waters Corporation, Milford, MA)
under negative ion chemical ionization conditions using isobutane as a
reactant gas as described previously (23). Free amino acids were extracted
from plasma samples using acetic acid as described (24) and analyzed as their
t-butyldimethylsilyl ester derivative (25). In the proposed method, plasma
amino acid IE is not used in calculations to determine relative protein age, but
simply confirms that steady infusion of the [ring-13C6]phenylalanine was
successfully performed. The IE in units of moles percent excess (MPE) for
[ring-13C6]phenylalanine (M � 6) was calculated above background (subtract-
ing preinfusion IE) as previously described (24). The relative age of protein
isoforms was determined by comparing relative IE between isoforms of the
same protein, such as mature isoforms versus precursor isoform (e.g., IE ratio
of C vs. E). Plasma ApoA-1 concentrations were not different among the three
groups (Table 1).
Statistical analyses. Results are presented as mean � SE. Results were
analyzed by ANOVA with a Fisher protected least significant difference post

hoc test. For mixed-model ANOVAs comparing ND, type 1 diabetes I�, and
type 1 diabetes I�, the study participant’s identity was set as a random effects
variable. Analyses were performed using JMP 7.0 statistical software. Statis-
tical significance was set at P � 0.05.

RESULTS

Plasma ApoA-1 as a spot train in 2DGE. In 2DGE with
IPG strips having full pH range (3–10 pH) down to the
narrowest range possible (4.7–5.9 pH), ApoA-1 produced
five distinct protein gel spots horizontally separated from
one another based on the pI (a spot train). We named them
spots A, B, C, D, and E from relatively negatively charged
isoforms (toward the positive end of gel [left]) to the more
positively charged isoform spots [toward the negative end
of gel (right)] (Fig. 1A), with the center spot C at a pI of
5.4. We also further verified the identity of the spots by
Western blot, which demonstrated immunologic reactivity
of each protein isoform (data not shown). Amino acid
sequence obtained from the Mascot search revealed that
the propeptide RHFWQQ was present only in spots D and
E (Fig. 1B). The propeptide was absent in spots A, B, and
C, indicating that these spots were mature versions of
ApoA-1.
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FIG. 1. Isoform separation. A: Two-dimensional gel electrophoresis of human plasma to separate ApoA-1. IPG strips of 24-cm length having
various pH ranges (3–10, 4–7, and 4.7–5.9) were used for IEF. The isoforms were named as A to E (as relatively negative to positive in charge).
B: Amino acid sequence of ApoA-1 spots. Propeptide RHFWQQ (in the blue box) for spots D and E, which defines those as ApoA-1 precursors.
The propeptide portion was absent in spot-trains A, B, and C, and thus those are mature forms. Red indicates sequence coverage. (A high-quality
digital representation of this figure is available in the online issue.)
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Identification of the relative age of protein isoforms
using labeled amino acids. Figure 2A shows the IEs,
corrected for preinfusion background IE, measured from
all of the five spots of ApoA-1 isolated from blood samples
collected at times 2, 4, 6, and 8 h during the tracer infusion
period. It demonstrates that spot E is the newest (higher
IE than all other spots, P � 0.05), followed by spot D
(higher IE than A, B, and C, P � 0.05), and then spots A, B,
and C are the oldest. Furthermore, it shows real-time
incorporation of label, since the IEs at 8 h of infusion were
significantly higher than those at 2 h (P � 0.05). In ApoA-1
spots 10 days after the isotopic infusion, we found that
spots A, B, and C, which are mature forms of ApoA-1,
had significantly higher levels of [ring-13C6]phenylalanine
enrichment (IE) than the newer versions D and E (P �

0.05) (Fig. 2B), which indicates that mature forms were
synthesized in the past, back when the propeptide con-
tained a higher IE.
ApoA-1 charge variants are formed because of PTM.
Since the first dimension separation of proteins in 2DGE is
based on their pI (isoelectric pH, or net charge of a
protein), the separation of a specific protein into a spot
train is the result of charge variants in the same protein.
PTMs are the main reason for variation in the charge of
protein amino acid residues and were detected by changes
in the mass spectra such as that shown for deamidation in
Fig. 3A. As shown in Fig. 1B, spots D and E include the
propeptide extension RHFWQQ. The presence of histi-
dine (H) in the propeptide gives an additional strong
positive charge for spots D and E. We believe that this may
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FIG. 2. Isotopic enrichments. A: IE during labeled amino acid infusion was measured in ApoA-1 spot trains isolated from plasma. Spot E had the
highest levels of IE, indicating that it was the newest isoform, whereas A was the oldest. MPE, moles percent excess; Hr, hours of tracer infusion.
Means � SE for n � 7 ND participants. Statistical analysis by ANOVA. Main effect of isoform, P < 0.0001; main effect of time, P < 0.0001;
�Different from 2-h time point, P < 0.05; #different from isoform D, P < 0.05; *different from isoforms A, B, and C; P < 0.05. B: IE in the ApoA-1
spots 10 days after the 8-h infusion of labeled amino acid. The figure demonstrates that the label accumulated in isoforms A, B, and C. Greater
decrease or disappearance of the label in spots D and E indicates that proteins representing those isoforms were replaced by de novo synthesis.
Means � SE for n � 7 type 1 diabetic participants. Statistical analysis by ANOVA. Main effect of isoform, P < 0.0001. *Different from isoforms
A, B, and C; P < 0.05. (A high-quality digital representation of this figure is available in the online issue.)
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be the main reason why spots D and E are shifted to the
positive side of the gel that attracts negatively charged
proteins. Spot E was purely propeptide in all samples, but
D sometimes contained some mature peptide in addition
to propeptide. Thus, D could be a transition stage between
the newer and mature form of ApoA-1. The IE results
support the idea that D represents a transition stage, since
the IE for spot D was between that of spots E and C.

The protein coverage for spots B, C, and E was compre-
hensive enough to allow for comparison of the number of
peptides containing PTMs present in each spot, whereas
spots A and D were not analyzed for all PTMs because of
their lower sequence coverage. Deamidation of asparagine
and glutamine are two modifications that are believed to
represent biologically deleterious protein damage. These
PTMs can be detected by a shift of 1 Da in the parent ion
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FIG. 3. Posttranslational modifications. A: The MS/MS spectrum of a
specific ApoA-1 peptide showing deamidation of asparagine. The
lower panel shows the fragment ions of the specific peptide LEAL
KENGGAR having a 1-Da shift starting from the Asp residue (N)
where it is deamidated. Similar addition of 1 Da in y ions is shown in
the table on the left starting from Asp residue N. B: Level of
deamidation and reversible oxidation in isoforms of ApoA-1. ApoA-1
spots B, C, and E were analyzed by tandem mass spectrometry for
deamidation of asparagine (N) and glutamine (Q) and oxidation of
tryptophan (W), histidine (H), and methionine (M). Spot B showed
higher levels of both deamidation and oxidation when compared with
spot C, and C showed higher levels of these modifications than E (B >
C > E). C: Extent of protein carbonylation among the isoforms of
ApoA-1. AThe same protein sample ran in parallel, visualized by silver
stain. BImmunoblot showing the extent of carbonylation that was
detectable in spots A, B, and C of ApoA-1 as opposed to spots D and E,
which are newly synthesized and showed complete absence of car-
bonyl reaction. (A high-quality digital representation of this figure is
available in the online issue.)
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spectrum, and the position of deamidation in the MS/MS
spectra can be determined as shown in Fig. 3A for the
ApoA-1 peptide LEALKENGGAR. The number of peptides
with deamidated amino acids (asparagine and glutamine)
was higher in spots B and lowest in spot E (B � C � E).
as shown in Fig. 3B. Deamidation adds a negative charge
under IEF conditions, which contributes to the shift of
spots within a train toward the positive side of the gel.
Similarly, oxidation of tryptophan, histidine, and methio-
nine was determined by the shift of 16 Da in the ion
fragments of modified peptides. We observed that oxida-
tion of these amino acids (letters in bold blue) in spot B
was highest and spot E was lowest (B � C � E) (Fig. 3B).
Although these oxidations do not contribute to the differ-
ence in the charge of protein isoforms, oxidation is
considered a maker for protein aging and damage that
corresponds to the fact that the older proteins showed
more of this modification.

By Western blot analysis, we found that spots A, B, and
C reacted for the presence of carbonylation (irreversible
oxidation), whereas spots D and E did not (Fig. 3C, panel
B). Carbonyl formation in certain amino acids (e.g., lysine
conversion to allysine) removes their positive charge to
make the protein more negative, which in turn will make
the spot shift toward the positive end of the 2DGE.
Together, all these data suggest that PTMs are likely
responsible for the development of spot trains of ApoA-1.
Higher oxidative damage and deamidation are present in
the spots of ApoA-1 that are relatively older and to the
positive side of the gel, which is consistent with the
concept that older proteins have experienced more oppor-
tunity over time for chemical insults.
Insulin deficiency in type 1 diabetes alters IE and
modification in isoforms of ApoA-1. The old/new IE
ratio for spots C versus E (Fig. 4A) showed higher value
during insulin deficiency (P � 0.05), demonstrating that
insulin deficiency triggers the newly formed proteins to be
modified into the matured, damaged versions of the pro-
tein. A similar trend, although not statistically signifi-
cant, was shown for protein spots B/E (type 1 diabetes
I�, 0.060 � 0.016; type 1 diabetes I�, 0.083 � 0.015; ND,
0.057 � 0.010) and for spots A/E (type 1 diabetes I�,
0.023 � 0.008; type 1 diabetes I�, 0.050 � 0.014; ND,
0.023 � 0.007). The pattern reveals that the ApoA-1
isoforms that are more negatively charged are older and
that insulin withdrawal makes the mature isoforms chro-
nologically younger, but more damaged because of rapid
modification of the de novo synthesized isoform. It should
be reiterated here that when applying this methodology,
the ratio of IE in aged versus new proteins is important
rather than the absolute IEs of any individual spot.

As there were no differences between groups (type 1
diabetes I� vs. type 1 diabetes I� vs. ND) for the relative
amount of each isoform (percentage of total ApoA-1
represented by each spot; data not shown), we analyzed
for PTMs in spot C, the most abundant isoform. We did not
find any difference in deamidation between groups. How-
ever, we found a significant increase in oxidation as shown
by the ratio of carbonylated to total peptides (modification
of lysine to allysine, P � 0.05) (Fig. 4B). Allysine formation
is an intermediate step in the irreversible oxidative dam-
age of carbonylation in the form of aminoadipic acid.
Allysine formations also remove the positive charge from
the amino acid residue, so that the protein becomes more
negatively charged and moves to the left toward the
positive side of the gel. We demonstrated an association

between the higher level of oxidative damage in spot C
with the old/new IE ratio (C/E) in type 1 diabetes during
insulin deprivation. Hence, this shows that in application
of this novel methodology, important knowledge can be
gained by combining a static measure of the amount of
damage with a kinetic measurement of the conversion of
relatively undamaged de novo synthesized protein into
damaged, mature protein isoforms.

DISCUSSION

The current experiment clearly demonstrates that the
different spots within spot trains of 2DGE represent dif-
ferent ages of ApoA-1 by differences in the stable isotope-
labeled amino acid ([ring-13C6]phenylalanine) enrichment
and the presence of posttranslational protein modifica-
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FIG. 4. Protein aging. A. The ratio of isotopic enrichment (IE) in older
versus newer (C/E) ApoA-1 spots demonstrates that the ratio is higher
in type 1 diabetic individuals during insulin deprivation. This shows
that during insulin deprivation, newly synthesized ApoA-1 is more
rapidly modified and thus matures and ages more quickly. Means � SE
for n � 7 per group. Statistical analysis by ANOVA. Main effect of
group, P < 0.05. †Different from type 1 diabetes I� and ND; P < 0.05. B:
Extent of carbonylation (oxidation) in gel spot C of ApoA-1 as
measured by mass spectrometry after 8 h of insulin deprivation or
treatment in type 1 diabetic individuals and no hormone administra-
tion in ND. The ratio of allysine to lysine was higher in the specific
ApoA-1 peptides of spot C in type 1 diabetic individuals during insulin
deprivation. Means � SE for n � 7 per group. Statistical analysis by
ANOVA. Main effect of group; P < 0.05. †Different from ND and type 1
diabetes I�; P < 0.05. (A high-quality digital representation of this
figure is available in the online issue.)
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tions. The highest [ring-13C6]phenylalanine enrichment
is shown in pro-ApoA-1, which is newly synthesized,
whereas the isoforms of ApoA-1 with modifications such
as carbonylation and deamidation have lower [ring-
13C6]phenylalanine enrichment, supporting the theory that
they were synthesized earlier. In support of our hypothe-
sis, the results show that in type 1 diabetes during insulin
deficiency, in comparison with insulin treatment, greater
oxidative damage occurred to ApoA-1 and results in a
rapid shifting of de novo synthesized protein to the loca-
tion of the aged proteins within the spot train in 2DGE.

ApoA-1 is produced by the liver and intestines (26) and
is released into the circulation as a propeptide (spots D
and E), which is converted into the mature isoform while
in circulation (spots A, B, and C) (9,27,28). Principles of
this proposed methodology dictate that proteins that were
most recently synthesized (i.e., during the infusion of
[ring-13C6]phenylalanine) should contain higher amounts
of [ring-13C6]phenylalanine as was shown for the propep-
tides, especially isoform E. In contrast, spots D, C, B, and
A showed progressively lower IE, indicating that they
were more synthesized before the stable isotope exposure
(Fig. 2A). The half-life of the mature form is much longer
than the propeptide form (27), which is consistent with the
fact that we found higher isotopic enrichment in the
mature forms than propeptides in blood samples drawn 10
days after tracer administration (Fig. 2B). When we tested
spots B, C, and E, the spots with sufficient protein amount
for reliable analysis, the spots with lower pI (toward the
positive side of the gel) showed higher degrees of deami-
dation and oxidation (spot B � C � E) (Fig. 3B). This
higher degree of damage further supported the isotopic
results showing different ages of the isoforms, with mature
forms having more time to age and thus more time for
environmental insults causing damage. Furthermore, the
results for deamidation and carbonylation may provide a
mechanism for the phenomenon of spot trains. Both of
these PTMs produce a relative decline of pI (the charge
becomes more negative) and thus would shift the protein
spots toward the left, which is positive and attracts
negatively charged species. With regard to the physiologic
relevance of these modifications, carbonylation has been
shown to reduce enzyme activities (29,30), and the ability
to sufficiently repair deamidation is important for proper
physiologic functions and survival (31,32). Accumulations
of these types of damage have been shown in many
pathologic states, such as in the brains of individuals with
Alzheimer disease (8,33,34) and in the aging human lens
that is prone to cataracts (35,36).

For this isotope-based approach of measuring relative
protein age, the important comparison is between the IEs
(the ratio) for any certain isoform versus the most newly
synthesized form (ideally the precursor isoform). Thus, for
example, we compared between groups spot C’s IE di-
vided by spot E’s IE. To reiterate, when comparing differ-
ent individuals, this ratio of IEs in older protein versus
newest protein isoform (old/new) was calculated and
analyzed. In people with type 1 diabetes, insulin depriva-
tion increased the ratio of IEs in spots A, B, and C versus
E, and results for spot C versus E are shown in Fig. 4A.
This pattern of results clearly indicates that the young
form of ApoA-1 more rapidly becomes a damaged, aged
form. Coincident with this faster pI shift for ApoA-1 was a
greater accumulation of carbonylation during insulin de-
privation (e.g., conversion of lysine to allysine as shown in

Fig. 4B). Thus, the ApoA-1 proteins acquired damage
acutely during insulin deprivation. This provides a mech-
anism for the association between poor glycemic control
chronically and higher levels of protein oxidation in dia-
betes (37). Admittedly, we did not study insulin depriva-
tion in ND participants, so we cannot know with certainty
that protein damage was caused directly by impacts of
insulin or glucose changes per se, as it is possible that
long-term diabetes in type 1 diabetic individuals somehow
leads to greater susceptibility to the detriments of insulin
withdrawal. Nonetheless, apparently each glycemic excur-
sion in people with type 1 diabetes causes an increment of
oxidative damage to important proteins such as ApoA-1,
and certainly to others as well. A potential reason for this
higher oxidative damage is increased oxygen consumption
(21,38) involving increased fatty acid oxidation (39), glu-
cose oxidation (40), and amino acid oxidation (41) poten-
tially resulting in increased reactive oxygen species
production. It certainly may be that this rapid aging of
ApoA-1, a key protein in lipoprotein metabolism, causes
the known higher risk for macrovascular disease in people
with type 1 diabetes (20). However, the current study did
not directly address whether oxidative damage of ApoA-1
causes alterations of ApoA-1 function.

The results from this isotope-based approach indicate
important information about the mechanism underlying
the higher degree of ApoA-1 damage in type 1 diabetic
individuals with poor glycemic control. The higher damage
appears to be largely related to a more rapid rate at which
the damage is incurred. We have shown for ApoA-1 in type
1 diabetic individuals that de novo synthesized protein is
actually rapidly converted into the damaged mature forms,
and so the high amount of amino acid label incorporated
into the damage forms indicates that the problem is not
simply inadequate clearance of damaged proteins, but
rather the problem is that the environment promotes rapid
oxidation and deamidation. It could be that there was also
some impact upon degradation of damaged protein, but it
appears that an increased rate of damage was a primary
event in the development of altered PTM distribution
during insulin withdrawal. Therefore, potential medical
interventions in this type of situation, such as that of type
1 diabetic individuals, would appropriately be aimed at
creating a less harsh environment in plasma, rather than
solely focusing on increasing rates of protein degradation.
We did not find any differences in plasma ApoA-1 concen-
trations in the diabetic participants under the two study
conditions and nondiabetic control subjects. It may also
be that long-term changes in circulating insulin levels can
affect the absolute concentration of ApoA-1 and its iso-
form distribution, but we have shown that even short-term
changes in glycemic control can alter the degree of dam-
age for a given level of ApoA-1 and can alter the kinetics of
the damage process. Moreover, by applying the current
approach, we have generated a hypothesis regarding the
etiology of type 1 diabetes–related vascular complications,
and hopefully this methodology will be useful for studying
other conditions as well (such as Alzheimer disease,
cataracts, cancer, sarcopenia, etc.) in which oxidative
damage and other modifications have been implicated
(8,33–36,42,43). The current methodology demonstrates
that when new proteins are rapidly damaged, as in type 1
diabetic individuals during insulin deficiency and hyper-
glycemia, then apparently aged proteins will contain sub-
stantial label. In contrast to the accelerated ApoA-1
oxidation observed during insulin deficiency, hyperinsulin-

OXIDATIVE DAMAGE TO ApoA-1 IN TYPE 1 DIABETES

2372 DIABETES, VOL. 59, OCTOBER 2010 diabetes.diabetesjournals.org



emia may result in the accumulation of older and damaged
proteins, which contain a lower isotope label. Indeed,
insulin is a major in vivo regulator of the rate of protein
synthesis and degradation, and insulin deprivation is asso-
ciated with profound changes in protein metabolism in
people with type 1 diabetes (41,44–46). Although we
studied plasma, any tissue can be studied based on this
novel methodology.

In conclusion, we have developed a methodology to
measure the relative age of ApoA-1 isoforms, oxidative
damage, and other modifications. With this new method-
ology, using stable isotope-labeled amino acid infusion in
vivo, 2DGE resolution of spot trains, and mass spectrom-
etry analyses, we demonstrated the effects of acute insulin
deficiency and hyperglycemia in type 1 diabetic individuals
upon the conversion of the newly synthesized ApoA-1
precursor into mature and damaged forms. This method
also allows investigators to identify de novo synthesized
protein isoforms, assess the relative age of the older
isoforms, and determine whether aged and damaged pro-
teins accumulate in conditions of insulin resistance and
hyperinsulinemia, thus contributing to various pathologies
and dysfunctions.
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