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Abstract: Ochratoxin A (OTA) is a mycotoxin that is produced after the growth of several Aspergillus
and Penicillium spp. in feeds or foods. OTA has been proved to possess nephrotoxic, hepatotoxic,
teratogenic, neurotoxic, genotoxic, carcinogenic and immunotoxic effects in animals and humans.
OTA has been classified as possibly carcinogenic to humans (Group 2B) by the IARC in 2016. OTA
can be mainly found in animals as a result of indirect transmission from naturally contaminated
feed. OTA found in feed can also contaminate pigs and produced pork products. Additionally, the
presence of OTA in pork meat products could be derived from the direct growth of OTA-producing
fungi or the addition of contaminated materials such as contaminated spices. Studies accomplished
in various countries have revealed that pork meat and pork meat products are important sources of
chronic dietary exposure to OTA in humans. Various levels of OTA have been found in pork meat
from slaughtered pigs in many countries, while OTA levels were particularly high in the blood serum
and kidneys of pigs. Pork products made from pig blood or organs such as the kidney or liver have
been often found to becontaminated with OTA. The European Union (EU) has established maximum
levels (ML) for OTA in a variety of foods since 2006, but not for meat or pork products. However,
the establishement of an ML for OTA in pork meat and meat by-products is necessary to protect
human health.

Keywords: ochratoxin A; mycotoxins; slaughtered pigs; pork products

Key Contribution: The review summarizes the state-of-the-art on OTA and focuses on the occurrence
of OTA in slaughtered pigs and pork products in many countries worldwide.

1. Introduction

Ochratoxin A (OTA) is a mycotoxin that is produced by several fungal species of the
genera Aspergillus and Penicillium in a wide variety of agricultural commodities during
the field period or storage worldwide. OTA was found to possess a carcinogenic effect in
animals and poultry, in addition to its nephrotoxic, hepatotoxic, teratogenic, neurotoxic,
genotoxic and immunotoxic effects in animals [1–6]. OTA has been also classified as
possibly carcinogenic to humans (group 2B) by the International Agency for Research on
Cancer [7]. Thus, the European Commission (EC) has established maximum levels (ML)
for OTA in these commodities [8].

OTA found in consumed feedstuffs [9] can adversely affect animal health and decrease
the production (e.g., milk) of animals [10]. The same mycotoxin could also increase suscep-
tibility to secondary bacterial infections in growing pigs, and immunosuppression is the
first expressed toxic effect of OTA [11]. Ruminants are less sensitive to OTA intoxication
as compared to monogastric animals. In ruminants, microflora in rumen can degrade
OTA to the virtually non-toxic ochratoxin α (OTα) [12]. Moreover, the exposure of food-
producing animals to OTA via feed consumption can result in undesirable OTA residues in
animal-derived food products (“carry-over effect” in meat, eggs or milk), contributing to
the human intake of OTA via indirect transmission [13].
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Pigs are the most susceptible animals to OTA exposure as compared to other pro-
ductive animals [14,15]. High OTA occurrence has been recorded in feed ingredients and
finished swine feeds in various countries [16–19], highlighting the pig exposure to the
toxin. OTA can accumulate in several pig tissues, with the highest concentrations found in
blood, followed by the kidneys and liver, whereas lower concentrations have been found
in muscles and fat [20–23].

The contamination of pork meat/edible offal with OTA is mainly derived from the
consumption of OTA-contaminated feed by the pigs [24,25]. Additionally, the presence of
OTA in pork meat products (ham muscle, cured meats, salami or dry-cured ham) could be
derived from the direct growth of OTA-producing fungi, such as Penicillium nordicum and
Penicillium verrucosum [26–30], or from the addition of OTA-contaminated materials such
as contaminated spices [31,32].

Pork meat and meat products are amongst the important sources of chronic dietary
exposure to OTA in humans [14]. Nevertheless, the EU has not established maximum OTA
levels in pork meat and pork-derived products. Some European countries have adopted
regulations or guidelines on OTA concentrations in meat and/or meat products, such as
Denmark, Estonia, Romania, Slovakia and Italy [33]. No binding limits on OTA in meat
and meat products have been set in the USA, Australia, Canada and Asia [34,35].

Several studies have been conducted worldwide on the occurrence of OTA in pork
meat and pork-derived products. This review summarizes the state-of-the-art on OTA and
focuses on the occurrence of OTA in slaughtered pigs and pork products.

2. Production of OTA
2.1. General Factors

OTA is mainly produced by Aspergillus and Penicillium fungi species in a wide variety
of agricultural commodities, livestock products and processed food [36]. The majority
of OTA-producing Aspergillus species belong to Circumdati section (A. ochraceus group,
A. steynii, A. westerdijkiae) and Nigri section (A. carbonarius and A. niger) [37,38].

Apart from the main OTA toxigenic species A. ochraceus and A. westerdijkiae, several
other Aspergillus species have been linked to OTA production, such as A. sclerotiorum,
A. sulphureus, A. albertensis, A. auricomus, A. wentii, A. fumigates, A. versicolor, A. creten-
sis, A. flocculosus, A. pseudoelegans, A. roseoglobulosus, A. sulphurous [39], A. alliaceus [40],
A. welwitschiae (formerly A. awamori) [41], A. affinis [42], A. steynii [43], A. lacticoffeatus,
A. sclerotioniger [44] and A. carbonarius [45].

The OTA toxigenic Penicillium genus is classified in groups of P. verrucosum and
P. nordicum [46] or P. thymicola [47]. Penicillia species of P. chrysogenum, P. glycyrrhizacola,
P. polonicum [48], P. brevicompactum, P. crustosum, P. olsonii, P. oxalicum [49], P. nalgiovense,
P. solitum, P. salamii [50] and P. commune [51] have been reported to produce OTA.

Important factors of fungal OTA production are considered to be temperature, water
activity (aw) and growth medium composition. Aspergillus species predominate in warm
climate regions, while Penicillium isolates are frequently found in cold climate regions [39].
A. ochraceus is commonly found in hot-tropical and semitropical climates with temperatures
ranging between 12 to 37 ◦C and an aw of growth substrates up to 0.77 [52,53]. The optimum
temperature of OTA production by A. ochraceus is in the range of 25 and 30 ◦C, and the
optimum aw is 0.98 [39]. In tropical regions, toxigenic OTA A. westerdijkiae strains are
frequently found [43]. In Europe and Canada, P. verrucosum is mostly associated with OTA
production in cereals, with optimum growth temperatures of 4 to 31 ◦C and an optimum
aw up to 0.8 [54,55]. P. viridicatum can produce OTA at wider ranges of temperatures
from 4 to 30 ◦C [56]. P. nordicum can grow on substrates with high protein and salt (5%
NaCl) content [57], with the maximum growth observed at 20 ◦C, while the highest OTA
production was found at 25 ◦C [24].

The growth of Aspergillus and Penicillium fungi species in feedstuffs is a significant
issue for an OTA-safe feed chain supply. OTA-contaminated cereal and cereal by-products,
which are important ingredients in pig feeds, are fueling concerns over the contamination
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with OTA of produced pork meat [9,58]. Several studies have indicated the contamination
of pigs feeds with OTA [16–18]. The EC has established guidance values for OTA concerning
complementary and complete feeding stuff, recommending a maximum concentration of
50 µg/kg for pigs [59,60]. In Brasil, Rosa et al. [19] reported that corn samples (44%) were
contaminated with 42–224 µg/kg of OTA, while swine feed (31%) was contaminated with
36–120 µg/kg of OTA, respectively. In Costa Rica, 19 out of 57 feed samples were found
to contain more than 50 mg/kg of OTA in pigs and sows [12]. In Italy, Pozzo et al. [17]
found swine feed samples contaminated with OTA at 0.22–38.4 µg/kg levels. In the Czech
Republic, Zachariasova et al. [61] found 26 samples of pig feeds contaminated with a mean
OTA concentration of 3 µg/kg, with only one sample exceeding the EU recommended OTA
value of 50 µg/kg. In China, Li et al. [18] found that 3% of the examined complete swine
feeds exceeded Chinese regulatory limits for feedstuffs, set at 100 µg/kg for OTA.

2.2. Production of OTA in Meat and Meat Products

The most important Aspergillus and Penicillium OTA-producing species in meat and
meat products are presented in Table 1. OTA toxigenic Aspergillus and Penicillium genera
can also grow on the surface of dry cured-meat products due to their tolerance to low
pH and high salt concentration [31,57]. The formation of OTA in the outer case or inner
part of dry-cured meat products by Aspergillus or Penicillium was also examined [62,63].
The OTA toxigenic P. nordicum and P. verrucosum have been isolated in dry meat products
in several European countries [64–69]. P. nordicum is a psychrotrophic fungi and widely
distributed contaminant in various meat products [70–74]. It is considered an important
OTA producer in dry-cured ham and dry-cured fermented sausage [24,28,70,75–78]. The
ability of P. nalgiovense, P. chrysogenum, P. olsonii, P. solitum and P. salamii to produce OTA in
dry meat products has been reported in previous studies [50,79].

Aspergillus spp. are less common OTA toxigenic contaminants than Penicillium spp. in
dry-cured meats, since these products are processed at a low temperature and Aspergillus
spp. usually requires higher temperatures than Penicillium spp. [80]. The occurrence of
A. westerdijkiae has already been described in various meat products in many countries
worldwide [30,81–83], and its growth was associated with the presence of the OTA toxin
in dry-cured meat products [84–86]. A. ochraceus was detected in OTA-contaminated
sausages [75] or dry cured ham [27,76].

In recent studies, the relationship between OTA production and the expression
of the genes potentially involved in OTA biosynthesis have been examined in meat
products [87–89].

Table 1. OTA producing Aspergillus spp. and Penicillium spp. in meat and meat products.

Species Foodstuffs References

Aspergillus spp.
A. ochraceus Processed meat [90]

Meat [91]
Dry-cured ham [27]
Sausages, speck [75]

Dry-cured meat products [57]
A. niger Dry-cured meat products [57]

A. westerdijkiae Meat products [30,70,84,85,92,93]
Penicillium spp.

P. verrucosum Sausage casings [94]
Sausages [75]

Dry-cured meat products [57]

P. nalgiovense Dry cured ham [95]
Dry-cured meat (salami) [50]
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Table 1. Cont.

Species Foodstuffs References

P. nordicum

Meat products [46,96]
Dry-cured ham [64,65,95]

Meat [97]
Cured meat [98]

Fermented meat [99]
Fermented sausage, liver pâté [100]

Dry-cured meat [70,71,84]
Sausage casings [94]

Sausages [75,101]
Meat product (Italian

culatello) [93]

Salami [28,67]
Speck [76]

P. salami, P. solitum,
P. chrysogenum, P. olsonii Dry-cured meat (salami) [50]

3. Physicochemical Properties of OTA

The chemical name of OTA is L-phenylalanine-N-[(5-chloro-3,4-dihydro-8-hydroxy-3-
methyl-1-oxo-1H-2-benzopyrane-7-yl)carbonyl]-(R)-isocoumarin. OTA consists of an isocumarin
nucleus bonded to an L-phenylalanine unit by an amide bond [3].

After OTA ingestion in human or animals, several OTA derivatives are transformed.
Certain OTA derivatives are hydroxylated, while others lack phenylalanine moiety or are
conjugated (e.g., with glutathione, glucuronic acid, sulfate or pentose). Among the OTA
metabolites are the dechloro analog ochratoxin B (OTB), the dechloro analog ochratoxin β

(OTβ), the ethyl ester ochratoxin C (OTC) and the isocoumaric derivative OTα [32]. The OTA
metabolites usually possess low or no toxicity [102,103].

OTA is stable to heat treatments and low pH conditions. Typical heat treatments of foods
such as boiling, baking, frying and roasting do not cause any important decrease in OTA
levels [104,105]. Pleadin et al. [106] found that the 30 min cooking (100 ◦C) and frying (170 ◦C)
of contaminated sausages proved insufficient to decrease OTA levels.

Innovative food-processing methods such as irradiation, cold plasma (CP) and high-
pressure processing (HPP) may be an effective means of OTA decrease in foods by controlling
the growth of OTA-producing fungi [107,108]. Despite the promising results of these new
technologies in the treatment of OTA-contaminated food, there is a great concern regarding
the toxicity of the OTA degradation compounds and consequent implications on human and
animal health [109]. The majority of innovative food-processing studies have been conducted
in food of plant origin and not in foods of animal origin.

4. Toxicity of OTA

Several studies have indicated that OTA has nephrotoxic, hepatotoxic, teratogenic, neuro-
toxic, genotoxic and immunotoxic effects and can cause tumors in organs and tissues such as the
kidneys, liver, intestine, ureters, lung, oculi and muscles of animals and humans [5,6,35,60,110].
The consumption of OTA-contaminated feed can adversely affect animals’ health and has been
associated with several animal diseases, including porcine nephropathy, avian ochratoxicosis
and carcinogenicity in rodents and poultry [5,6,60,111].

In humans, dietary exposure to OTA represents a serious health issue, including endemic
nephropathies and urinary tract tumors [112]. OTA has been classified as possibly carcinogenic
to humans (Group 2B) by the IARC due to evidence of OTA-mediated carcinogenicity in
laboratory animals [7].

In many animal species and in humans, the primary target organ of OTA is the kidney [14].
The nephrotoxic effect of the toxin has been demonstrated by various studies performed on labo-
ratory animals [2,35]. Severe nephrotoxicity has been detected in rats [113], with renal damages
characterized by disorganization of the tubules, apoptosis, polyploidy in the proximal convo-
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luted tubule (PCT) and an increase in the nucleus–cytoplasm ratio of their kidneys [114–117].
Furthermore, tubular nephrosis and hemorrhage were detected in rat kidneys [118]. Similarly,
hemorrhage, tubular necrosis, mesangial hypercellularity and glomerulosclerosis were detected
in the kidneys of rodents [119–122].

Among food-producing animals, pigs are the most susceptible animals to OTA expo-
sure [10,11]. In pigs, OTA usually causes kidney disease by damaging proximal tubules [51]. It
was initially described as spontaneous nephropathy in Bulgaria and was observed frequently
during the carcass inspection of pigs with nephropathy problems. These pathomorphological
changes in kidneys resemble those in mycotoxic porcine nephropathy observed in South Africa,
both of which have a multi-mycotoxic etiology and are differentiated from mycotoxic porcine
nephropathy described in Denmark [123].

In humans, even though the epidemiological evidence was inadequate, OTA exposure
was associated with Balkan Endemic Nephropathy (BEN), Chronic Interstitial Nephropathy
(CIN) and other kidney diseases [124,125]. BEN, firstly recognized in the 1950s [126], was
characterized by progressive kidney and urinary tract tumors in people living in the Balkans,
mainly in Bulgaria, Romania and former Yugoslavia [127,128]. However, later studies have
associated epigenetic changes as a possible cause of the disease [129,130]. The identification
of the causative factors of BEN seems to be difficult. New scientific findings are constantly
emerging, and toxic compounds produced by other fungi such as P. polonicum, P. aurantiogriseum
and P. commune have been also associated with the etiology of BEN [131]. It has also been
suggested that the disease is rather associated with exposure to other mycotoxins than OTA,
and the chronic dietary intake of aristolochic acid has been stated to be mainly responsible for
BEN [132,133].

In humans, two other forms of CIN nephropathy observed in Tunisia were associated
with OTA [134]. However, recent studies revealed that CIN nephropathies found in Tunisia
have no connection with OTA [14].

Apart from the kidneys, the liver is one of the major target organs of OTA biotransfor-
mation [135]. Significant lesions have also been observed in rat livers [135–137]. In mice,
approximately 33% of OTA is eliminated through the hepatobiliary route of excretion, and
the enterohepatic recirculation of the toxin in mice and rats is mainly responsible for the liver
damages in these species [138]. Furthermore, OTA affects reproduction systems and fertility in
animals [113].

5. Regulations on OTA in Pork Meat and Meat Products

There are remarkable differences in legal regulations of the presence of OTA in feeds or
foods among various countries. In the USA, no limits on OTA in foods or feed have been
set [34]. The US Food and Drug Administration (FDA), acting under the Federal Food, Drug
and Cosmetic Act (FFDCA), requires the implementation of food safety plans in food industries
and for good agricultural and manufacturing practices to be applied. In addition, certain
countries such as Australia and Canada have adopted a similar approach on OTA [35].

Legislation differences exist in various countries in Asia. In China, Indonesia, Korea,
Malaysia and recently in Singapore, legislative limits have been set for OTA in foods and
feed, but not in meat and meat products [139]. In Japan, OTA is not regulated by defined
maximum levels in foods and, in accordance with the USA, food safety guidelines have also
been applied [35].

The EU, based on the scientific opinion of the scientific panel on contaminants in the food
chain of the EFSA, established maximum limits for OTA in a variety of foods in Commission
Regulation (EC) No. 1881/2006 [8], which is active today, although it has been repeatedly
changed. Furthermore, a maximum level for OTA has been defined for some spices used in the
production of meat products [8,140]; for example, 15 ng/g for white and black pepper; 20 ng/g
for dired chillies, chilli powder and paprika; and 15 ng/g for mixtures containing one or more
of the aforementioned spices.

However, in pork meat and meat products and other foods of animal origin, OTA limits
have been not set yet. Instead, in many EU member countries, to protect consumers from OTA-
contaminated pork meat, edible offal and derived products have been subject to regulations
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or guidelines to limit exposure, such as in Denmark (10 µg/kg in pig kidney, 25 µg/mL in
pig blood), Estonia (10 µg/kg in pig liver), Romania (5 µg/kg in pig kidney, liver and meat)
and Slovakia (5 µg/kg in meat), Italy (1 µg/kg in pork meat and derived products) [33]. The
differences in OTA limits necessitate a harmonized approach to legally regulating OTA in pork
meat, edible offal and meat products in EU countries.

6. Methods for the Detection and Determination of OTA

Several analytical methods have been used for the detection and measurement of OTA
in feeds and foods [35,112,141,142]. However, the most common analytical methods are high-
performance liquid chromatography (HPLC), enzyme-linked immunosorbent assay (ELISA)
and thin-layer chromatography (TLC) [35]. Meat is a complex compound matrix and poses
difficulties in OTA analysis due to the strong bonds between proteins and OTA and the presence
of fat, which may be also co-extracted [143]. Therefore, for OTA analysis in protein-rich foods
such as meat, acidic solvents are used to break the protein bonds [144]. Additionally, the
presence of the OTA at trace levels in meat demands sensitive and accurate analytical methods
for OTA detection [23].

HPLC with fluorescence detector (HPLC-FLD) has shown good analytical performance
for OTA determination in pork tissues and organs, as the limits of detection (LOD) and limits
of quantification (LOQ) values were found to be quite low. In pork meat, low levels of LOD at
0.01 µg/kg [145] and LOQ at 0.03 µg/kg [146] were reported by using HPLC-FLD analysis.
Similarly, a low LOD at 0.0125 and LOQ at 0.0250 µg/kg were found in pork meat by using
HPLC-FLD analysis [15]. Similar HPLC-FLD sensitivity was found in pork kidney and liver
with the LOD and LOQ levels at 0.001 µg/kg and 0.002 µg/kg, respectively [147]. HPLC-FLD
based on an immunoaffinity clean-up step, with a range of applicability of 0.4 to 12 µg/kg
of OTA, was used for the quantification of OTA in kidney, liver, lung and pork-derived
products [148]. The HPLC-FLD method has also been used for the determination of OTA in
pig tissues [22,149] and in meat products [32,150].

The ELISA method is also an effective quantitative method for OTA screening in pork
meat products [29,31,57,151]. An ELISA analysis for OTA presence was used in dry-cured meat
products, cooked sausages and pork raw materials such as blood, brain, liver, kidney, adipose
tissue, lungs and spleen [21,31,152].

The use of enzymatic digestion (ED) extraction significantly reduces matrix interference
with the OTA in meat, leading to more reliable results of the OTA analytical methods [147,153].
For example, ED with the pancreatin method coupled to HPLC-FLD has been successfully
used for the rapid analysis of OTA in pork meat and pork products [147,153,154]. Furthermore,
ED use with HPLC for OTA quantification in pig muscle resulted in LOD and LOQ levels
of 0.21 µg/kg and 0.70 µg/kg, respectively [155]. Several analytical procedures based on
LC-MS/MS have been developed for the detection of OTA in pork meat products [13,156,157].
Furthermore, the LC-MS/MS analysis of OTA in traditional dry-fermented homemade sausages
gave low LOD and LOQ values of 0.44 µg/kg and 1.44 µg/kg, respectively, indicating a high
prevalence of OTA in these meat products [56]. It has been also proved that a sensitive
liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS)
method could be used for the quantitative monitoring of OTA in pig kidney samples [158]
and other pork tissues such as liver and muscle [156,157]. A new developed immunoaffinity
column clean-up step (IAC)-LC–ESI-MS/MS was also used for OTA examination in pork meat
samples [144].

Ultra-performance liquid chromatography (UPLC) has been also used for OTA detection
in meat [159,160], with a higher OTA analytical sensitivity as compared to HPLC [161]. Brera
et al. [158], comparing HPLC-FLD and ultra-performance liquid chromatography tandem mass
spectrometry (UPLC-MS/MS), concluded that both methods are suitable for the detection of
OTA in ham.

In order to detect potentially ochratoxinogenc fungi and quantify the genes involved in
the biosynthesis of OTA production, tge quantitative real time PCR (qPCR) method was also
used [27].
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7. Occurrence of OTA in Slaughtered Pigs

In pigs, the highest concentrations of OTA are usually found in the blood, followed by
the kidneys, liver, muscles and fat [16–19]. This OTA distribution trend in pig organs was
also verified in pigs fed with OTA contaminated feed due to the “carry-over” effect (Table 2).
The OTA levels in pig tissues were dependent on the OTA levels administrated in feed as
well as the duration of feeding with OTA-contaminated feed [122,162]. Pigs fed with naturally
contaminated feed showed higher OTA serum/plasma levels compared to studies in which
pigs were fed OTA-contaminated feed [163].

Accomplished data on the occurrence of OTA in edible pig tissues from published studies
conducted in various countries worldwide are summarized in Table 3. According to several
studies of slaughtered pigs accomplished in various countries, the occurrence of OTA-positive
samples was high in pig tissues, and particularly in blood serum and kidneys. For example,
98% and 94% of porcine serum samples tested by HPLC-FD in Romania in the studies of Curtui
et al. [164] and Curtui and Gareis [165], respectively, were found to be OTA-positive. Curtui
and Gareis [165] reported that the levels of OTA were in the range of 0.1–13.4 µg/L in porcine
serum samples. In Canada, pig serum analysis revealed that all the positive samples had
concentrations of OTA between 5.4 to 20 µg/L in the years 1988–1990 [166]. A lower incidence
of OTA (31.1%) was found in pig serum in Serbia with OTA levels ranging between 0.22 and
220.8 µg/L [167].

The presence of OTA in kidneys is considered to be a good indicator of overall exposure
of pigs to the toxin [149]. Several surveys conducted in various countries revealed that OTA
occurrence in kidney samples of healthy pigs using HPLC-FD analysis was in the range from
8% [168] to 14.74% [149]. However, according to a study by Hou et al. [159], in kidney samples
of healthy pigs using ultra-HPLC/MS/MS analysis, the occurrence was 87.5%. Various OTA
levels in pig kidneys have been reported. In Italy, OTA levels in kidneys were in the range of
0.17–0.91 µg/kg [147] and 0.07–3.23 µg/kg [153] for pigs and wild boars, respectively. In the
Czech Rebublic, Skarkova et al. [168] reported OTA levels of 0.15–0.46 µg/kg in pig kidneys.
In China, the OTA concentrations ranged between 0.03 to 0.323 µg/kg in pig kidneys [160].
However, Polovinski-Horvatovic et al. [148] found OTA levels in examined pig kidneys as
high as 3.97 µg/kg in Serbia. In a recent study in Belgium, 37.3% of kidney samples were
OTA-contaminated at the mean level of 0.22 ± 0.25 µg/kg (up to 1.91 µg/kg) [169].

Various levels of OTA have been found to be present in the livers or muscles of slaugh-
tered pigs. In the livers of pigs, OTA levels as high as 100% and 33% were found by using
HPLC-FD or LC-MS/MS, respectively [147,153]. OTA levels in pig liver of 1.46 µg/kg [156]
and 0.10–3.65 µg/kg [23] were reported in China and France, respectively. In Italy, Giacomo
et al. [146] reported OTA concentrations in pork liver samples with a range of 0.07–0.59 µg/kg
and a mean value of 0.35 µg/kg. Similarly, in Italy, Luci et al. [152] found that OTA ranged
from 0.02 to 1.93 µg/kg in livers of wild boars. The levels of OTA in muscles of slaughtered
pigs were 8% in the Czech Rebublic [168] and 33.33% [56] in China. High percentages of
OTA presence in muscles of slaughtered pigs in France were found with a range of 76% to
100% [23]. Luci et al. [152] examined 48 muscle samples of slaughtered pigs in Italy, and all of
them were positive for OTA presence. Pig muscles were found to be contaminated with OTA
with a range of 0.15 to 0.20 µg/kg in the Czech Republic [168], 0.09–0.20 µg/kg in Italy [146]
and 0.03–0.23 µg/kg in Canada [170]. In a recent study conducted in Italy, Meucci et al. [15]
found that the maximum OTA concentrations in pig muscles reared in an indoor system
were 0.055 µg/kg and 0.078 µg/kg in indoor and outdoor systems, respectively. Analysis by
LC-MS/MS showed higher OTA levels in muscles of 1.25 µg/kg in China [156] and 0.88 µg/kg
in Italy [171]. Analysis by SIDA–UHPLC–MS/MS showed also high levels of OTA (maximum
1.15 µg/kg) in the muscles of French pigs from organic farming production systems [23]. The
OTA levels in the fat of slaughtered pigs in Italy were found to be low, with values ranging
0.079 ± 0.018 µg/kg and 0.085 ± 0.025 µg/kg for indoor and outdoor systems, respectively.
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Table 2. Distribution of OTA in tissues of pigs fed with OTA-contaminated feed.

OTA Treatment
Sample

OTA Content (µg/kg-µg/L) Method 2 Reference
Type Number

1 male, 1 female control,
1 male, 1 female OTA-treated

(0.8 µg/kg feed)/6 months
Kidneys 2 control

2 treated
12.1 and 9.6 (control)

98.3 and 103.8 (treated) HPLC-FD [172]

Control/OTA-treated
(25 µg/kg feed)/119 days

Kidneys

32 control
32 treated

10.50 (control)
69 (treated)

HPLC-FD [173]Liver 3.50 (control)
52.00 (treated)

Meat (Semimembranosus muscle) 0.88 (control)
6.10 (treated)

OTA treated: 2.5 mg/kg feed
Kidneys

5 treated
Mean: 29.15

TLC and spectrophotometry [174]Liver Mean: 20.1
Meat (heart/muscle) Mean: 12.6

T0: control group, OTA treated
groups (T1-T3):

50, 100, 200 µg/kg feed/2 weeks

Blood

24 (total)

T0: <0.02–0.26, Mean: 0.19
T1: 5.24–7.51, Mean: 6.35
T2: 7.41–16.5, Mean:11.4
T3: 17.3–34.5, Mean: 24.6

HPLC-FD
LOD: 0.02, LOQ: 0.05

[175]

Kidneys

T0: <0.04–0.32, Mean: 0.13
T1: 2.75–4.37, Mean: 3.74
T2: 4.56–5.72, Mean: 5.24

T3: 7.33–11.8, Mean:10

LOD: 0.04, LOQ: 0.10

Liver

T0: <0.04–0.14, Mean: 0.06
T1: 1.26–1.82, Mean: 1.60
T2: 1.91–2.56, Mean: 2.35
T3: 3.16–6.98, Mean: 4.29

LOD: 0.04, LOQ: 0.10

Meat

T0: ND 1

T1: 0.60–0.89, Mean: 0.74
T2: 1.08–1.45, Mean: 1.27
T3: 1.67–3.40, Mean: 2.23

LOD: 0.04, LOQ: 0.10

Fat

T0: ND
T1: 0.57–0.79, Mean: 0.68
T2: 0.86–1.26, Mean: 1.04
T3: 1.33–2.58, Mean: 1.71

LOD: 0.02, LOQ: 0.05
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Table 2. Cont.

OTA Treatment
Sample

OTA Content (µg/kg-µg/L) Method 2 Reference
Type Number

5 controls, 5 OTA treated
(0.78 mg/day)

(300 µg/kg feed)

Blood

10 (total)

ELISA Mean: 6.56 ± 2.15
HPLC-FD Mean: 6.35 ± 2.49

ELISA:
LOD: 1.34, LOQ: 2.94

HPLC-FD
LOD: 0.15, LOQ: 0.20

[21]

Kidneys ELISA Mean: 14.59 ± 3.47
HPLC-FD Mean: 15.31 ± 3.11

ELISA:
LOD: 1.59, LOQ: 3.32

HPLC-FD:
LOD: 0.15, LOQ: 0.20

Liver ELISA Mean: 8.23 ± 2.49
HPLC-FD Mean: 8.81 ± 2.08

ELISA:
LOD: 2.31, LOQ: 5.67

HPLC-FD:
LOD: 0.15, LOQ: 0.20

Muscle ELISA Mean: 5.42 ± 1.13
HPLC-FD Mean: 5.61 ± 2.01

ELISA:
LOD: 0.39, LOQ: 0.57

HPLC-FD:
LOD: 0.15, LOQ: 0.20

Fat ELISA Mean: 4.31 ± 1.58
HPLC-FD Mean: 4.59 ± 1.68

ELISA:
LOD: 0.32, LOQ: 0.40 HPLC-FD:

LOD: 0.15, LOQ: 0.20

OTA treated
(250 µg/kg feed)/4 weeks

Blood

5 (total)

3.71–6.57
Mean: 4.77 ± 1.57

ELISA:
LOD: 0.20, LOQ: 0.31

HPLC-FD:
LOD: 0.10, LOQ: 0.15

[176]

Kidneys 11.88–15.98
Mean: 13.87 ± 1.41

ELISA:
LOD: 1.44, LOQ: 1.89

HPLC-FD:
LOD: 0.24, LOQ: 0.36

Liver 4.89–9.78
Average: 7.28 ± 1.75

ELISA:
LOD: 1.54, LOQ: 2.11

HPLC-FD:
LOD: 0.36, LOQ: 0.42

Meat 2.79–5.37
Mean: 4.72 ± 0.86

ELISA:
LOD: 0.45, LOQ: 0.61 HPLC-FD:

LOD: 0.16, LOQ: 0.22

Fat 2.95-5.26
Average: 4.11 ± 0.88

ELISA:
LOD: 0.66, LOQ: 1.11 HPLC-FD:

LOD: 0.23, LOQ: 0.29

1 ND: Not detected. 2 HPLC-FD: High-performance liquid chromatography with fluorescence detector; TLC: Thin layer chromatography; ELISA: Enzyme-linked immunosorbent assay;
LOD: Limit of detection (µg/kg-µg/L); LOQ: Limit of quantification (µg/kg-µg/L).
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Table 3. Occurrence of OTA in meat and edible offal of slaughtered pigs.

Samples Country Year/Years of Study
OTA Prevalence

Method 2 Comments ReferencePositive/Number Tested
(% Positive)

Concentration
(µg/kg-µg/L)

Blood Canada
1988

1200 Total
(3.6% of 194)

(4.2% of 1006)
>20

HPLC-FD [166]

1989–1990 16–65% 5.4–19.4

Serum

Bulgaria 1993–1994
25/75

(48–64%, autumn)
(60.88 spring)

Mean:
4.8–21.94 (autumn)

60.88 (spring)
HPLC [177]

Romania 1998 52 (Total)

98%: 0.05–13.4
92%: ≥0.1
Max: 13.4

Mean: 2.43

HPLC-FD LOD: 0.1 [164]

Romania NR 1 49/52 (94%) 0.1–13.4 HPLC-FD LOD: 0.1 [165]

Serbia 2006–2007 28/90 (31%) 0.22–220.8
Mean: 3.70 ± 23.59 HPLC-FD LOD: 0.1 [167]

Kidneys

Bulgaria 1994 80–100%
(nephropathic kidneys) Mean: 1.5–7.17

Samples from porcine
nephropathy

affected farms
[178]

France 1997 3/300 (1%)
6/100 (6%)

1%: 0.40–1.40
6%: 0.16–0.48 HPLC-FD

300 Healthy pigs
100 Nephropathic pigs
LOD: 0.05, LOQ: 0.16

[179]

France 1998 238/710 (33.5%) 184/710 (25.9%): LOD-0.5
54/710 (7.6%): 0.5–5 HPLC-FD LOD: 0.05, LOQ: 0.16

Germany NR 26/58 (44%) Max: 9.3 HPLC-FD LOD: 0.01 [180]
Romania 1998 41/52 (79%) Max: 3.18, Mean: 0.54 HPLC-FD LOD: 0.01 [165]

Denmark 1999 284/300 (94.7%) 0–15
Mean: 0.50, Median: 0.18 HPLC-FD LOD: 0.02, LOQ: 0.06 [181]

Italy NR 52/54 (96%) 0.26–3.05 HPLC-FD LOD: 0.14, LOQ: 0.52 [182]
Italy NR 54/54 (100%) Mean: 0.29, Max: 0.9 ELISA LOD: 0.01 [183]

Italy 2005 5 (Total) 23.9–27.5
Average: 25.6 ± 1.56 HPLC-FD LOD: 0.10, LOQ: 0.30 [184]

Serbia 2006–2007 30/90 (33.3%) 0.17–52.5
Mean: 1.26 ± 5.85 HPLC-FD LOD: 0.01 [167]

Czech Rebublic 2011–2012 8% 0.15–0.46, Mean: 0.18 HPLC-FD LOD: 0.10, LOQ: 0.30 [168]
China 2014 35/40 (0.03–0.1) to 0.323 UHPLC-MS/MS LOD: 0.03, LOQ: 0.10 [159]

Italy NR 5/5 (100%) 0.17–0.91
Mean: 0.37 ± 0.30 HPLC-FD (ED) LOD: 0.001, LOQ: 0.002 [147]

Belgium 2012–2019 41/110 (37.3%) Mean: 0.22 ± 0.25 LC-MS/MS LOD: 0.2 [169]
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Table 3. Cont.

Samples Country Year/Years of Study
OTA Prevalence

Method 2 Comments ReferencePositive/Number Tested
(% Positive)

Concentration
(µg/kg-µg/L)

Kidneys of wild boars

Italy 2014–2015
48 (Total)

2014:26/26 (100%)
2015:22/22 (100%)

2014: 0.19–3.23
Median: 0.68

2015: 0.07–1.72
Median: 0.34

HPLC-FD (ED) LOD: 0.001, LOQ: 0.002 [120]

Serbia 2018 14/95 (14.74%)
0.10–3.97

Average: 1.36
Median: 0.99

HPLC-FD LOQ: 0.10 [148]

Liver

Germany NR 10/58 (17%) Max: 2.7 µg/kg HPLC-FD LOD: 0.01 [180]

Romania 1998 39/52 (75%) Max: 0.61
Mean: 0.16 HPLC-FD LOD: 0.01 [165]

Italy 2005 5 (Total) 3.2–5.3
Average: 4.4 ± 0.8 HPLC-FD LOD: 0.10, LOQ: 0.30 [184]

Serbia 2006–2007 24/90 (26.6%) 0.22–14.5
Mean: 0.63 ± 1.87 HPLC-FD LOD: 0.01 [167]

China NR 1/3 (33.33%) 1.46 LC-MS/MS LOQ: 0.25-1.0 [156]

Italy NR 5/5 (100%) 0.07–0.59
Mean: 0.35 ± 0.20 HPLC-FD (ED) LOD: 0.001, LOQ: 0.002 [147]

Liver of wild boars

Italy 2014–2015
48 (Total)

2014: 26/26 (100%)
2015: 22/22 (100%)

2014: 0.04–1.93,
Median: 0.15

2015: 0.02–1.31
Median: 0.23

HPLC-FD (ED) LOD: 0.001, LOQ: 0.002 [153]

France 2014 47/70 (67%) 0.10–3.65 SIDA–UHPLC–MS/MS LOD: 0.03, LOQ: 0.10 [23]

Pork meat and liver Denmark 1993–1994
64/76 (84.2%) (conventional)

4/7 (57.1%) (ecological)

Conventional
Max: 1.3

Mean: 0.11, Median: 0.09
Ecological

Max: 0.12, Mean: 0.05,
Median: 0.05

HPLC-FD LOD: 0.02–0.03 [185]

Meat

Germany NR 10/58 (17.2%) Max: 0.14, Median: <0.01 HPLC-FD LOD: 0.01 [180]
Romania 1998 9/54 (17%) Max: 0.53, Mean: 0.15 HPLC-FD LOD: 0.01 [165]

Denmark 1999 228/300 (76%) 0–2.9
Mean: 0.12, Median: 0.03 HPLC-FD LOD: 0.03, LOQ: 0.09 [181]
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Table 3. Cont.

Samples Country Year/Years of Study
OTA Prevalence

Method 2 Comments ReferencePositive/Number Tested
(% Positive)

Concentration
(µg/kg-µg/L)

Swine muscle

Portugal 2002–2003 1/13 (7.7%) 0.12
Mean: 0.01 ± 0.03 HPLC-FD LOD: 0.01, LOQ: 0.04 [144]

Italy NR
54/54 (100%)

42/54 (78%) > 0.05
20% > 0.5

Mean: 0.024, Median: 0.01 ELISA LOD: 0.01 [183]

China NR 1/3 1.25 LC-MS/MS LOQ: 0.25–1.0 [156]
Czech Rebublic 2011–2012 8% 0.15–0.20, Mean: 0.13 HPLC-FD LOD: 0.10, LOQ: 0.30 [168]

Italy NR 5/5 (100%) 0.09–0.20, Mean: 0.13 ± 0.04 HPLC-FD (ED) LOD: 0.001, LOQ: 0.002 [146]

Muscle of wild boars

Italy 2014–2015
48 (Total)

2014: 26/26 (100%)
2015: 22/22 (100%)

2014: <LOD–0.77
Median: 0.08

2015: 0.03–0.50
Median: 0.13

HPLC-FD (ED) LOD: 0.001, LOQ: 0.002 [152]

China NR 1/4 0.88 LC-MS/MS LOD: 0.07, LOQ: 0.25 [156]
France 2014 19/25 (76%) ≤0.03–1.15 SIDA–UHPLC–MS/MS LOD: 0.03, LOQ: 0.10 [23]

Italy NR
5/5 (100%)

Rearing system:
Indoor & Outdoor

Indoor: 0.055 ± 0.015
Outdoor: 0.078 ± 0.011 HPLC-FD LOD: 0.0125,

LOQ: 0.0250 [15]

Fat Italy NR
5/5 (100%)

Rearing system:
Indoor & Outdoor

Indoor: 0.079 ± 0.018
Outdoor: 0.085 ± 0.025 HPLC-FD LOD: 0.0125,

LOQ: 0.0250 [15]

1 NR: Not reported. 2 Refer to Table 2 for abbreviations; UHPLC-MS/MS: Ultra-high performance liquid chromatography tandem mass spectrometry; LC-MS/MS: Liquid Chromatogra-
phy tandem mass spectrometry; ED: enzymatic digestion; SIDA: Stable isotope dilution assay.
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8. Occurrence of OTA in Pork Meat Products

OTA is the most common mycotoxin found in processed pork meat products [30,67,70,83].
Table 4 summarizes OTA occurrence data in pork meat products from published studies
conducted in various countries. The contamination of pork meat products with OTA may
be due to the use of contaminated raw meat and offal, especially kidneys, livers, blood and
blood plasma [21,25,26], and secondarily to the addition of other contaminated materials
such as spices [31,32]. Offal-containing sausages such as black pudding and liver sausages
have been often found to be contaminated with OTA in significant concentrations [21].
However, in a recent study in Belgium, 20 black sausage samples were tested and were not
found to be contaminated with OTA [169].

High differences in the occurrence of OTA in pork meat products have been observed
in various countries (Table 4). High values of OTA of 158 µg/kg and 103.69 µg/kg were re-
ported for fermented sausages in Denmark and salami in Italy, respectively [142,186].
Mitchell et al. [187] reported that most pork meat samples were found to have non-
detectable OTA levels. According to a survey conducted in various European countries,
the mean value of OTA recorded in various pork products was 0.052 µg/kg [188]. In Italy,
Altafini et al. [32] analyzed 172 different salamis and found that 3 samples of spicy salamis
exceeded the official Italian permitted value of 1 µg/kg allowed for OTA in pork meat
products. The authors concluded that the high OTA levels in these samples were derived
from the addition of OTA-contaminated chili pepper. Meucci et al. [15] compared the
effect of the indoor and outdoor rearing system in OTA contamination in produced pork
meat products. The OTA values determined by HPLC-FD analysis were 0.058 µg/kg and
0.537 µg/kg in indoor and 0.064 µg/kg and 0.558 µg/kg in outdoor salami and mortadella,
respectively, indicating no significant difference between the two examined systems.

Studies on the OTA levels in fermented sausages produced from pigs fed with OTA-
contaminated feed were also conducted. In a study conducted in Croatia, pigs were fed
with OTA-contaminated feed (300 µg/kg of feed) for 30 days [21]. The mean OTA levels
were 13.82 µg/kg and 9.13 µg/kg for produced black pudding sausages and pated products,
respectively. In a similar study conducted also in Croatia, the OTA levels were ranged from
4.51 ± 0.11 µg/kg in smoked ham to 6.32 ± 0.65 µg/kg in bacon [152].

The occurrence of OTA in contaminated meat products may also be due to the growth
of OTA-producing fungi in these products [26–30,94]. Surveys in ham-manufacturing
plants revealed that OTA toxigenic strains of Aspergilli and Penicillia were present in the
ripening rooms [98,189]. Dall’Asta et al. [26] examined the contamination levels of hams in
the inner and the outer parts and concluded that the mean OTA levels were 0.24 µg/kg in
the inner and 0.98 µg/kg in the outer samples. Hams inoculated with P. nordicum yielded
significantly higher amounts of OTA than those inoculated with A. ochraceus [27]. Sánchez-
Montero et al. [24] inoculated ham samples with P. verrucosum and P. nordicum and found
that the OTA levels ranged between 2.30–4.37 µg/kg, using different aw values. In a recent
study, Delgado et al. [161] inoculated raw sausages with P. nordicum, and after 26 days of
ripening, the OTA levels were in the range of 1.02 to 51.06 µg/kg.

It was also found that the growth of A. westerdijkiae on the salami surface produces high
levels of OTA on the casing and allows its diffusion through the casing to the outer parts of
sausages [30]. Furthermore, the inoculation of dry fermented sausage with A. westerdijkiae
resulted in high levels of OTA of 1.959 µg/kg [70]. In sausages inoculated with strains
of P. nordicum and P. verrucosum, the OTA level was found to be between 30.58 µg/kg
and 66.91 µg/kg [24]. Fresh pork sausages were inoculated with P. nordicum, and OTA
was detected on the fourth day (10 µg/kg) and increased significantly on the seventh day,
reaching the maximum level of 135 µg/kg after 10 days of storage [67].
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Table 4. OTA occurrence in pork meat products.

Samples Country Year/Years of Study
OTA Prevalence

Method 1 Comments 1 ReferencePositive/Number
Tested (% Positive) Concentration (µg/kg)

Various Products
Various countries 1990–1998 NR Mean: 0.052 NR [188]
France, Germany,

Italy, U.S.
1997–1999 and

2000–2002 18% NR NR [190,191]

Liver sausages
Germany NR 1

68% Mean: 0.02, Max.: 4.56
HPLC-FD [180]Bologna type products 46.7% Mean: 0.01, Max.: 0.38

Blood sausages 77.2% Mean: 0.04, Max.: 3.16
Salami

Italy 2001–2002

4/12 (33%) Mean: 0.02, Max.: 0.08

HPLC-FD LOD: 0.01, LOQ: 0.03 [145]
Cooked ham 1/12 (8%) Mean: 0.004, Max.: 0.05

Dry-cured ham 12/30 (40%) Mean: 1.62, Max.: 28.42
Coppa 5/18 (28%) Mean: 0.03, Max.: 0.24

Würstel 1/12 (8%) Mean: 0.005, Max.: 0.06

Hams Italy NR

Inner samples:
2/10 (20%)

Outer samples:
5/10 (50%)

0.28–1.52, 0.11–7.28 HPLC-FD LOD: 0.02, LOQ: 0.06 [192]

NR

Inner samples:
32/110 (29%)

Outer samples:
84/110 (76.4)

4.66–12.51 HPLC-FD LOD: 0.1, LOQ: 0.3 [26]

Dry-cured hams Italy 2007–2010 NR

Means: 0.6–4.11

HPLC-FD

Choroform Extraction:
LOD: 0.090,
LOQ: 0.180

[190]

Means: 1.14–6.29

Enzyme Assisted
extraction:

LOD: 0.060,
LOQ: 0.120

Fermented sausages
and dry-cured hams Denmark NR 1/22 (4.5%)

Positive sample: Parma ham
1st analysis: 56,

2nd: 158 and 113
LC-MS/MS LOD: 11, LOQ: 50 [142]

Ham

Croatia 2011–2014

18/105 (17.14%) 0.97–9.95, Means: 0.16–1.82
ELISA

HPLC-FD

ELISA: LOD: 0.85–0.98
LOQ: 1.56–1.95

HPLC: LOD: 0.15, LOQ:
0.20

[31]Dry-fermented sausages 14/208 (6.73%) 0.95–5.10, Means: 0.08–0.21
Bacon 2/62 (3.22%) ND-1.23, Means: ND-0.07

Cooked sausages 3/35 (8.57%) ND-3.13, Means: ND-0.26
Dry-fermented

sausages (industrial)
Croatia 2013

18/56 (32.1%) 1.36–7.12, Mean: 3.02 ± 2.45

ELISA

Sausages
LOD: 0.84, LOQ: 1.07

Ham
LOD: 0.32, LOQ: 0.40

[150]Dry-fermented
sausage (homemade) 11/77 (14.3%) 1.36–6.26, Mean: 3.54 ± 1.70

Dry-cured ham 12/54 (22.1%) 1.56–9.95, Mean: 3.16 ± 2.42
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Table 4. Cont.

Samples Country Year/Years of Study
OTA Prevalence

Method 1 Comments 1 ReferencePositive/Number
Tested (% Positive) Concentration (µg/kg)

Salami
Italy NR

NR
Rearing system indoor

and outdoor

Indoor: 0.058 ± 0.015
Outdoor: 0.064 ± 0.004

HPLC-FD
LOD: 0.0125,
LOQ: 0.0250 [15]

Mortadella Indoor: 0.537 ± 0.042
Outdoor: 0.558 ± 0.016

Prosciuttos
Croatia NR

15/67 (22.4%) 2.16–6.86, Means: 3.56–5.04
ELISA [57]Fermented sausages 7/93 (7.5%) 2.74–4.14, Means: 2.97–3.89

Hams Italy NR

27/42 (64.2%)
<1.0

14/42 (33.4%)
1–2

1/42 (2.4%) > 2

0.04-0.98,
1.1–2,

2.20–2.30

HPLC-FD
VICAM fluorometer

HPLC: LOD: 0.04
Fluorometric:

LOD: 0.7
[171]

Salami type cured meat Italy NR 14/30 (46.7%) 9/30 (30%): 0.006–0.06
5/30 (16.7%): 0.06–1 HPLC-FD LOD: 0.06, LOQ: 0.22 [193]

Salami Italy
2013 5/50 (10%) 4 samples: 0.06–0.44

1 sample: 103.69 HPLC-FD LOD: 0.06, LOQ: 0.20 [186]

2013–2015 13/133 (9.8%) - LC-MS/MS LOQ: 1 [194]
2015–2016 22/172 (12.8%) 0.07–5.66, Mean: 0.51 HPLC-FD LOD: 0.05, LOQ: 0.20 [32]

Sausages China 2013–2014 1/10 0.5 LC-MS/MS LOD: 0.05, LOQ: 0.1 [13]
Dry Fermented

sausages Croatia NR 13/88 (14.8%) <LOD-0.48,
Mean: 0.26 ± 0.12 LC-MS/MS LOD: 0.44, LOQ: 1.44 [56]

Cured sausages Italy NR 72/160 (45%) Cases of sausages: 3–18
Means: 4.5–8.0 ELISA ELISA: LOD: 0.1 [94]

“Pâté” products Spain NR 3/38 (7.9%) Max.: 1.77 HPLC-FD LOD: 0.56, LOQ: 0.84 [195]
Products with
porcine serum Germany NR 58/325 (17.8%) Mean: 0.15 ELISA and HPLC-FD - [196]

1 Refer to Table 3 for abbreviations.
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9. Risk Assessment of Human Exposure to OTA by Consumption of Pork Meat and
Derived Products

There are only a few studies on the assessment of the human exposure to OTA due
to the consumption of pork meat and derived products. The Joint FAO/WHO expert
committee on food additives (JECFA) established a Provisional Tolerable Weekly Intake
(PTWI) of 100 ng/kg bw based on the lowest-observed-adversed-effect level (LOAEL) for
renal effects in pigs [188,197]. EFSA has adopted a scientific opinion relating to OTA and
derived a tolerable weekly intake (TWI) of 120 ng/kg bw (equivalent to 17 ng/kg bw/day),
derived from the pig lowest observed adverse effect level (LOAEL) [8], and this was also
reconfirmined in 2010 [198]. Health Canada re-evaluated the appropriateness of the EFSA
TWI and established a tolerable daily intake (TDI) of 3 ng/kg bw per day (which would
correspond to a TWI of 21 ng/kg bw) [14]. In the European population, dietary exposure
levels for adult consumers have estimated a range from 15 to 60 ng/kg bw per week
(ca. 2 to 8 ng/kg bw per day), and this range is below the established TWI. However, the
exposure could be higher in children and certain cosumer groups with specific consumption
habits [97,199].

According to the results of two research projects (1997–1999 and 2000–2002) [190,191]
on the occurrence of OTA in commodities on the European market and on dietary exposure
to OTA in the EU members, pork contributed only 1% to the total estimated intake. In an
early study of Frohlich et al. [166], OTA was present in the blood of people in Canada (40%),
and they concluded that a possible entry path of OTA into the human food chain was pork
products. Frank [196] calculated that the daily intake of OTA by German consumers is
1.6 ng from the consumption of sausages. In a recent study in USA, mean OTA exposure
from pork in the consumer population was 0.16 ng/kg bw per day [187]. JECFA [188]
estimated the intake of OTA from pork to be 1.5 ng/kg bw per week. Jorgensen [200]
estimated the OTA exposure by European consumers at 45 µg/kg bw per week and the
intake of OTA from pork at 1.5 ng/kg bw per week.

Human exposure to OTA seems to be associated predominantly with the consumption
of contaminated plant-derived products and only to a minor extent with foods of animal
origin [201]. However, regular consumption of certain porcine blood products contributes
considerably to the level of exposure, especially in children, in which the relatively lower
body weight as compared to adults results in a higher exposure per kg bw [202].

10. Conclusions

OTA is produced by grown Aspergillus and Penicillium spp. in a wide variety of foods
and feeds. OTA is toxigenic to animals and humans and has been classified as possibly
carcinogenic to humans (Group 2B) by the IARC. In humans, OTA exposure was associated
with Balkan Endemic Nephropathy, Chronic Interstitial Nephropathy and other kidney
diseases, although this is not epidemiologically evident.

Pigs are the most susceptible animals to OTA exposure. Among foods of animal origin,
pork meat and meat products are considered as important sources for chronic dietary
exposure to OTA in humans. The EU established maximum limits for OTA in a variety of
foods since 2006, but not for meat or meat products.

Various levels of OTA have been found to be present in pork meat and offal from
slaughtered pigs in various countries. According to several studies of slaughtered pigs
accomplished in many countries, the OTA levels were particularly high in blood serum
and kidneys.

High differences in the occurrence of OTA in pork meat products have been observed
in various countries. Pork products made from pig blood or organs such as the kidney
or liver have often been associated with the presence of OTA. Results from these studies
highlight the need to apply control OTA measures in pig feeds and establish an ML for
OTA in pork meat by-products to protect human health and to constantly monitor OTA
occurrence in animal-derived products.
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103. Kőszegi, T.; Poór, M. Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins
2016, 8, 111. [CrossRef]

104. Dahal, S.; Lee, H.J.; Gu, K.; Ryu, D. Heat stability of ochratoxin A in an aqueous buffered model system. J. Food Protect. 2016, 79,
1748–1752. [CrossRef] [PubMed]

105. Sueck, F.; Hemp, V.; Specht, J.; Torres, O.; Cramer, B.; Humpf, H.U. Occurrence of the Ochratoxin a Degradation Product
2’R-Ochratoxin A in Coffee and Other Food: An Update. Toxins 2019, 11, 329. [CrossRef]
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exposure to ochratoxin A in Croatia due to the consumption of dry-cured and fermented meat products. Food Addit. Contam. A
2016, 33, 1428–1434. [CrossRef]
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