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Filamentous pathogens, such as phytopathogenic oomycetes and fungi, secrete a
remarkable diversity of apoplastic effector proteins to facilitate infection, many of which
are able to induce cell death in plants. Over the past decades, over 177 apoplastic
cell death-inducing proteins (CDIPs) have been identified in filamentous oomycetes and
fungi. An emerging number of studies have demonstrated the role of many apoplastic
CDIPs as essential virulence factors. At the same time, apoplastic CDIPs have been
documented to be recognized by plant cells as pathogen-associated molecular patterns
(PAMPs). The recent findings of extracellular recognition of apoplastic CDIPs by
plant leucine-rich repeat-receptor-like proteins (LRR-RLPs) have greatly advanced our
understanding of how plants detect them and mount a defense response. This review
summarizes the latest advances in identifying apoplastic CDIPs of plant pathogenic
oomycetes and fungi, and our current understanding of the dual roles of apoplastic
CDIPs in plant-filamentous pathogen interactions.

Keywords: filamentous phytopathogen, apoplastic effector, cell death-inducing proteins, virulence factor,
immune response

INTRODUCTION

Filamentous pathogens, such as oomycetes and fungi, are the causal agents of many of the world’s
most serious plant diseases, causing extensive annual yield losses of crops worldwide (Giraldo
and Valent, 2013; Sánchez-Vallet et al., 2018). Pathogenic oomycetes and fungi secrete a complex
repertoire of effector proteins to establish successful interactions with host plants. These oomycete-
or fungi-secreted effector proteins may function in the apoplast as well as within plant cells to
interfere with host defense by a variety of mechanisms (Dou and Zhou, 2012; Lo Presti and
Kahmann, 2017).

Studies from diverse filamentous pathogens have shown that many oomycete or fungal effector
proteins possess the ability to induce cell death in plants (Gijzen and Nürnberger, 2006), including
avirulence (AVR) proteins which trigger hypersensitive response (HR) upon recognition by cognate
resistance (R) proteins (Kamoun, 2006; Ellis et al., 2009), nuclear-localized Crinkling and Necrosis
proteins (CRNs) and nucleo-cytoplasmic RxLR proteins with capacity to induce plant cell death
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(Torto et al., 2003; Amaro et al., 2017), and extracellular cell
death-inducing proteins (CDIPs) that function in the plant
apoplast (Guo et al., 2019). The role of AVR proteins, CRN
and RxLR effectors involved in the interactions of plants with
filamentous pathogens have been reviewed extensively (Ellis et al.,
2009; Giraldo and Valent, 2013; Amaro et al., 2017; Lo Presti
and Kahmann, 2017). Here we focus this review on apoplastic
CDIPs of filamentous plant pathogens and their roles in plant-
pathogen interactions.

Because cell death plays an important role in the interactions
of plants with pathogens, there has been a long-standing interest
in the characterization of pathogenic molecules which are able to
induce plant cell death (Gijzen and Nürnberger, 2006). Since the
characterization of elicitins, a family of conserved small secreted
proteins from oomycetes that induce necrosis in Nicotiana
species, in the 1980s (Billard et al., 1988; Huet and Pernollet, 1989;
Ricci et al., 1989), a large number of apoplastic CDIPs have been
identified in oomycete and fungal plant pathogens (Tables 1, 2).
These apoplastic CDIPs induce plant cell death in a non-race-
or non-species-specific manner, and were initially defined or
considered as “elicitors” or “toxins” (Gijzen and Nürnberger,
2006; Derevnina et al., 2016). The role of apoplastic CDIPs in
the interactions of plants with filamentous pathogens has been
controversial for a long time.

Over the past decades, tremendous progress has been made
in understanding the biological functions of apoplastic CDIPs in
filamentous oomycetes and fungi, such as their contribution to
pathogen virulence and being recognized by plant cells. These
findings have greatly enriched our knowledge on the roles of
apoplastic CDIPs as virulence factors and how plants detect them
and mount a defense response. In this review, we summarize the
latest advances in identifying apoplastic CDIP effectors in plant
pathogenic oomycetes and fungi, and our current understanding
of the dual roles of apoplastic CDIPs in plant-filamentous
pathogen interactions.

APOPLASTIC CDIPS IDENTIFIED IN
PLANT PATHOGENIC OOMYCETES AND
FUNGI

Apoplastic CDIPs Identified in
Phytopathogenic Oomycetes
The purification and identification of extracellular proteins from
phytopathogenic oomycetes that induce plant cell death began in
the 1980s. Pernollet and colleagues purified three extracellular
proteins, namely capsicein, cinnamomin and cryptogein, in
culture filtrates of Phytophthora capsici, P. cinnamomi and
P. cryptogea, respectively (Billard et al., 1988; Huet and Pernollet,
1989; Ricci et al., 1989). Determination of the amino acid
sequences of these proteins led to definition of a novel protein
family, called elicitins (Derevnina et al., 2016). Over the past
decades, building on advances in molecular biology and genome
sequencing, significant progress has been made in identifying
extracellular proteins from phytopathogenic oomycetes that
induce cell death in plants. To date, over 62 apoplastic CDIPs

have been identified in 16 oomycete species (Table 1). While
a few identified oomycete apoplastic CDIPs belong to PcF
toxin, pectate lyase and glycoside hydrolase (GH) families or
with no conserved domains, the majority are elicitins or Nep1
(necrosis- and ethylene-inducing peptide 1)-like proteins (NLPs)
(Tables 1, 3).

Apoplastic CDIPs Identified in
Phytopathogenic Fungi
Similarly, the availability of genome sequences of fungi
has led to a rapid identification of apoplastic CIPDs from
phytopathogenic fungi. To date, over 115 apoplastic CDIPs
have been identified in 27 fungal species, including biotrophic,
hemibiotrophic and necrotrophic pathogens (Table 2). The
identified fungi apoplastic CDIPs include CFEM (common
in fungal extracellular membrane)-containing proteins, cerato-
platanin proteins (CPPs), GHs, NLPs, cutinases, and pectate
lyases, and some proteins with other domains or with no
conserved domains (Tables 2, 3). Among the identified oomycete
and fungus apoplastic CDIPs, GHs, NLPs, Pectate lyases, and
VmE02 homologues are widely distributed across oomycetes
and fungi (Tables 1–3). On the other hand, many CDIPs are
oomycete-specific or fungi-specific. For example, elicitins and
elicitin-like proteins are unique to oomycetes, whereas CFEM-
containing proteins and CPPs are unique to fungi (Table 3).

MAJOR PROTEIN FAMILIES OF
OOMYCETE AND FUNGUS APOPLASTIC
CDIPS

CFEM Containing CDIPs
The CFEM domain, which contains eight conserved cysteines,
is unique to fungi (Kulkarni et al., 2003; Zhang Z. N. et al.,
2015). CFEM was first identified in a M. oryzae MAC1-interacting
protein, ACI1 (Kulkarni et al., 2003). CFEM containing proteins
are widely distributed in fungi (Zhang Z. N. et al., 2015).
While some of CFEM containing proteins have been identified
to have prominent roles in pathogenicity or virulence, such
as MoPth11 and its ortholog FGRRES_16221 in Magnaporthe
oryzae and Fusarium graminearum, respectively (Kou et al., 2017;
Dilks et al., 2019), and CgCcw14, CgMam3 in Candida glabrata
(Srivastava et al., 2014), several CFEM containing proteins have
been identified to possess cell death-inducing activity.

The CFEM-containing protein BcCFEM1 from Botrytis
cinerea, contains a CFEM domain at the N-terminus, and
a glycosylphosphatidylinositol (GPI) anchored site at the
C-terminus. BcCFEM1 was induced and expressed at high
levels during early stages of infection on bean leaves. Targeted
disruption of the BcCFEM1 gene reduced virulence, conidiation
and stress tolerance in B. cinerea. Transient expression of
BcCFEM1 in Nicotiana benthamiana leaves triggered obvious
chlorosis (Zhu et al., 2017b), suggesting the involvement of
BcCFEM1 in eliciting plant responses.

The M. oryzae genome harbors 19 proteins with the CFEM
domain (Kou et al., 2017). Two CFEM-containing proteins
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TABLE 1 | Apoplastic cell death-inducing proteins identified in oomycete plant pathogens.

Species Protein Family Function in
virulence/pathogenicity

Inducing plant response References

P. boehmeriae† PB90 ND ND Induces cell death, JA generation and SA
accumulation, and increases of ABA and NO;
activates phenylalanine/flavonoid pathways

Wang et al., 2003; Zhang et al., 2004; Chen Q.
et al., 2013

P. cactorum† Cacto Elicitin ND Induces cell death Huet et al., 1993

PcELL1 Elicitin ND Induces cell death Chen X. R. et al., 2014

PcF PcF toxin ND Induces cell death and PR genes expression in
tomato

Orsomando et al., 2001

PcINF1 Elicitin ND Induces cell death Chen et al., 2017

PcNLP1 NLP ND Induces cell death Chen X. R. et al., 2014

SCR96, SCR99, SCR121 PcF toxin SCR96 is important for
pathogenicity

Induce cell death Chen et al., 2016

SCR113 PcF toxin ND Induces cell death Chen et al., 2017

P. capsici† Capsicein Elicitin ND Induces cell death and enhanced defense
against P. nicotianae in tobacco

Ricci et al., 1989

Pc11951, Pc107869,
Pc109174, Pc118548

NLP ND Induce cell death Chen et al., 2018

PcINF1 Elicitin ND Induces cell death and pepper defense
response requiring SGT1/SRC2-1 complex

Liu et al., 2015; Liu Z. Q. et al., 2016

PcNLP1 to 3, 6 to 10, 13 to
15

NLP PcNLP2, PcNLP6 and
PcNLP14 play important
roles in symptom
development during
P. capsici infection

Induce cell death Feng et al., 2014

PcPL1, PcPL15, PcPL16,
PcPL20

Pectate lyase The four PcPLs are
important virulence factors
in P. capsici

Induce cell death Fu et al., 2015

P. cinnamomi† Cinnamomin Elicitin ND Induces cell death and protects tobacco
against pathogens

Billard et al., 1988; Huet and Pernollet, 1989

P. colocasiae† 15-kDa glycoprotein Elicitin ND Induces cell death and SAR in taro leaf Mishra et al., 2009

P. cryptogea† Cryptogein Elicitin ND Induces cell death, SAR and defense of
tobacco against P. nicotianae

Ricci et al., 1989; Galiana et al., 1997; Mikes
et al., 1997; Leborgne-Castel et al., 2008;
Coursol et al., 2015; Kulik et al., 2015;
Ptáčková et al., 2015; Starý et al., 2019

P. drechsleri† Dreα, Dreβ Elicitin ND Induces cell death Huet et al., 1992

P. hibernalis† Hibernalin1 Elicitin ND Induces cell death Capasso et al., 2008

P. infestans† INF1 Elicitin Functions as an avirulence
factor in the interaction
between N. benthamiana
and P. infestans

Triggers HR dependent on HSP70, HSP90 and
SGT1; recognized by ELR which associates
with BAK1

Huet et al., 1994; Kamoun et al., 1997, 1998;
Kanzaki et al., 2003; Huitema et al., 2005; Du
et al., 2015

(Continued)
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TABLE 1 | Continued

Species Protein Family Function in
virulence/pathogenicity

Inducing plant response References

INF2A, INF2B Elicitin ND INF2A-induced necrosis dependent on SGT1 Huitema et al., 2005

PiNPP1.1 NLP ND Induces HR dependent on SGT1and HSP90;
requires COI1, MEK2, NPR1, and TGA2.2 for
full cell death inducing activity

Kanneganti et al., 2006

P. megasperma† MgMα, MgMβ Elicitin ND Induce cell death Huet and Pernollet, 1993

α-megaspermin,
β-megaspermin,
γ-megaspermin/32 kDa
glycoprotein

Elicitin ND Induce cell death, PR gene expression, and
SAR

Baillieul et al., 1995, 2003

P. palmivora† Palmivorein Elicitin ND Induces cell death Churngchow and Rattarasarn, 2000

High-molecular-weight
glycoprotein,
broad-molecular-weight
glycoprotein, 42-kDa
glycoprotein

ND Promotes infection Induce cell death and the accumulations of
H2O2, SA, scopoletin, and ABA

Pettongkhao and Churngchow, 2019

P. parasitica† CBEL CBM ND Induces cell death; activates defense responses
via SA, JA and ET signaling pathways

Mateos et al., 1997; Khatib et al., 2004

P. parasitica† PpNLP/NLPPp NLP ND Induces cell death; carries a nlp20 pattern
recognized by RLP23 which associates with
SOBIR1 and BAK1 complex to trigger immune
responses

Fellbrich et al., 2002; Qutob et al., 2006;
Ottmann et al., 2009; Böhm et al., 2014;
Albert et al., 2015

OPEL Thaumatin-like,
glycine-rich, and GH16
domains

ND Induces cell death, expression of
SA-responsive genes and PTI marker genes,
and plant resistance

Chang et al., 2015

Parasiticein/parA1/
elicitin 310/elicitin 172

Elicitin ND Induces cell death and protection of C. annuum
and C. pepo from P. capsici

Nespoulous et al., 1992; Kamoun et al.,
1993; Mouton-Perronnet et al., 1995;
Capasso et al., 1999

PPTG_02039,
PPTG_14297,
PPTG_09966

VmE02 homolog ND Induce cell death Nie J. et al., 2019

P. sojae† PsojNIP NLP ND Induces cell death dependent on SGT1 and
HSP90

Qutob et al., 2002; Kanneganti et al., 2006

XEG1 GH12 Acts as an important
virulence factor during
P. sojae infection

Induces cell death; recognized by RXEG1
which associates with SOBIR1 and BAK1
complex to trigger immune responses

Ma et al., 2015, 2017; Wang Y. et al., 2018

P. syringae† Syringicin Elicitin ND Induces a hypersensitive response and
electrolyte leakage in tobacco

Capasso et al., 2001

P. aphanidermatum† PaNie213/NLPPya NLP ND Induces cell death and defense responses of
carrot cell cultures

Veit et al., 2001; Qutob et al., 2006;
Ottmann et al., 2009

S. graminicola* 7-kDa elicitor ND ND Induces cell death and defense responses in
cultured cells of P. glaucum

Sharathchandra et al., 2006

ND, not determined; NLP, Nep1-like protein; CBM, carbohydrate binding module; GH, glycoside hydrolase; PTI, pattern-triggered immunity; SAR, systemic acquired resistance; *, biotrophic pathogen;
†, hemibiotrophic pathogens.
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TABLE 2 | Apoplastic cell death-inducing proteins identified in fungal plant pathogens.

Species Protein Family Function in
virulence/pathogenicity

Inducing plant response References

A. tenuissima‡ Hrip1 ND ND Induces cell death, PR gene expression and
SAR resistance in tobacco

Kulye et al., 2012

B. cinerea‡ BC1G_05134 VmE02 homolog ND Induces cell death Nie J. et al., 2019

BcCFEM1 CFEM Contributes to
virulence

Induces cell death Zhu et al., 2017b

BcGs1 GH15 ND Induces cell death, resistance to multiple types
of pathogens

Zhang Y. et al., 2015; Yang et al., 2018a

BcIEB1 ND Not required for
virulence; protects
the fungus against
PR5 osmotin

Induces cell death and increased systemic
resistance to B. cinerea in tobacco

Frías et al., 2016; González et al., 2017

BcNEP1, BcNEP2 NLP Not required for
virulence

Induce ethylene production, H2O2

accumulation and cell death
Schouten et al., 2008; Arenas et al., 2010

BcPG1 to BcPG4,
BcPG6

GH28 BcPG1 and BcPG2
were required for
virulence

Induce cell death; recognized by RBPG1;
RBPG1-mediated response to BcPGs
dependent on SOBIR1

ten Have et al., 1998; Kars et al., 2005; Zhang
L. et al., 2014

BcSpl1 CPP Contributes to
virulence

Induces cell death, PR gene expression and
SAR; requires BAK1 for full cell death inducing
activity

Frías et al., 2011, 2013

BcXYG1 GH12 Contributes to the
establishment of
infection in early
stages

Induces cell death and immune responses
dependent on BAK1 and SOBIR1

Zhu et al., 2017a

BcXyl1 SGNH hydrolase Contributes to
virulence

Triggers PTI responses and resistance to
B. cinerea and TMV in tobacco and tomato,
dependent on BAK1 and SOBIR1

Yang et al., 2018c

BcXyn11A GH11 Required for full
virulence

Induces cell death and PR gene expression Brito et al., 2006; Noda et al., 2010; Frías et al.,
2019

B. elliptica‡ BeNEP1, BeNEP2 NLP Not required for
virulence

Induce cell death Staats et al., 2007

C. fimbriata f. sp. platani‡ CP CPP ND Induces cell death; triggers SA- and
ET-signaling pathways but not JA-signaling
pathway; induces MAPK phosphorylation

Pazzagli et al., 1999; Scala et al., 2004; Baccelli
et al., 2014a,b; Luti et al., 2016

C. populicola‡ Pop1 CPP ND Induces cell death, activates defense
responses and MAPK phosphorylation

Comparini et al., 2009

C. falcatum† CfPDIP1 ND ND Elicits cell death, defense in sugarcane and
triggers HR in tobacco

Ashwin et al., 2018

EPL1 CPP ND Induces defense and HR in sugarcane and
tobacco

Ashwin et al., 2017

C. gloeosporioides† CgCP1 CPP Required for virulence Induces cell death and accumulation of reactive
oxygen species

Wang W. et al., 2018

(Continued)
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TABLE 2 | Continued

Species Protein Family Function in
virulence/pathogenicity

Inducing plant response References

C. higginsianum† ChNIS1 CoNIS1 homolog ND Induces cell death Yoshino et al., 2012
ChNLP1 NLP ND Induces cell death Kleemann et al., 2012

C. lindemuthianum† CLPG1 GH28 ND Induces cell death Boudart et al., 2003
C. orbiculare† NIS1 CoNIS1 Deletion of NIS1 does

not alter virulence
Induces cell death dependent on SGT1 and
HSP90, but not RAR1

Yoshino et al., 2012

D. seriata† DserNEP1,
DserNEP2

NLP ND Induce cell death Cobos et al., 2019

F. graminearum‡ FgCPP2 CPP Not essential for
virulence

Induces cell death, elicits defense responses,
and resistance to B. cinerea in Arabidopsis

Quarantin et al., 2016, 2019

FGSG_03624 GH11 Not essential for
virulence

Induces cell death and hydrogen peroxide
accumulation

Sella et al., 2013

FGSG_10999,
FGSG_11487

FGSG_10999:
GH11;
FGSG_11487:
GH10

ND Induce cell death Tundo et al., 2015

F. oxysporum‡ FocCP1 CPP Essential for virulence Triggers HR and SAR in tobacco Li et al., 2019a; Liu et al., 2019
Nep1 NLP Not essential for

virulence
Elicits cell death and defense responses Bailey, 1995; Bailey et al., 2000, 2002, 2005;

Bae et al., 2006
PeFOC1 ND ND Induces cell death, and triggers defense

response, SAR in tobacco
Li et al., 2019b

F. virguliforme‡ 17-kDa phytotoxin ND ND Induces cell death Jin et al., 1996
F. virguliforme‡ FvNIS1 CoNIS1 homolog Not essential for

pathogenicity
Induces cell death Chang et al., 2016

G. boninense† GbNEP NLP ND Induces cell death, production of hydrogen
peroxide and superoxide in tobacco dependent
on Ca2+ activity

Teh et al., 2018

H. Annosum s.s.† HaCPL2 CPP ND Induces cell death, phytoalexin production and
PR gene expression

Chen et al., 2015

M. oryzae† MoCDI1 RcCDI1 homolog ND Induces cell death Franco-Orozco et al., 2017
MoCDIP1 to
MoCDIP13

MoCDIP1: PbH1;
MoCDIP2: CFEM;
MoCDIP4: GH61,
CBD;
MoCDIP8:
EEP-1;
MoCDIP10:
Ferritin-like;
MoCDIP11:
CFEM

Not essential for
virulence

Induce cell death; MoCDIP6 and MoCDIP7
elicit defense responses

Chen S. et al., 2013; Guo et al., 2019

MoHrip1 AA1 family Required for virulence Induces cell death, defense responses by
regulating the contents of SA and GA

Chen et al., 2012; Zhang et al., 2017b; Nie
H. Z. et al., 2019

MoHrip2 ND Required for full
virulence

Induces cell death and defense responses Chen M. et al., 2014; Nie H. et al., 2019

(Continued)
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TABLE 2 | Continued

Species Protein Family Function in
virulence/pathogenicity

Inducing plant response References

MoNLP1/Nep1Mo,
MoNLP2, MoNLP4

NLP Dispensable for the
infection

Induce cell death and defense responses in
N. benthamiana; MAPK cascade is involved in
Nep1Mo-triggered plant responses

Zhang et al., 2010, 2012; Teng et al., 2014;
Fang et al., 2017

MoSM1/MSP1 CPP Contradictory Induces cell death and defense responses;
ectopic expression of MoSM1 in rice and
Arabidopsis confers enhanced disease
resistance

Jeong et al., 2007; Yang et al., 2009; Wang
et al., 2016; Hong et al., 2017

M. perniciosa† MpCP1 CPP ND Induces cell death Zaparoli et al., 2009

MpNEP1, MpNEP2 NLP ND Induce cell death Garcia et al., 2007

N. crassa† NcCDI1 RcCDI1 homolog ND Induces cell death Franco-Orozco et al., 2017

P. striiformis f. sp. tritici* PstSCR1 (Y/F/W)x(C) ND Induces cell death, PTI marker gene expression
and enhanced immunity against oomycete
pathogens in N. benthamiana

Dagvadorj et al., 2017

P. striiformis f. sp. tritici* PSTG_00149 VmE02 homolog ND Induces cell death Nie J. et al., 2019

R. commune† RcCDI1 RcCDI1 ND Induces cell death in N. benthamiana
dependent on NbBAK1, NbSOBIR1 and
NbSGT1

Franco-Orozco et al., 2017

R. solani‡ AG1IA_05310,
AG1IA_07795,
AG1IA_09161

AG1IA_05310:
CtaG/cox11;
AG1IA_07795:
inhibitor I9;
AG1IA_09161: GT
family 2

ND Induces cell death Zheng et al., 2013

RsAG8_06778 Inhibitor I9 ND Induces cell death Anderson et al., 2017

RSAG8_07159 GH10 ND Induces cell death Anderson et al., 2017

S. sclerotiorum‡ sscle_06g048920 VmE02 homolog ND Induces cell death Nie J. et al., 2019

SsCP1 CPP Plays an important
role in virulence

Induces cell death, SA pathway activation and
enhanced resistance

Yang et al., 2018b

SsCut1 Cutinase ND Induces cell death and multiple defense
responses in both dicot and monocot species

Zhang H. et al., 2014

U. virens* UV_44, UV_1423,
UV_1533,
UV_1338,
UV_4040,
UV_4753,
UV_5436,
UV_5517,
UV_5851,
UV_6205,
UV_7115,
UV_7823, UV_784

UV_44:
peptidase_S8;
UV_1423:
fungus-specific
RNase

ND Induce cell death Fang et al., 2016

(Continued)
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TABLE 2 | Continued

Species Protein Family Function in
virulence/pathogenicity

Inducing plant response References

V. dahliae‡ PevD1 AA1 family Required for full
virulence

Induces cell death and triggers innate immunity,
induces defense response in cotton mediated
by an Avr9/Cf-9-INDUCED F-BOX1 (ACIF1)

Wang et al., 2012; Bu et al., 2014; Liu M. et al.,
2016; Zhang et al., 2019; Li et al., 2019c

VD18.5 ND ND Induces cell death Palmer et al., 2005

VdCP1 CPP Contributes to
virulence

Induces cell death and triggers defense
responses

Zhang et al., 2017a

V. dahliae‡ VdCUT11 Cutinase, CMB1 Contributes to
pathogenicity

Induces cell death and triggers defense
responses dependent on BAK1 and SOBIR1

Gui et al., 2018

VdEG1, VdEG3 GH12 Acts as virulence
factors

VdEG1 induces cell death and defense
responses dependent on BAK1 and SOBIR1;
VdEG3 induces cell death and defense
responses dependent only on BAK1

Gui et al., 2017

VdNLP1/VdNEP,
VdNLP2

NLP Dispensable for
V. dahliae infection
in cotton; required
for virulence of
V. dahliae on
tomato

Induces cell death and triggers defense
responses

Wang et al., 2004; Yao et al., 2011; Zhou et al.,
2012; Santhanam et al., 2013

VdPEL1 Pectate lyase Contributes to
pathogenicity

Induces cell death and triggers defense
responses and systemic resistance

Yang et al., 2018d

V. mali‡ VmE02 ND Dispensable for
virulence

Induces cell death, enhances plant resistance
to S. sclerotiorum and P. capsici dependent on
BAK1, SOBIR1, HSP90 and SGT1

Nie J. et al., 2019

Z. tritici‡ MgNLP NLP Dispensable for
virulence

Induces cell death and immune responses
dependent on BAK1 and SOBIR1

Motteram et al., 2009; Kettles et al., 2017

Zt1, Zt2, Zt4, Zt5,
Zt7 to Zt15

ND ND Induce cell death in N. benthamiana dependent
on NbBAK1 and NbSOBIR1

Kettles et al., 2017

ZtCDI1 RcCDI1 homolog ND Induces cell death Franco-Orozco et al., 2017

ZtNIP1, ZtNIP2 NLP ND Induce cell death M’Barek et al., 2015

ND, not determined; NLP, Nep1-like protein; CBM, carbohydrate binding module; GH, glycoside hydrolase; CFEM, common in fungal extracellular membrane; CPP, cerato-platanin protein; AA1, Alt a 1; HR, hypersensitive
response; PTI, pattern-triggered immunity; SAR, systemic acquired resistance; *, biotrophic pathogens; †, hemibiotrophic pathogens; ‡, necrotrophic pathogens.
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MoCDIP2 and MoCDIP11 have been identified to induce cell
in the non-host N. benthamiana and host rice cells (Chen S.
et al., 2013; Guo et al., 2019). MoCDIP2 contains a CFEM
domain at the N-terminus, and a GPI-anchored site at the
C-terminus, whereas MoCDIP11 contains only a CFEM domain
at the N-terminus. Transient expression assays in rice protoplasts
or N. benthamiana leaves revealed that the signal peptides
that led the secretion of proteins, were required for cell death
inducing activity of MoCDIP2 and MoCDIP11, indicating that
both two effectors function in the apoplast (Chen S. et al., 2013;
Guo et al., 2019).

CPP Family CIDPs
CPPs are small secreted cysteine-rich proteins that widely occur
in filamentous fungi but not in bacteria, oomycetes, plants, or
animals (Chen H. et al., 2013). CPPs have many aspects in
common with expansins. Structural analysis revealed that CPPs
have a double ψβ-barrel similar to the D1 domain of expansins
(de Oliveira et al., 2011). Moreover, similar to expansins, CPPs
possess properties to weaken cellulose (de O Barsottini et al.,
2013; Baccelli et al., 2014b). Many CPPs have been shown to
function as virulence factors in fungi, and on the other hand are
able to induce cell death and elicit defense response in plants
(Pazzagli et al., 2014).

The first CPP family CIDP, CP, was identified from the
culture filtrates of Ceratocystis fimbriata f. sp. platani, the
causal agent of the plane canker stain (Pazzagli et al., 1999).
CP induced cell death in host and non-host plants, activated
phytoalexin synthesis, pathogenesis-related (PR) gene expression,
and mitogen-activated protein kinase (MAPK) phosphorylation,
and triggered salicylic acid (SA) and ethylene (ET)-signaling
pathways (Pazzagli et al., 1999; Scala et al., 2004; Baccelli et al.,
2014a; Luti et al., 2016).

Till now, in addition to CP, 11 more CPP family CIDPs
have been identified from different fungal pathogens (Table 2),
such as BcSpl1 in B. cinerea (Frías et al., 2011, 2013), EPL1
in Colletotrichum falcatum (Ashwin et al., 2017), CgCP1 in
Colletotrichum gloeosporioides (Wang W. et al., 2018), Pop1
in Ceratocystis populicola (Comparini et al., 2009), FgCPP2
in F. graminearum (Quarantin et al., 2016, 2019), FocCP1
in Fusarium oxysporum (Li et al., 2019a; Liu et al., 2019),
HaCPL2 in Heterobasidion annosum sensu stricto (Chen et al.,
2015), MoSM1/MSP1 (Jeong et al., 2007; Yang et al., 2009;
Wang et al., 2016; Hong et al., 2017) in M. oryzae, MpCP1
in Moniliophthora perniciosa (Zaparoli et al., 2009), SsCP1 in
Sclerotinia sclerotiorum (Yang et al., 2018b), and VdCP1 in
Verticillium dahliae (Zhang et al., 2017a). Similar to CP, these 11
CPP family CIDPs induced strong necrosis and elicited defense
responses in plants. For example, BcSpl1 induced strong necrosis,
electrolyte leakage, cytoplasm shrinkage, and PR gene expression
in plants including tomato, tobacco and Arabidopsis. In addition,
BcSpl1 elicited systemic acquired resistance (SAR) in tobacco
against Pseudomonas syringae and B. cinerea (Frías et al., 2011).
The CPP family CIDPs possess similar biological properties as
that of CP. For example, Pop1 and VdCP1 possessed chitin-
binding properties (Baccelli et al., 2014b; Zhang et al., 2017a),
and Pop1 and FgCPP2 exhibited the ability of loosening cellulose

substrates and enhancing fungal cellulase activity in an expansin-
like manner as well as CP (Baccelli et al., 2014b; Quarantin et al.,
2016, 2019).

Elicitin and Elicitin-Like CDIPs
Elicitins are a family of small, highly conserved proteins
secreted by Phytophthora and Pythium species (Derevnina et al.,
2016). The first three elicitins, cryptogein, cinnamomin and
capsicein were identified from the culture filtrates of P. cryptogea,
P. cinnamomi and P. capsici, respectively (Billard et al., 1988;
Huet and Pernollet, 1989; Ricci et al., 1989). Sequence analysis
revealed that these elicitins share a conserved domain of 98
amino acids, which contains six cysteine residues at conserved
positions forming three disulphide bridges (Boissy et al., 1996).
Further studies revealed that elicitins are encoded by complex
gene families (Kamoun et al., 1993; Panabieres et al., 1995; Jiang
et al., 2006). In addition, Phytophthora and Pythium genomes
contain a number of elicitin-like proteins possessing diverse,
shorter or longer elicitin domains (Jiang et al., 2006).

Over 22 elicitin and elicitin-like CDIPs that induce cell
death in certain plant species such as Nicotiana species and
some Brassicaceae cultivars have been identified from different
Phytophthora pathogens (Table 1). Among the elicitin and
elicitin-like CDIPs, β-cryptogein and INF1 have been widely
studied for their roles in the interactions of Phytophthora
pathogens with plants. Cryptogein induced necrosis on tobacco
leaves, triggered SAR and enhanced disease resistance in tobacco.
Upon the SAR induction, the expression of the plant extracellular
S-like RNase NE gene and its RNase activity were highly
up-regulated, indicating that NE possibly associated with the
cryptogein-induced SAR (Galiana et al., 1997). Cryptogein
promoted the movement of plant respiratory burst oxidase
homologues (RBOHs) from the Golgi cisternae to the plasma
membrane, which may play a fundamental role for ROS
production (Noirot et al., 2014). Cryptogein induced production
of ROS, which was differentially regulated by the sphingolipid
long-chain bases (LCBs) and their phosphorylated derivatives
(LCB-Ps) in tobacco cells (Coursol et al., 2015). In addition,
cryptogein induced production of NO, partly dependent on the
ROS-dependent pathway, indicating that the defense responses
induced by cryptogein involving interaction of the NO and
ROS signaling pathways (Kulik et al., 2015). INF1 induced
cell death on tobacco and potato leaves with the necrotic
activity higher than that of other a-elicitins, such as cacto,
parasiticein, capsicein and cryptogein, but less than that of β-
cryptogein (Huet et al., 1994). INF1 induced the expression of
chitinase, β-1,3-glucanase, phenylalanine ammonia-lyase (PAL),
and PR1 genes, and rapid accumulation of H2O2 in tobacco
(Sasabe et al., 2000; Huitema et al., 2005). INF1 induced
the expression of NbrbohB in N. benthamiana, and silencing
of NbrbohA or NbrbohB led to a reduction and delay of
the necrotic reaction triggered by INF1 (Yoshioka et al.,
2003), suggesting that INF1-induced cell death was dependent
on the ROS burst.

Elicitins are able to bind sterols, phospholipids or fatty
acids, and transport them between biological membranes (Mikes
et al., 1997). However, the lipid-binding ability did not influence
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TABLE 3 | Major protein families of apoplastic cell death-inducing proteins identified in oomycete and fungal plant pathogens.

Protein family Predicted
functional
category

Taxon Representative
CDIPs

Plant cell surface
receptor

Co-receptor and
downstream component
in plant cell

Representative
references

Oomycete Fungi

CE Cutinase + + SsCut1, VdCUT11 Unknown BAK1, SOBIR1 Zhang H. et al.,
2014; Gui et al.,
2018

CFEM ND − + BcCFEM1,
MoCDIP2,
MoCDIP11

Unknown Unknown Kulkarni et al.,
2003; Chen S.
et al., 2013; Zhu
et al., 2017b

CPP ND − + BcSpl1, CP,
MoSM1/MSP1

Unknown BAK1 Pazzagli et al.,
1999; Jeong et al.,
2007; Frías et al.,
2011

Elicitin ND + − Cryptogein, INF1 ELR BAK1, HSP70, HSP90,
NbLRK1, SGT1, SRC2-1

Ricci et al., 1989;
Huet et al., 1994;
Kamoun et al.,
1997; Kanzaki
et al., 2008; Du
et al., 2015; Liu
et al., 2015

GH10 Xylanase ND + RSAG8_07159;
FGSG_11487

Unknown Unknown Anderson et al.,
2017

GH11 Xylanase ND + BcXyn11A, EIX*,
FGSG_03624,
FGSG_10999

LeEix1, LeEix2 BAK1 Fuchs et al., 1989;
Ron and Avni,
2004; Brito et al.,
2006; Bar et al.,
2010; Sella et al.,
2013

GH12 Xylanase + + XEG1, BcXYG1,
VdEG1, VdEG3

RXEG1 BAK1, SOBIR1 Ma et al., 2015; Gui
et al., 2017; Zhu
et al., 2017a; Wang
Y. et al., 2018

GH15 Glucan 1,4-alpha-
glucosidase

ND + BcGs1 Unknown Unknown Zhang Y. et al.,
2015; Yang et al.,
2018a

GH16 ND + − OPEL Unknown Unknown Chang et al., 2015

GH28 Polygalacturonase ND + BcPG1 to 4,
BcPG6, CLPG1

RBPG1 SOBIR1 ten Have et al.,
1998; Boudart
et al., 2003; Kars
et al., 2005; Zhang
L. et al., 2014

GH61 ND ND + MoCDIP4 Unknown Unknown Chen Q. et al.,
2013

NLP ND + + PpNLP/NLPPp,
PaNie213/NLPPya

RLP23 BAK1, COI1, HSP90,
MEK2, NPR1, SGT1,
SOBIR1 and TGA2.2

Bailey, 1995;
Fellbrich et al.,
2002; Qutob et al.,
2006; Ottmann
et al., 2009; Böhm
et al., 2014; Albert
et al., 2015

PL Pectate lyase + + PcPL1, PcPL15,
PcPL16, PcPL20,
VdPEL1

Unknown Unknown Fu et al., 2015;
Yang et al., 2018d

ND, not determined; +, present; −, absent; CE, carbohydrate esterase; CFEM, common in fungal extracellular membrane; CPP, cerato-platanin protein; GH,
glycoside hydrolase; NLP, Nep1-like protein; PL, polysaccharide lyase. *, EIX (ethylene-inducing xylanase) is an apoplastic CDIP identified from a non-pathogenic fungi
Trichoderma viride.

elicitin-induced response in tobacco. Investigations based on the
mutant proteins of cryptogein with limited abilities to bind sterols
revealed that induction of ROS synthesis, cytosol acidification

and cell death in tobacco cells were not correlated with the sterol-
binding abilities of the cryptogein proteins (Dokládal et al., 2012;
Ptáčková et al., 2015).
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Elicitins do not induce cell death in tomato plants. However,
elicitins could induce immune responses in tomato, and enhance
plant resistance against Phytophthora spp., bacterial wilt disease,
and powdery mildew (Picard et al., 2000; Kawamura et al., 2009;
Starý et al., 2019). INF1 induced the expression of jasmonic acid
(JA)-responsive PR-6, LeATL6 and LOX-E, and ET-responsive
PR-2b and ERF2, but not SA-responsive PR-1a and PR-2a
in tomato leaves (Kawamura et al., 2009). Consistently, Starý
et al. (2019) showed that cryptogein induced defense responses
without cell death in tomato through JA- and ET-signaling
pathways, but not SA-signaling pathway. These results indicated
that elicitins triggered different signaling pathways between
tobacco and tomato.

NLP Family CDIPs
NLP family proteins are characterized by the presence of a
common NPP1 (necrosis-inducing Phytophthora protein)
domain. This family is widely distributed across taxa including
oomycetes, fungi, and bacteria (Gijzen and Nürnberger, 2006).
The first NLP protein, namely Nep1, was identified from
culture filtrates of F. oxysporum (Bailey, 1995), and has been
shown to induce necrosis in plants, such as Erythroxylum
coca, Theobroma cacao and Arabidopsis, with activating
PR gene expression, ROS production and other general
defense response (Bailey et al., 2005; Bae et al., 2006). To
date, over 39 NLP family CDIPs have been identified in
phytopathogenic oomycetes and fungi. Among them, 20 NLP
family CDIPs were from phytopathogenic oomycetes (Table 1),
and the remaining 19 NLP CDIPs were from phytopathogenic
fungi (Table 2).

NLP family CDIPs have been confirmed to induce cell death
in dicot but not monocot plants. Among the identified NLP
family CDIPs, PpNLP/NLPPp, PsojNIP and PaNie213/NLPPya
have been extensively studied in the context of inducing cell
death and immune responses in dicot plants. PpNLP/NLPPp
induced necrosis in Arabidopsis, and activated PR genes
expression, ROS production, callose apposition (Fellbrich
et al., 2002), as well as the posttranslational expression of
mitogen-activated protein kinase and production of nitric
oxide and phytoalexin camalexin, suggesting dual roles of
PpNLP/NLPPp as both toxin-like virulence factors and plant
innate immunity triggers (Qutob et al., 2006). Determining and
modeling of the structures of PaNie213/NLPPya, PpNLP/NLPPp,
and a PccNLP protein from the phytopathogenic bacterium
Pectobacterium carotovorum, revealed that NLPs displayed
identical toxin folds which contributed to host infection and
plant defense gene activation, suggesting that a common
fold of the cytolytic toxin is required for both pathogen
virulence and plant immunity activation (Ottmann et al.,
2009). Böhm et al. (2014) further identified and characterized
a pattern of 20 amino acid residues (nlp20) of cytotoxic
NLPs that triggered immunity associated plant defenses in
certain dicot plants.

Based on the finding that NLPs display a striking similarity
to cytolytic sphingomyelin-binding actinoporins (Ottmann
et al., 2009), glycosylinositol phosphorylceramide (GIPC)
sphingolipids in eudicot plants were further shown to be

bound by NLPs. The inositol phosphorylceramide in GIPCs
was covalently bound to glucuronic acid and variable terminal
hexoses which were different between eudicots and monocots.
Eudicot GPICs typically carried two terminal sugars (series
A), while monocots GIPCs bore three terminal sugars (series
B) (Cacas et al., 2013). The absence of series A GIPCs lead
to insensitivity to NLPs of monocot plants. Consistently,
Arabidopsis mutants with altered GIPC composition suffered
less cell death than the wild type upon NLP infiltration
(Lenarčič et al., 2017). These results thus explained host
specificity of cell death induced by NLPs in eudicot plants
(Van den Ackerveken, 2017).

Cell Wall-Degrading Enzyme Family
CDIPs
Phytopathogenic oomycetes and fungi secrete a large amount
of effector proteins related to plant cell wall degradation, such
as enzymes to degrade cellulose, xylan, pectin, etc. (Kubicek
et al., 2014). Certain cell wall-degrading enzymes (CWDEs)
have been proved to be associated with pathogen virulence,
and some induced cell death and trigged defense responses in
plants. CWDE family CDIPs have been identified in carbohydrate
esterase (CE5), glycoside hydrolase (GH) and polysaccharide
lyase (PL) families (Tables 1–3).

With functions to degrade plant cuticle or suberin
polymers, the CE family cutinases has been associated with
important roles in filamentous pathogen-plant interactions.
Two cutinase family CDIPs, SsCut1 and VdCUT11 have
been identified in S. sclerotiorum and V. dahliae (Zhang H.
et al., 2014; Gui et al., 2018), respectively. SsCut1 induced
cell death in both dicot and monocot species and activated
plant resistance against S. sclerotiorum, P. nicotianae and
Phytophthora sojae (Zhang H. et al., 2014). Further, SsCut1-
induced cell death along with stomatal closure, ROS burst
and NO production, was suppressed by silencing of a
C2H2-type zinc finger gene NbCZF1 in N. benthamiana,
showing that SsCut1-triggered defense could be mediated
by NbCZF1-ROS-NO pathway (Zhang et al., 2016).
VdCUT11 induced cell death and defense responses in
N. benthamiana, cotton, and tomato plants, and the enzymatic
activity was required for its cell death-inducing activity
(Gui et al., 2018).

GHs hydrolyze the glycosidic bond between carbohydrates
or between a carbohydrate and a noncarbohydrate moiety
through acid catalysis (Zhao et al., 2013). About 18 GH domain-
containing CDIPs have been identified (Table 3). The GH family
CDIPs induced cell death as well as defense responses in host
and nonhost plants. For example, BcXyn11A induced ROS burst,
electrolyte leakage, cytoplasm shrinkage and PR gene expression,
and these effects were dependent on its short 25-residue peptide
(Frías et al., 2019). BcXYG1 triggered pattern-triggered immunity
(PTI) response and systemic resistance in bean (Zhu et al.,
2017a). PsXEG1 induced disease resistance in N. benthamiana
and soybean (Ma et al., 2015). BcGs1 induced systemic resistance
in tobacco and tomato against B. cinerea, Phytophthora syringae
and tobacco mosaic virus (Zhang Y. et al., 2015). Furthermore,
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BcGs1 triggered ROS burst, PAL and peroxidase (POD) enzyme
activity, and lignin accumulation in tomato (Yang et al., 2018a).
Many of the GH family CDIPs have been shown to possess
hydrolase activity. While hydrolase activity of BcPG2 was
required for its cell death induction (Kars et al., 2005), the
enzymatic activity of most identified GH family CDIPs was
not necessary for cell death inducing activity. For example,
the cell death inducing activity of Xyn11A, PsXEG1, BcXYG1,
VdEG1 and VdEG3 was independent of their enzymatic
activity (Brito et al., 2006; Ma et al., 2015; Gui et al., 2017;
Zhu et al., 2017a).

The PL family pectate lyases play a critical role in pectin
degradation. Four pectate lyases PcPL1, PcPL15, PcPL16 and
PcPL20 in P. capsici, and one pectate lyase VdPEL1 in V. dahliae
have been identified to have cell death inducing activity in plants
(Fu et al., 2015; Yang et al., 2018d). PcPL1, PcPL15, PcPL16
and PcPL20 were highly expressed in P. capsici during infection
of pepper, and transient expression of the four PcPLs induced
severe cell death in pepper leaves (Fu et al., 2015). VdPEL1
induced cell death in N. benthamiana, tomato, soybean and
cotton, and triggered defense responses and systemic resistance
to B. cinerea and V. dahliae in N. benthamiana and cotton plants.
Furthermore, the enzymatic activity was found to be necessary
for cell death-inducing activity (Yang et al., 2018d).

Besides, a SGNH hydrolase subfamily protein BcXyl1 was
identified to induce cell death in N. benthamiana, tomato,
soybean and cotton (Yang et al., 2018c). BcXyl1 exhibited
xylanase activity, but its cell death inducing activity was
independent of the enzymatic activity. BcXyl1 triggered plant PTI
responses with a pattern of 26-amino acid peptide.

CDIP Families With Other Conserved
Domains or Without Conserved Domain
Besides the above-mentioned CDIP families, a number of
apoplastic CDIPs contain other conserved domains or no
conserved domain (Tables 1, 2), indicating the incredible
diversity of apoplastic CDIPs secreted by oomycetes and
fungi. On the other hand, many of these apoplastic CDIPs
are widely distributed across microbial taxa or different
pathogen species and the homologs can induce cell death
and defense responses in different plant species, indicating
that recognition of these proteins is evolutionarily conserved.
For example, the Valsa mali small cysteine-rich protein
VmE02 induces cell death in N. benthamiana, tomato,
pepper, Arabidopsis and apple and enhances resistance in
N. benthamiana against S. sclerotiorum and P. capsic (Nie
J. et al., 2019). VmE02 is widely conserved across oomycete
and fungal species, and the homologs can induce cell death
in N. benthamiana. Similarly, the Colletotrichum orbiculare
NIS1 and its homologs from Colletotrichum higginsianum
and Fusarium virguliforme (Yoshino et al., 2012; Chang
et al., 2016), and the Rhynchosporium commune RcCDI1
and its homologues from M. oryzae, Neurospora crassa and
Zymoseptoria tritici (Franco-Orozco et al., 2017), induced cell
death in N. benthamiana. These results clearly supported that,
although the physiological properties remain unknown, these

apoplastic CDIPs are recognized as conserved patterns that
induce defense responses in plants.

APOPLASTIC CDIPS CONTRIBUTE TO
PATHOGEN VIRULENCE

Phytopathogenic oomycetes and fungi initially colonize in
the plant apoplast or extracellular space, and subsequently
penetrate host cells. Therefore, the apoplastic effectors secreted
by oomycetes and fungi are likely the primary weapons of
filamentous plant pathogens. Despite the diversity of lifestyles
as biotrophic, hemibiotrophic or necrotrophic, filamentous
oomycetes and fungi secrete a high number of apoplastic CDIPs.
Biotrophic pathogens feed on living plant cells (Giraldo and
Valent, 2013). Whether apoplastic CDIPs of biotrophic pathogens
actually cause plant cell death or function as important virulence
factors during a natural infection remain to be determined
(Tables 1, 2). In contrast, necrotrophic pathogens thrive on
dead host tissues and take advantage of CDIP-triggered plant
cell death. For example, NLP-triggered necrosis could aid
infection by necrotrophic pathogens (Van den Ackerveken,
2017). Hemibiotrophic pathogens combine a biotrophic phase
in early stages with a necrotrophic phage during later infection
stages. Many apoplastic CDIPs of hemibiotrophic pathogens
have been found to be highly expressed at late infection stages,
suggesting that they contribute to the necrotrophic growth of
hemibiotrophic pathogens (Qutob et al., 2002; Kelley et al., 2010).

Functional analysis based on overexpression, deletion or
silencing of genes encoding apoplastic CDIPs have functionally
proved many of them as important virulence factors in
hemibiotrophic and necrotrophic pathogens (Tables 1, 2).
Among the 62 identified oomycete apoplastic CDIPs, 12 have
been proven to function as virulence factors that are required
for pathogenicity or contribute to virulence. The P. cactorum
SCR96 belongs to the PcF toxin family. Silencing of the scr96
gene in Phytophthora cactorum caused loss of pathogenicity on
host plants, indicating that SCR96 is required for pathogenicity
(Chen et al., 2016). In P. capsici, silencing of the genes
encoding NLP-like proteins PcNLP2, PcNLP6 or PcNLP14, and
the genes encoding pectate lyases PcPL1, PcPL15, PcPL16 or
PcPL20 caused significantly reduced virulence on pepper (Feng
et al., 2014; Fu et al., 2015), demonstrating the important
roles of these apoplastic CDIPs in pathogen virulence. In
Phytophthora palmivora, three fractions isolated from culture
filtrates including high-molecular-weight glycoprotein, broad-
molecular-weight glycoprotein and 42-kDa glycoprotein were
observed to promote P. palmivora infection of rubber tree leaves
(Pettongkhao and Churngchow, 2019). However, the virulence
role of these three glycoproteins remains to be genetically
confirmed. The P. sojae XEG1, a GH12 family CDIP, functions
as a major virulence factor during infection. Both silencing and
overexpression of the PsXEG1 gene in P. sojae severely impaired
virulence (Ma et al., 2015). Interestingly, P. sojae also secretes
a PsXLP1 (PsXEG1-like) apoplastic effector with a truncated
GH12 domain functioning as a decoy to shield XEG1-mediated
virulence (Ma et al., 2017).

Frontiers in Genetics | www.frontiersin.org 12 June 2020 | Volume 11 | Article 661

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00661 June 25, 2020 Time: 18:1 # 13

Li et al. Apoplastic CDIPs of Filamentous Phytopathogens

Among the 115 identified fungi apoplastic CDIPs, 16 have
been proven to be required for pathogenicity or contribute to
virulence of both hemibiotrophic and necrotrophic pathogens.
In B. cinerea, targeted deletion of the genes encoding BcCFEM1
(Zhu et al., 2017b), BcSpl1 (Frías et al., 2011), BcXyl1 (Yang
et al., 2018c), or BcXyn11A (Brito et al., 2006) caused severely
compromised virulence, suggesting that these CDIPs were
important virulence factors of B. cinerea. Overexpression and
deletion of BcXYG1 did not significantly affect B. cinerea infection
on bean leaves. However, the BcXYG1 overexpression strains
produced significantly earlier and more intense local necrosis,
suggesting that BcXYG1 contributes to the establishment of
infection in early stages (Zhu et al., 2017a). The C. gloeosporioides
CgCP1 belongs to the CPP family. Knock-out of CgCP1 in
C. gloeosporioides significantly reduced infection on rubber tree
leaves (Wang W. et al., 2018). Similar to BcSpl1 and CgCP1,
the CPP family CIDPs FocCP1, SsCP1 and VdCP1 function as
important virulence factors. Deletion of FocCP1 in F. oxysporum
(Liu et al., 2019), SsCP1 in S. sclerotiorum (Yang et al., 2018b),
or VdCP1 in V. dahliae (Zhang et al., 2017a) caused significantly
reduced virulence of pathogens on hosts banana, Arabidopsis
or cotton, respectively. In M. oryzae, deletion of mohrip1, or
mohrip2 remarkably compromised fungal virulence on rice (Nie
H. et al., 2019; Nie H. Z. et al., 2019). MoHrip1 belongs to
the Alt a 1 (AA1) family (Zhang et al., 2017b). Similarly, the
V. dahliae PevD1, an AA1 family CDIP, is required for full
virulence of V. dahliae on hosts (Zhang et al., 2019). In addition
to VdCP1 and PevD1, VdCUT11, VdEG1, VdEG3, VdNLP1,
VdNLP2, and VdPEL1 have been shown to play important roles
in virulence of V. dahliae. Targeted deletion of VdCUT11 (Gui
et al., 2018), VdEG1, VdEG3 (Gui et al., 2017), or VdPEL1
(Yang et al., 2018d) significantly compromised virulence of
V. dahliae on cotton plants. Interestingly, while both VdNLP1
and VdNLP2 appear to be dispensable for V. dahliae infection
in cotton plants (Zhou et al., 2012), VdNLP1 as well as VdNLP2
deletion strains were found to be significantly less pathogenic on
tomato and Arabidopsis (Santhanam et al., 2013), demonstrating
the functional diversification of the two NLP family CDIPs in
virulence of V. dahliae.

Pathogenicity assays also revealed that many apoplastic CDIPs
were not required for fungal pathogenicity or virulence. Targeted
deletion of the genes encoding these proteins did not impair
the virulence of pathogens (Table 2). One possibility why these
apoplastic CDIPs were dispensable for virulence could be due
to the functional redundancy with other apoplastic effectors
(Yoshino et al., 2012; Guo et al., 2019).

RECOGNITION OF APOPLASTIC CDIPS
IN PLANTS: CELL SURFACE
RECEPTORS AND DOWNSTREAM
COMPONENTS

In recent years, there have been breakthroughs in the
identification of cell surface receptors recognizing apoplastic
CDIPs. By screening T-DNA insertion mutants and natural

accessions of Arabidopsis, Albert et al. (2015) identified
T-DNA insertion alleles of RLP23 and Arabidopsis accessions
carrying a frameshift mutation of RLP23 that were insensitive
to the conserved nlp20 pattern found in most NLPs. RLP23
encodes a leucine-rich repeat-receptor-like protein (LRR-
RLP), which binds extracellularly to nlp20, thereby mediating
NLP-elicited immune response in Arabidopsis (Albert et al.,
2015). Transgenic potato plants expressing RLP23 displayed
enhanced resistance to oomycete and fungal pathogens,
such as P. infestans and S. sclerotiorum (Albert et al.,
2015), further supporting that RLP23 confers protection
to oomycete and fungal pathogens. More recently, RXEG1
(Response to XEG1), an LRR-RLP that specifically recognizes
the GH12 family CDIP XEG1, has been identified from
N. benthamiana through a high-throughput virus-induced
gene silencing (VIGS) screen (Wang Y. et al., 2018). RXEG1
interacts with XEG1 by the extracellular LRR domain in the
apoplast, and regulates XEG1-induced plant cell death and
immune responses.

Using a genetic mapping approach, an ELR (elicitin response)
gene has been identified from a population derived from the
cross of Solanum microdontum genotype mcd360-1 (responds
to INF1 with a cell death response) with S. microdontum ssp.
gigantophyllum gig714-1 (does not respond to INF1) (Du et al.,
2015). ELR encodes an LRR-RLP, and ELR mediates extracellular
recognition of a broad range of elicitins exhibiting relatively low
sequence similarity, suggesting that ELR recognizes elicitins most
likely based on domain similarity but not a small conserved
peptide. Moreover, cultivated potato transformed with the ELR
gene exhibited enhanced resistance to Phytophthora infestans.
Overall, the results suggested ELR as a potential cell surface
receptor to mediate response to elicitins. However, the physical
association of ELR with INF proteins remains unclear (Du
et al., 2015). Interestingly, two intracellular proteins, a lectin-like
receptor kinase (NbLRK) and a pepper calcium-binding protein
(SRC2-1), have been shown to interact with P. infestans INF1
(Kanzaki et al., 2008) and P. capsici PcINF1 (Liu et al., 2015),
and mediate P. infestans INF1 or PcINF1-induced cell death,
respectively. These results correspond with the speculation that
elicitins could be possibly transported into plant cells through
clathrin-mediated endocytosis (Leborgne-Castel et al., 2008).
Hence, it would appear that plants possess multiple mechanisms
to recognize elicitins.

The three cell surface receptors RLP23, ELR and RXEG1 have
extracellular LRRs but lack a cytoplasmic signaling domain. Two
LRR receptor-like kinases (LRR-RLKs) SUPPRESSOR OF BIR1-1
(SOBIR1) and/or BRI1-ASSOCIATED KINASE-1/SOMATIC
EMBRYOGENESIS RECEPTOR KINASE-3 (BAK1/SERK3)
were shown to be essential for RLP23, ELR or RXEG1-induced
cell death and immune responses that act as co-receptors to
transduce signals to downstream elements. RLP23 forms a
complex with SOBIR1 and recruits BAK1/SERK3 into a tripartite
complex upon ligand binding (Albert et al., 2015); ELR associates
with BAK1/SERK3 and mediates recognition of diverse elicitins
from Phytophthora species (Du et al., 2015); RXEG1 associates
with BAK1/SERK3 and SOBIR1 to transmit the XEG1-induced
defense signal (Wang Y. et al., 2018).
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BAK1/SERK3 and SOBIR1 appear to be general and central
regulators of plant cell death and defense response induced
by diverse apoplastic CDIPs besides nlp20, INF1 and XEG1.
In Arabidopsis, bak1 mutants showed a significantly reduced
sensitivity to the CPP family CIDP BcSpl1, indicating that BAK1
plays an important role in the perception of BcSpl1 (Frías et al.,
2011). In N. benthamiana, VIGS-mediated silencing of BAK1 or
SOBIR1, resulted in significant reductions of cell death induced
by a number of apoplastic CDIPs, including BcXYG1 (Zhu et al.,
2017a), BcXyl1 (Yang et al., 2018c), RcCD1 (Franco-Orozco et al.,
2017), VdCUT11 (Gui et al., 2018), VdEG1, VdEG3 (Gui et al.,
2017), VmE02 (Nie J. et al., 2019), MgNLP, Zt9, Zt11 or Zt12
(Kettles et al., 2017). These results indicate that BAK1/SERK3 and
SOBIR1 are required for apoplastic CDIP-induced cell death.

Several cytosolic, or nucleo-cytoplasmic regulators have been
shown to be important components in apoplastic CDIP-induced
cell death and defense signal transduction pathways downstream
of the cell surface receptor complexes. The ubiquitin ligase–
associated protein SGT1 functions as a conserved component
in both PTI and effector-triggered immunity (ETI) pathways.
Silencing of SGT1 in N. benthamiana suppressed cell death
induced by P. capsici PcINF1 (Liu Z. Q. et al., 2016), INF1, INF2A
(Huitema et al., 2005), PiNPP1.1, PsojNIP (Kanneganti et al.,
2006), BcSpl1 (Frías et al., 2011), NIS1 (Yoshino et al., 2012),
NcCDI1 (Franco-Orozco et al., 2017), or VmE02 (Nie J. et al.,
2019). In addition, VIGS-mediated silencing analysis revealed
that HSP70, HSP90 (Kanzaki et al., 2003; Kanneganti et al., 2006;
Yoshino et al., 2012; Nie J. et al., 2019), COI1, MEK2, NPR1,
TGA2.2 (Kanneganti et al., 2006), and Avr9/Cf-9-INDUCED
F-BOX1 (ACIF1) (Li et al., 2019c) were required for cell death
induced by certain apoplastic CDIPs.

CONCLUDING REMARKS AND
PERSPECTIVES

An emerging number of studies have shown that many
apoplastic CDIPs are required for pathogenicity, or contribute
to the virulence of hemibiotrophic and necrotrophic pathogens,
demonstrating the important role of these apoplastic CDIPs as

essential virulence factors. On the contrary, apoplastic CDIPs
were shown to elicit plant defense responses. Over the past
decades, studies have documented that many apoplastic CDIPs
are recognized by plants as PAMPs, being able to trigger PR gene
expression, phytoalexin synthesis, MAPK phosphorylation, SA-,
JA/ET-signaling pathways, as well as resistance against pathogens.
The recent findings of extracellular recognition of NLPs, elicitins
and XEG1 by plant RLPs, RLP23, ELR and RXEG1 (Albert et al.,
2015; Du et al., 2015; Wang Y. et al., 2018), respectively, have
greatly advanced our understanding of the roles of apoplastic
CDIPs in plant-pathogen interactions. More importantly, the
identification of receptors for apoplastic CDIPs provides valuable
gene resources for engineering crops with broad and durable
disease resistance (Albert et al., 2015; Du et al., 2015).

Currently, the majority of apoplastic CDIPs have been
characterized based on demonstrations in dicot plants, especially
based on transient expression in N. benthamiana, even many
apoplastic CDIPs were identified from monocot pathogens.
Particularly, recognition receptors and downstream components
that have been identified remain restricted to dicot plants. Given
the paramount importance of monocot cereal plants, such as
rice, wheat and maize, as staple crops, it would be important
to determine recognition of apoplastic CDIPs in monocot hosts,
which could help engineer monocot cereal crops with broad-
spectrum resistance against filamentous pathogens.
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