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Abstract 

Background:  In cell signaling pathways, proteins interact with each other to deter-
mine cell fate in response to either cell-extrinsic (micro-environmental) or intrinsic 
cues. One of the well-studied pathways, the mitogen-activated protein kinase (MAPK) 
signaling pathway, regulates cell processes such as differentiation, proliferation, apop-
tosis, and survival in response to various micro-environmental stimuli in eukaryotes. 
Upon micro-environmental stimulus, receptors on the cell membrane become acti-
vated. Activated receptors initiate a cascade of protein activation in the MAPK pathway. 
This activation involves protein binding, creating scaffold proteins, which are known to 
facilitate effective MAPK signaling transduction.

Results:  This paper presents a novel mathematical model of a cell signaling pathway 
coordinated by protein scaffolding. The model is based on the extended Boolean 
network approach with stochastic processes. Protein production or decay in a cell was 
modeled considering the stochastic process, whereas the protein–protein interactions 
were modeled based on the extended Boolean network approach. Our model fills a 
gap in the binary set applied to previous models. The model simultaneously considers 
the stochastic process directly. Using the model, we simulated a simplified mitogen-
activated protein kinase (MAPK) signaling pathway upon stimulation of both a single 
receptor at the initial time and multiple receptors at several time points. Our simula-
tions showed that the signal is amplified as it travels down to the pathway from the 
receptor, generating substantially amplified downstream ERK activity. The noise gener-
ated by the stochastic process of protein self-activity in the model was also amplified 
as the signaling propagated through the pathway.

Conclusions:  The signaling transduction in a simplified MAPK signaling pathway 
could be explained by a mathematical model based on the extended Boolean network 
model with a stochastic process. The model simulations demonstrated signaling ampli-
fications when it travels downstream, which was already observed in experimental 
settings. We also highlight the importance of stochastic activity in regulating protein 
inactivation.

Keywords:  Extended Boolean network model, Stochastic process, MAPK signaling 
pathway
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Background
Since Stuart Kauffman introduced the gene regulatory network concept [1] nearly five 
decades ago, the Boolean network model approach has been extensively utilized to 
study complex signaling pathways, such as modeling the cell differentiation process [2]. 
Dynamic analysis of mammalian cell-cycle networks using the Boolean model is also 
reported [3]. The classical mechanism of G_protein-mediated signaling was demon-
strated based on a pattern-matching approach to associate gene expression profiles with 
the Boolean model [4]. In addition, the Boolean modeling approach is often integrated 
with multiple perturbations for phosphoproteome time series [5] and drug response data 
using a microfluidics perturbation screening strategy to develop cell line- and patient-
specific logic models [6]. Recently, a Boolean model with a stochastic update algorithm 
was proposed to describe and predict the signaling network for abscisic acid (ABA)-
induced stomatal closure. The developed model successfully described ABA sensitivity 
and accurately captured the effect of knock-out and constitute activity, and most of the 
simulation results were in good agreement with the experimental data [7]. In addition, a 
Boolean model of prostate cancer signaling pathways successfully differentiated healthy 
cells from cancerous cells. By integrating with patient data, the model classified patient 
Gleason score grade for each patient [8].

The Boolean network model applied to the previous model assumes a binary set of 
protein states [9]. It is often difficult to describe a more complex interaction with the 
modeling approach since the interaction between two proteins can be more complex 
than a binary set (TRUE or FALSE). On the other hand, using weights representing the 
strength of the interaction between two proteins can allow for more flexibility and com-
plexity in the dynamic interaction. To this end, the extended Boolean model was devel-
oped to include the weights so that the activity of the network can be expressed as a 
continuous variable (typically in [0, 1]). For example, a fuzzy set operator calculates the 
Boolean logic operators “AND”, and “OR” as the maximum or minimum for the weights 
[10]. Briefly, a fuzzy set is defined as a mapping from a set to a Boolean lattice. Fuzzy 
logic is a multi-valued logical structure and uses a sequence of logical values between 
0 and 1, which is completely FALSE or TRUE, respectively. The fuzzy set operator has a 
single operand dependency problem due to the MAX and MIN operators. Thus, it is dif-
ficult to calculate the Boolean value of weights simultaneously through the entire evalu-
ation mechanism, especially when the evaluation function has the associative property.

The Waller–Kraft operator was introduced as an extension of the fuzzy set operator, 
which utilizes a linear combination for the maximum and minimum of weights [11]. The 
p-norm operator is based on the concept of Euclidean distance, whereas Boolean opera-
tors are used for all weights [12]. The operator offers the advantages of a short calcu-
lation time and utilizes the maximum and minimum weights simultaneously over the 
fuzzy set operator. The operator can also control a coefficient of logic operators (“AND”, 
“OR”) using a user-specified parameter. A stochastic process was also integrated into 
the Boolean network model by shifting the homogeneous Poisson point process along 
the stochastic process to maintain the Boolean model with the original distribution at 
each fixed time t [13]. Moreover, an efficient probabilistic Boolean network modeling 
approach was developed for the p53-MDM2 network and the T cell immune response 
[9].
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This study presents a new mathematical model of cell signaling pathways based on the 
extended Boolean method with the Waller–Kraft operator and a stochastic process. The 
model was employed to simulate the mitogen-activated protein kinase (MAPK) sign-
aling pathway. The MAPK signaling pathway is one of the most well-studied pathways 
[14–16], which regulates critical cellular processes such as differentiation, proliferation, 
apoptosis, and survival in response to various micro-environmental stimuli in eukary-
otes (reviewed in [17, 18]). Upon receiving a micro-environmental stimulus, receptors 
on the cell membrane, such as the epidermal growth factor receptor (EGFR) and mesen-
chymal-epithelial transition (MET) receptor, become activated. Activated receptors then 
initiate a cascade of protein activation of downstream proteins in the MAPK pathway, 
which involves protein binding, thereby creating scaffold proteins [19] that are known 
to facilitate effective MAPK activation [20, 21]. The scaffold proteins serve as a plat-
form for a single protein to assemble, coordinate feedback signals, and protect activated 
proteins (reviewed in [22, 23]). In the model, we assume that the activity of proteins in 
the pathway is regulated by a Boolean function, which is determined by the weights of 
protein–protein interactions. The model also considers the effect of stochastic factors 
of protein self-activity on signaling transduction. Cell signaling is affected by intrinsic 
and extrinsic stochastic factors [24]. Extrinsic stochasticity can be associated with inter-
cellular fluctuation due to extracellular microenvironment changes. Intrinsic stochastic-
ity can be associated with several factors, such as the Brownian motion of proteins in 
the cytoplasm of the cells [25], stochastic protein degradation [26], and self-activation of 
proteins [27]. In the model, these factors were represented by a stochastic process, fol-
lowing a normal distribution with a mean 0 and standard deviation simulation time step.

The developed model was employed to simulate a simplified MAPK signaling path-
way activity in response to a single micro-environmental stimulus. We then compared 
the effect of stochastic factors on the signaling pathway. We also simulated the path-
way activity in response to repeated multiple micro-environmental stimuli. Our results 
suggest that the extended Boolean network model can effectively simulate the MAPK 
pathway in response to different micro-environmental stimuli and further highlight the 
importance of a stochastic process for proper inactivation after the signaling pathway 
stimulation.

Method
Mathematical model assumptions

Our model describes changes in protein activity when the amount of intracellular pro-
tein is sufficient for activation to occur. The MAPK signaling is regulated by proteins 
that can simultaneously bind to multiple proteins in the pathway [21], creating a scaffold 
protein. The scaffold protein can help localize molecules in specific parts of the cell or 
improve the effectiveness of the signaling pathway [22], and further regulates the selec-
tivity of the pathway to achieving new responses from the signaling components [23]. 
Thus, we considered that a scaffold could control the activity of each protein in the path-
way. Furthermore, we included a weight between two proteins to represent the strength 
of protein–protein interactions, which may represent protein abundance or protein 
binding strength at each time in a cell. To formulate our mathematical model, we made 
the following additional assumptions: 



Page 4 of 15Kim and Kim ﻿BMC Bioinformatics          (2022) 23:515 

(1)	 Activated proteins can instantaneously bind to each other to create a scaffold for 
their immediate downstream protein activation.

(2)	 Each protein binds to the scaffold independently from one another.
(3)	 After interacting with the immediate downstream of an individual protein, the pro-

tein is released from the scaffold and becomes inactivated.
(4)	 The strength (weight) of the interaction between proteins is randomly assigned 

with the uniform distribution [0, 1].
(5)	 The weights do not change over time.

Assumptions (1) and (3) imply that the activity of each protein is regulated by bind-
ing and detaching from a scaffold. We set these assumptions based on experimental 
studies that investigated the role of a scaffold protein such as kinase suppressor of 
RAS (KSR) or STE5 in MAPK pathway signaling pathway [20, 28, 29]. It has been 
observed that the phosphorylation of KSR results in the release of protein in the 
MAPK pathway, such as RAF, from the scaffold complex, which in turn inactivates 
MEK [29]. We further assume that the physical binding and detaching from a scaffold 
are instantaneous. We do not model the direct physical process of binding or detach-
ing. Assumption (2) indicates that an individual protein can bind to a scaffold by itself 
upon activation. We set assumption  (4) to represent the different strengths of each 
protein interaction. Of note, we simulated 1000 simulations with different weights 
and reported an average behavior. Finally, for simplicity, we assume that the interac-
tion weight does not change with time (assumption (5)).

Mathematical model formulation

To explain the model development process, we consider an example network com-
posed of one target protein, three upstream proteins, and two downstream proteins 
(Fig.  1). In the network, the activation of the target protein is modulated by three 
factors; interactions with proteins in the upstream proteins, an inactivation after 

Fig. 1  Cell signaling network diagram for model development explanation. For a target protein, the proteins 
1–3 are referred to as upstream, which can activate the target protein with interaction strength weight 1, 
weight 4, and weight 6. The target protein can activate proteins 4 and 5 with interaction strength weights 
8 and 9, respectively. The solid lines indicate interactions with the target protein. The interaction with other 
proteins is represented by dotted lines
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interaction with downstream proteins, and self-activation (stochastic production or 
degradation of a protein), as follows:

Activation of the target protein by upstream proteins is calculated in three steps. First, 
the Boolean function is applied to all weights between the target protein and each pro-
tein in its immediate upstream protein to calculate the interaction strength between 
the two. Second, the influence of each protein on the target is calculated by multiply-
ing the interaction strength with the activity of the upstream protein. Third, all of these 
influences are combined. For example, the effect of the upstream proteins on the target 
protein in Fig. 1 is calculated by summing the products of the Boolean function value 
of weights and each protein activity (see the equation below). Similarly, the activity of 
downstream proteins is modeled as a product of the activity of the target protein with 
the Boolean function value between the target and a downstream protein. The self-acti-
vation or inactivation of the target protein is modeled as a product of the target protein 
and a random variable that is normally distributed with mean zero and standard devia-
tion time step ( �t).

where xi = activity of proteini , xT = activity of target protein , w = weight , W= nor-
mally distributed random variable with mean 0 and standard deviation �t , and 
B = Boolean function.

Accordingly, the activity of the target protein is expressed as

The Boolean values of the upstream and downstream proteins are calculated through a 
Boolean function (defined in void Booleangate in the Additional file 1). The stochastic 
process follows a normal distribution with mean 0 and standard deviation dt derived 
from the Euler-Maruyama method (described in the following section and defined as 
double gaussianRandom in the Additional file 1).

The above protein activation process can be readily converted into a system of stochastic 
differential equations. We utilized the Waller–Kraft operator [11] dependent on the weights 
of each activity as the extended Boolean logic gate. In the model, we consider only “AND” 
logic to simulate simultaneously occurring protein binding and detaching. The parameter 
of the Waller–Kraft operator, r, can be chosen within [0.5, 1]. We constructed a model of a 
signaling pathway composed of N proteins as follows:

activity of a target protein = upstream− downstream+ self-activity.

upstream: x1 × B(w1,w2,w3)+ x2 × B(w4,w5)+ x3 × B(w6,w7),

downstream: xT × B(w8,w9,w10),

self - activity: xT ×W ,

(x1B(w1,w2,w3)+ x2B(w4,w5)+ x3B(w6,w7))− (xTB(w8,w9,w10))+ (xTW ).

(1)dxi(t) = ku
k∈n

Bk(wkj
′ )xk(t)− kdBi(wij)xi(t) dt + σxi(t)dW (t),

(2)

∑

k∈n

Bk

(

w
′

kj

)

xk(t) =
∑

k∈n

(

rmin
(

wk1, . . . ,w
′

km

)

+ (1− r)max
(

wk1, . . . ,w
′

km

)

xk(t)
)

,
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where xi(t) indicates the activity of each protein at time t, in which 1 ≤ i ≤ N  , n is 
the number of proteins in the upstream of xi , and xk is an individual protein immedi-
ate upstream to xi so that 1 ≤ k ≤ n . Bk is a Boolean function for the upstream interac-
tions based on the Waller–Kraft operator. j′ is the order of weights between xk and its 
upstream neighbors. Bi is a Boolean function that acts downstream of xi , and j is the 
order of weights between the protein xi and its downstream neighbors. Self-regulation of 
each target protein xi by an unknown stochastic factor is modeled following the Wiener 
process, where W (t) ≈ N (0,�t) , with a rate constant σ . Equation (2) is used to calculate 
the activation of the target protein xi by its upstream proteins as a linear combination of 
Boolean values of Bk(wkj′) and the activity of protein xk . In Eq. (2), m′ is the total number 
of weights between xk and its upstream neighbors. Equation (3) calculates an inactiva-
tion of the target protein xi by interaction with its downstream proteins, where m is the 
total number of weights between xi and its downstream proteins. The r is the parameter 
of the Waller–Kraft operator, and ku and kd are rate constants.

Model parameters and initial conditions

We choose the parameter values ku = 0 for the receptors and kd = 0 for the pro-
tein without a downstream interacting counterpart. For all other proteins, we first set 
ku = ks = 1.0, and r = 0.75 in the range of [0.5 1] of the Waller–Kraft operator, which is 
the range corresponding to “AND” logic of the Waller–Kraft operator.

We set the inactive states of protein to be zero ( xi(0) = 0 ). We assume that the recep-
tors can be fully activated. We set xi(tk) = 1 , where i indicates receptor proteins that can 
be stimulated by the cell micro-environment, and tk represents the stimulation time. For 
the weights, we assume a uniform distribution between 0 and 1.

Numerical calculation

Numerical calculations were performed using the Euler–Maruyama method, which is 
considered to be one of the simplest numerical approximations for stochastic differential 
equations. This method was derived from the Ito-Taylor expansion (supplementary for a 
brief derivation). If we truncate after the first order terms, we obtain the Euler–Maruy-
ama method as follows:

where �t = ti+1 − ti , and �Wi = W (ti+1)−W (ti) for i = 0, · · · , n− 1 with the initial 
value X(t0) = X0 . The random variables �Wi are independent normally distributed ran-
dom variables with mean 0 and standard deviation �t.

Results
Model signaling pathway: simplified MAPK pathway

Utilizing the model and numerical simulation method described above in "Method" sec-
tion, we simulated the activity of the simplified MAPK signaling pathway (Fig. 2), com-
prising 11 proteins and 14 interaction weights. In the model pathway, activated ERK is 
translocated across the nucleus membrane to regulate cell proliferation, migration, and 

(3)Bi(wij) = rmin(wi1, . . . ,wim)+ (1− r)max(wi1, . . . ,wim),

(4)X(ti+1) = X(ti)+ f (X(ti))�t + g(X(ti))�Wi,
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anti-apoptosis effects [30]. These processes controlled by ERK are considered to be cell 
phenotypes in our MAPK signaling pathway. It is worth noting that all of the weights in 
the current model are assumed to be non-negative, representing positive interactions 
only. We chose this simplified MAPK pathway structure to test the current model, par-
ticularly the effect of the stochastic process on signaling transduction.

We take GRB2 as an example target protein to further explain the modeling process, 
as shown in Fig. 2. The GRB2, denoted by x4 , is activated by three immediately upstream 
proteins: EGFR ( x1 ), ERBB2 ( x2 ), and MET ( x3 ). GRB2 can stimulate only one down-
stream protein, SOS ( x6 ). EGFR ( x1 ) has two weights, w11 , and w12 ; ERBB2 ( x2 ) has two 
weights, (w21 and w22) ; MET ( x3 ) has two weights, (w31 and w32) ; and GRB2 (x4) has the 
only one weight, (w41) , for stimulating SOS. Therefore, the activities of upstream and 
downstream molecules of GRB2 can be expressed as follows:

The self-activity of GRB2 occurred by stochastic fluctuation can be expressed as 
σx4(t)dW (t) , where W (t) ≈ N (0,�t).

Single stimulus simulation

We first simulated the pathway upon receiving a single stimulus. We initially simulated 
the temporal evolution of proteins in the pathways without stochastic self-activity and 
then added the stochastic activity effect in subsequent simulations.

We consider a case where the receptor EGFR is instantly activated by EGF initially 
( xi(0) = 1, where xi indicates EGFR). The activity of EGFR then decreases monotoni-
cally since no further EGF stimulation is applied. The activity of each downstream 

upstream of GRB2: (rmin (w11,w12)+ (1− r)max (w11,w12))x1,

+ (rmin (w21,w22)+ (1− r)max (w21,w22))x2,

+ (rmin (w31,w32)+ (1− r)max (w31,w32))x3,

downstream of GRB2: (rmin (w41)+ (1− r)max (w41))x4.

Fig. 2  Schematic illustration of the simplified MAPK signaling pathway. Phenotype indicates one of the cell 
phenotypes regulated by ERK, such as cell proliferation, migration, and anti-apoptosis activity. The blue line 
represents the weight of protein–protein interactions
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of EGFR increases sequentially according to the order of the MAPK signaling path-
way (depicted in the dotted rectangle range in Fig. 3). The activity of each protein 
then sequentially decreases following the decrease in EGFR activity. The inactiva-
tion rates of all proteins were extremely slow (depicted as a solid rectangle in Fig. 3).

Figure 4 shows the trajectories of the activity of each protein in the MAPK signal-
ing pathway when the stochastic self-activity was included. We set σ = 1.0 to solely 
investigate the influence of the stochastic process, W(t). Following EGFR activity, the 
proteins in the MAPK signaling pathway are sequentially activated (depicted in the 
solid rectangle range in Fig. 4). GRB2, downstream of EGFR, activates SOS, which in 
turn increases the activity of RAS, and so on down the pathway. The signal appeared 
to be amplified as it moved downstream in the pathway. Interestingly, the protein 
shifted to an inactive state (protein activity = 0) significantly faster than observed 
in the non-stochastic case (Fig. 4 vs. Fig. 3). We compared the decay time of all pro-
teins in non-stochastic and stochastic cases (Additional file  1: Fig. S1). Since the 
protein activities did not decrease to near 0 in a non-stochastic case, we chose a 
specific time point, the time to reach 10% of the maximum value (p-value < 0.05, 
Student t-test). Although the random variables of the stochastic process W(t) were 
sufficiently small due to �t = 0.001 and W (t) ≈ N (0,�t) , its impact on the MAPK 
pathway was nevertheless significant.

Fig. 3  Temporal evolution of the MAPK signaling pathway without the stochastic self-activity from time 
step 0 to 60,000. In the early stage of the trajectories, each protein from time steps 0 to 25 (dotted rectangle 
range) is depicted as a zoomed-in inset figure. Red: EGFR, green: GRB2, blue: SOS, yellow: RAS, violet: RAF, 
cyan: MEK, black: ERK

Fig. 4  Trajectories for the activity of the MAPK signaling pathway with stochastic self-activity. Temporal 
evolution of protein activities from time step 0 to 60,000. In the early stage of the trajectories, each protein 
from 0 to 25 (dotted rectangle range) is depicted as a zoomed-in inset figure. Red: EGFR, green: GRB2, blue: 
SOS, yellow: RAS, violet: RAF, cyan: MEK, black: ERK
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Influence of weight in the MEK–ERK interaction

We next examined the influence of weight on protein activity. We focused on the weight 
of the MEK–ERK interaction to ignore the effect of a downstream protein affecting 
another protein. Figure 5 shows the trajectories of the activities of MEK and ERK. We 
set all weights to 0.5 except for the weight of the MEK–ERK interaction. We performed 
the simulation in response to a single stimulus assuming three different weights of MEK 
and ERK: 0.25, 0.5, and 0.75 (Fig. 5). In all cases, ERK activity was sustained over a longer 
period (Fig. 5), and there was a slower decrease in ERK (black) than MEK (cyan) activ-
ity. When the weight of the MEK–ERK interaction was smaller than the weights of other 
interactions, the initial activity of ERK was lower than that of MEK (Fig. 5a), although 
ERK activity caught up to reach the level of MEK activity at around time step 30,000. 
When the weight was greater than or equal to the weights of the other interactions, the 
ERK activity was maintained at a higher level for the entire period of the simulation 
(Fig. 5b, c).

Multiple simulations

To determine whether the stochastic effect on target protein activity significantly 
changes the overall behavior of the MAPK pathway, we conducted 1000 simulations for 
a single stimulus in which different random weights were assigned following a uniform 
distribution ws

ij ≈ U [0, 1] , where 1 ≤ s ≤ 1000 refers to each simulation trial. The tem-
poral evolution of each protein appeared to be similar in all simulations (Fig. 6): all pro-
teins were sequentially activated and then inactivated (converging to zero). We observed 
amplified signaling activity as the signal traveled downstream in the pathway (e.g., from 
EGFR to MEK), consistent with the observations for the single-simulation case (Fig. 4). 
Interestingly, the noise of protein activity also appeared to be increased when mov-
ing downstream in the pathway (RAF, MEK, ERK) compared to that upstream (EGFR, 
GRB2, SOS, and RAS) (Fig. 6, with a larger standard variation in (e) and (f ), and Fig. 7.)

We also conducted additional simulations with different parameter sets of ku, kd , and 
σ (Additional file 1: Figs. S2–S8). Comparing with Figs. 6, 7, simulation results are quali-
tatively consistent. In particular, signaling amplification occurs in all parameter sets, 
although the amplitude of each protein activity rather changes with parameter sets. The 
smaller kd that regulates the downstream magnitude, the greater the target protein acti-
vation. The smaller the ku , which governs the magnitude of the upstream, the smaller the 
activation of the target protein. A smaller stochastic factor ( σ ) delays inactivation.

Fig. 5  Trajectories for the activities of MEK (cyan) and ERK (black) from time step 0 to 60,000 assuming three 
different weights: 0.25 (a), 0.5 (b), 0.75 (c)
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The parameter r is a coefficient of restriction in the Waller–Kraft operator. A value 
close to one imposes strong restrictions similar to the Boolean logic“AND”operation; 
on the other hand, a small value close to zero indicates less restriction, similar to 
a“OR”operation. In this study, we choose the “AND” logic of the Waller–Kraft opera-
tor to perform numerical simulations because the signal transduction between pro-
teins simultaneously occurs within a sufficiently fast time ( 10−9(ns)–10−3(ms)). Even 
though we chose the “AND” logic, we compared the difference between “AND” and 
“OR” logic operators (Additional file 1: Figs. S9–12). It is worth noting that the simu-
lation results with some large r values (e.g., r ≥ 0.75 , “AND” logic) did not show a sig-
nificant difference. The results with “AND” logic are significantly different with some 
small r values (e.g., r ≤ 0.25, “OR” logic).

Fig. 6  Temporal evolution of proteins of EGFR (a), GRB2 (b), SOS (c), RAS (d), RAF (e), and MEK (f) proteins. The 
solid line represents the average over the model simulation at each time step. The shaded area indicates the 
standard deviation

Fig. 7  The trajectory of ERK from time 0 to 60000. The solid line shows the average of over 1000 simulations, 
and the shaded region indicates the standard deviation
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We next compared overall protein activities from stimulation to an inactive state. For 
each protein, we first calculated the area under the curve of the temporal profile. We 
then calculated the average over the areas and the coefficient of variation (Fig. 8). The 
coefficient of variation (CV) represents the ratio to the average value of the standard 
deviation; that is, if the sample standard deviation, s, and mean, µ , then the CV is

The actual value of the CV is dimensionless because it is independent of the unit 
in which the measurement was performed. It is useful to use coefficients of variation 
instead of standard deviations to compare data sets with different units or means. We 
observed an increasing tendency of overall protein activities from GRB2 to ERK. As the 
activity of the proteins increased, the range of the coefficient of variation due to the sto-
chastic process also increased.

Repeated stimulation of all receptors

Finally, we simulated the signaling pathway when the three receptors (EGFR, ERBB2, 
MET) were stimulated repeatedly. We conducted 1000 simulations while varying 
weights between proteins in the pathway. We set the receptors are fully activated ini-
tially ( xi(0) = 1 , where xi stands for EGFR, ERBB2, or MET). After activation, the activ-
ity of the three proteins gradually decayed, returning to almost the inactive state (protein 
activity near zero). An additional stimulus was then applied to each receptor. Since the 
decrease rate of the activity differed for each receptor, the timing of additional activa-
tion also varied among the receptors (Fig. 9), resulting in different peak times for EGFR, 
ERBB2, and MET.

We observed various temporal evolution patterns of MAPK signaling pathway activity. 
From the representative temporal changes of the proteins, we observed that the activities 
of receptors increased quickly upon stimulation but also decreased rapidly unless addi-
tional stimulation was applied. The activity of GRB2 exhibited a time-delayed increase 
and a slower decrease compared with those of its upstream proteins (a representative 
example of the temporal evolution of protein activities is shown in Fig. 9a). Stimulation 
by additional EGFR activation induced a spike in GRB2 activity around the time step 
around 4000. Following additional stimulation by ERBB2 and MET around time step 

CV =
s

µ
.

Fig. 8  The overall activity of proteins from activation to the inactive state. Points represent the average over 
1000 simulations, and error bars are the coefficient of variation
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4000 and 5000, GRB2 was again reactivated and subsequently decayed rather quickly 
(Fig.  9a). Interestingly, the activity of GRB2 exceeded one because ERBB2 and MET 
stimulated GRB2 almost simultaneously. To compare the timing of maximum activation, 
we compared the peak time (Fig. 9b) in the time interval [6000, 9000]. The peak time of 
the two receptors almost perfectly coincided with the peak time of GRB2.

Interestingly, the average activities of MEK and ERK were maintained at a high level 
throughout the simulation time, even though the receptors were fully inactivated 
(Fig.  10a). Note that even though the stimulus repeatedly occurred, the average pro-
tein activity was maintained in a narrow range. Likewise, we compared overall protein 
activities over a fixed time scale, demonstrating an increasing tendency of overall pro-
tein activities from GRB2 to ERK. The range of coefficient of variation also appeared 
to be amplified, implying that the noise generated by the stochastic process propagates 
through the pathway when the signals travel downstream (Fig. 10b).

Discussion
This paper presents a mathematical model of a cell signaling pathway based on the 
extended Boolean network model with a stochastic process. We applied the model 
to simulate a simplified MAPK pathway. Although several Boolean models have been 
developed to explain the signaling pathway [4, 6, 13], a mathematical model based 
on the extended Boolean model considering the weight by supplementing the draw-
back of a Boolean model has not been reported. Our model described the signaling 

Fig. 9  Temporal evolution of GRB2 activity. a the trajectory of GRB2 (bottom) reflects stimuli occurring at 
EGFR, ERBB2, and MET. b Timing of the highest activity (peak) of proteins EGFR, MET, ERBB2, and GRB2

Fig. 10  a Temporal evolution of average protein activities over 1000 model simulations in response to 
repeated stimulation on all the receptors. b The overall activity of proteins on a fixed time scale (from 0 to 
15,000). Points represent the average over 1000 simulations, and error bars are the coefficient of variation
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pathway by taking into account protein scaffold formation, which is a natural phe-
nomenon in which activated proteins are localized into polymer complexes through 
specific protein–protein interactions [20, 28, 29]. The scaffolding mechanism is 
known to promote efficient signal transduction and amplification [28] and employed 
in other pathways such as β-Arrestins and cAMP-dependent kinase’anchoring protein 
signaling [31]. Our model simulations of a single stimulus showed that the stochastic 
self-activity promoted a fast inactivation, although this stochastic effect could up-reg-
ulate each protein activity as well. It appears that the effect of stochastic down-regula-
tion is more pronounced than stochastic up-regulation. With repeated stimulation on 
all of the receptors, we observed that the activated proteins promoted the activation 
of the protein in its immediate downstream neighboring protein, which in turn acti-
vated other proteins further downstream. The initial signaling was amplified and was 
sustained to activate downstream proteins as observed experimentally [28]. Interest-
ingly, variation of protein activity due to stochastic sources was amplified as well (e.g., 
a large coefficient of variation of protein activity in ERK and MEK vs. a small one in 
EGFR in Fig. 8). A previous study of an ordinary differential equation model with sto-
chastic updates also showed that noise is amplified in a MAPK/ERK pathway and this 
amplification helps as cell signal moves downstream. Importantly, the study showed 
that this noise amplification could improve information transmission [32].

The signaling pathway that we considered as an application of our proposed model 
is simplified pathway. In reality, cell signaling pathways are quite complex, typically 
including several positive or negative feedback loops [15, 16]. In the current study, we 
sought to understand the effect of stochastic factors on signaling amplification and 
decay. It is worth noting that having negative feedback in a pathway might modu-
late the over-activation or inactivation of a stimulated pathway. The model parame-
ters such as interaction coefficient with upstream or downstream protein and weights 
between two proteins were not estimated with specific experimental data. Instead, 
we considered several different parameters to simulate the pathway and obtained 
qualitatively consistent results. In particular, one of the key predicted behaviors of 
the pathway, signaling amplification, was not dependent on parameters. The proposed 
model has not included several other factors of the signaling pathway such as protein-
bonding speed, phosphorylation rate, and spatial interaction between proteins; how-
ever, adding more complexity does not guarantee a better understanding. For now, 
such experimental measurements of many proteins are not easily obtained. Therefore, 
while a more complex model may better represent a pathway in a relevant context, it 
could be burdened with additional model assumptions.

Our model was to numerically evidence the efficiency and suitability of the sto-
chastic process and the extended Boolean network model. We chose our modeling 
approach as a starting point to understand the effect of stochastic factors on a cell 
signaling pathway. The model simulations suggested that the stochastic factor could 
modulate the decay rate of protein activity; a smaller stochastic coefficient resulted in 
slower decay. The results presented show the need to better understand the proper-
ties of stochastic factors in a cell signaling pathway. Detailed integration of the model 
with experimental data concerning stochastic factors could provide more quantita-
tive predictions which can be tested in an experiment. Another extension includes 



Page 14 of 15Kim and Kim ﻿BMC Bioinformatics          (2022) 23:515 

the identification of interaction weights between proteins that modulate the signaling 
transduction [33].
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MEK	� Mitogen-activated protein kinase kinase
ERK	� Extracellular signal-regulated kinase
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