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Abstract
Radiation-induced lung injury is a common complication of radiotherapy for lung cancer, breast cancer, esophageal cancer, and
thymoma. This study aims to illustrate biomarkers of radiation-induced lung injury and its potential mechanism through the
study of metabolomic alterations in serum of Sprague-Dawley rats with different radiation doses. Serum from 0, 10, or 20 Gy
irradiated rats were collected and subjected to gas chromatography-mass spectrometry. The result showed that there were 23
dysregulated metabolites between the 10 Gy irradiation group and the 0 Gy control group, whereas 36 preferential metabolites
were found between the 20 Gy irradiated rat serum and the control groups. Among them, there were 19 common differential
metabolites in the 2 irradiation groups, including 3 downregulated (benzyl thiocyanate, carbazole, and N-formyl-L-methionine)
and 16 upregulated metabolites. We further analyzed the metabolic pathways of different metabolites; the results showed that
there were 3 significant enrichment pathways in the 10 Gy vs 0 Gy group and 7 significant enrichment pathways in the 20 Gy vs
0 Gy group. Among them, taurine and hypotaurine metabolism, riboflavin metabolism, and glyoxylate and dicarboxylate
metabolism were the common metabolic enrichment pathways of the 10 Gy vs 0 Gy group and the 20 Gy vs 0 Gy group.
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Radiation-induced lung injury remains a common complication
in thoracic tumor radiotherapy.1 Metabolites are the final
downstream products of gene expression, which are directly
related to phenotype.2 The progress of radiation-induced lung
injury is accompanied by the changes of metabolism-related
genes and metabolites. Therefore, metabolomics can better
reflect the overall information of organisms and reveal the
physiological and biochemical functional states of biological
systems than other omics.3 In previous studies, we explored the
metabolic changes of lung tissues in the rat model of radiation-
induced lung injury, and revealed the possible molecular
mechanism of metabolites in the progression of radiation-
induced lung injury.4 Ionizing radiation has been shown to
modulate serum metabolites. This study aims to explore the
alterations of serum metabolites with radiation-induced lung
injury in rats to seek early warningmarkers in the progression of
radiation-induced lung injury, so as to provide a new basis for
the early diagnosis and treatment of radiation-induced lung
injury.

To this aim, we constructed the radiation-induced lung
injury model of Sprague-Dawley rats with different radiation
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doses (0, 10, or 20 Gy) in the right lung at a dose rate of
200 cGy/min with 6-MeV X-ray radiation (Clinac 2100EX,
Varian Medical Systems, Inc, Palo Alto, CA) as reported
previously.4 The protocols for experiments involving animals
were approved by the Animal Experimentation Ethics Com-
mittee at Soochow University (Suzhou, China). Male Sprague-
Dawley (SD) rats (4 weeks of age) were purchased from the
Shanghai SLAC Laboratory Animal Ltd (Shanghai, China).
These animals were housed in a pathogen-free environment
at the Medical School facility of Soochow University.
Sprague-Dawley rats were randomly divided into the control
group, and 10, and 20 Gy irradiation groups (n = 6). After the
rats were anesthetized by intraperitoneal injection of 2%
pentobarbital sodium (Sigma-Aldrich, St Louis, MO, USA) at a
dose of 45 mg/kg, the radiation site (right lung) was located by

computed tomography–guided precise positioning system. The
radiation doses (10 and 20 Gy) selected in this study were to
adapt to large fractional dose delivery, such as stereotactic body
radiation therapy.5 One week after irradiation, the blood of rat
abdominal aorta was collected, and the serum was collected
after centrifugation (3000 × g, 15 minutes). The changes of
serummetabolite were analyzed by a non-targetedmetabolomic
method based on gas chromatography-mass spectrometry (GC/
MS). The serum samples were analyzed on an Agilent 7890B
gas chromatography system coupled with an Agilent 5977A
MSD system (Agilent Technologies Inc, Folsom, California).
After extracting the GC/MS data, metabolites were annotated
through the Fiehn or NIST database, then the GC/MS data were
processed with Simca-P 13.0 (Umetrics AB, Umea, Sweden) to
perform the partial least squares discriminant analysis

Figure 1. (a) Schematic diagram of radiation-induced lung injury models in SD rats and the procedures for serummetabolomics analysis using
gas chromatographymass spectrometry. Rats were irradiated with 0, 10, or 20Gy thoracic radiation. The degree of separation among the 10
Gy vs 0 Gy group (b) and the 20 Gy vs 0 Gy group (c) of serum samples in the partial least squares discriminant analysis (PLS-DA) score maps.
(d) Venn diagram of differential metabolites between the 10 Gy vs 0 Gy group and the 20 Gy vs 0 Gy group. (e) Heatmap plot of dose-
dependent metabolites among the 3 groups.
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(PLS-DA) to discriminate the metabolic differences between
the groups of the study. In this study, the method combining
multidimensional and one-dimensional analysis was used for
inter-group screening of differential metabolites; the VIP value
greater than 1.0 and P value less than .05 were regarded as
differential metabolites. Finally, the differential metabolites
were mapped to the Kyoto Encyclopedia of Genes and Ge-
nomes database to obtain the enrichment results of their met-
abolic pathways (Figure 1(a)). The PLS-DA scores of the 2
groups (10 and 20Gy) were significantly different from those of
the 0 Gy control group (Figure 1(b) and 1(c)). We found that
there were 23 different metabolites between the 10 Gy irra-
diation group and the 0 Gy control group, and there were 36
different metabolites between the 20 Gy irradiation group and
the 0 Gy control groups, and there were 19 common differential
metabolites in the 2 irradiation groups (Figure 1(d)). Comparing
the 19 common differential metabolites, it was found that benzyl
thiocyanate, carbazole, and N-formyl-L-methionine were
downregulated, and 16 metabolites such as taurine, 2-
aminoethanethiol, 5,6-dimethylbenzimidazole, and methyl hep-
tadecanoate were upregulated (Figure 1(e) and Supplementary
Table 1). In order to understand the metabolic mechanism in the
progression of radiation-induced lung injury, we mapped the
serum-dysregulated metabolites to metabolic pathways to ex-
plore which pathways were significantly regulated. The results
showed that there were 3 significant enrichment pathways in the
10 Gy vs 0 Gy group and 7 significant enrichment pathways
in the 20 Gy vs 0 Gy group (Supplementary Table 2). Among
them, taurine and hypotaurine metabolism, riboflavin meta-
bolism, and glyoxylate and dicarboxylate metabolism were
the common metabolic enrichment pathways of the 10 Gy vs
0 Gy group and the 20 Gy vs 0 Gy group. Among these
differential metabolites, we found that taurine was upregulated
in the irradiated group, and a variety of common differential
metabolites such as 2-aminoethanethiol, 5,6-dime-
thylbenzimidazole, and methyl heptadecanoate were en-
riched in the taurine and hypotaurine metabolism pathway,
which may predict that the metabolism of taurine was closely
related to the occurrence of radiation injury.6,7 In addition, in the
clinical radiotherapy of lung cancer, the heart may also be ir-
radiated, and taurine is a biomarker of heart injury.8 In this study,
it is likely that part of the heart was irradiated, and a portion of
taurine in the serummay come from the heart. Taurine may be an
important biomarker in the progression of radiation-induced lung
injury. Through the study of serum metabolite of acute lung
injury in rats, we found a variety of metabolites and metabolic
pathways that changed significantly after different doses of ir-
radiation, which can not only be used to verify the efficacy of
experimental drugs in the treatment of acute lung injury in rats,
but also provide further evidence for the pathogenesis of

radiation-induced lung injury and provide a basis for early
diagnosis based on serum markers.
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