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In this study, we aimed to evaluate the suppressive abilities of berberine (BBR) onMCF-7 andMDA-MB-231 cells and confirm its
underlying mechanisms on miR-214-3p. We first built a panel of 18 miRNAs and 9 lncRNAs that were reported to participate in
the mechanism of breast cancer. )e RT-qPCR results suggested that BBR illustrated a dosage-dependent pattern in the
stimulation to miR-214-3p in both MCF-7 and MDA-MB-231 cells. )en, we performed gain-and-lose function tests to validate
the role of miR-214-3p contributing to the anticancer effects of BBR. Both BBR and miR-214-3p mimic reduced the cell viability,
repressed migration and invasion capacities, increased rates of total apoptotic cells and ratio of Bax/Bcl-2, and increased the
percentage of G2/M cells of MCF-7 and MDA-MB-231 cells by colony formation and CKK8 assay, scratch wound healing and
gelatin-based 3D conformation assay, transwell invasion assay, and cell cycle analysis, respectively. However, miR-214-3p in-
hibitor counteracted all these effects of BBR. Based on the bioinformatics analysis and dual-luciferase reporter test, we identified
binding sites between SCTand miR-214-3p. We further confirmed that BBR massively and dose-dependently reduced the mRNA
expression and protein levels of SCT in both MCF-7 andMDA-231 cells. We testified that both miR-214-3p mimic and BBR could
decrease the mRNA expression and protein levels of SCT, while miR-214-3p inhibitor weakened these reductions. In conclusion,
BBR suppressed MCF-7 and MDA-MB-231 breast cancer cells by upregulating miR-214-3p and increasing its inhibition to SCT.

1. Introduction

Based on the results of epidemiological investigation, it has
been reported that breast cancer is becoming one of the
major types of cancer and contributes to the highest mor-
tality rate in gynecologic malignancies [1]. Currently, the
mainstream treatments of breast cancer are regional ave-
nues, including radiation and surgery and general tools like
chemotherapy and biologic therapies [2]. In order to im-
prove the management of breast cancer, it is necessary to
exploit novel therapeutic target.

Noncoding RNA, including microRNA (miRNA) and
long noncoding RNA (lncRNA), participate in various bi-
ological processed [3]. BothmiRNAs and lncRNAs related to
human cancers are referred to as “oncomirs” [4], which are
identified as two types: (i) miRNAs or lncRNAs called

oncogenes are upregulated or amplified in cancer; (ii)
miRNAs or lncRNAs called suppressors are downregulated
or deleted in cancer [5]. A handful of miRNAs and lncRNAs,
such as miR-101 [6], miR-21 [7], miR-155 [8], LncRNA-H19
[9], lncRNA-SNHG6 [10], and lncRNA-TALNEC2 [11], are
considered to participate in the mechanism of proliferation,
invasion, apoptosis, and molecular signaling in breast
cancer. )erefore, these small regulatory miRNAs work as
novel targets for anticancer therapeutic strategies.

)e chemical name of berberine (BBR) is 2,3-methyl-
enedioxy-9,10-dimenthoxyprotoberberine chloride. BBR is a
kind of isoquinoline alkaloid that is extracted from Coptidis
Rhizoma or Huanglian. BBR has been proved to possess
numerous protective properties, like antimicrobial, car-
dioprotective, and antidiabetic activities [12, 13]. Among
these properties, anticancer activity of BBR has been widely
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accepted. BBR shows anticancer activity in plenty of cancers,
including breast cancers [14]. It is believed that BBR
moderates mitochondria and pathway of caspase to induce
the apoptosis of breast cancer cells [15]. However, how
miRNA regulation plays a role in the inhibition of breast
cancer cells by BBR to is still under ambiguous.

In this study, we first made a panel of 18 miRNAs
[6–8, 16–30] and 9 lncRNAs [9, 10, 15, 29–34] that were
previously reported to be related with breast cancer. )en,
based on a series of tests, we identified miR-214-3p as the
crucial miRNA mediating in the antitumor effects of BBR in
MCF-7 and MDA-MB-231 breast cancer cells. Furthermore,
according to target scan software and a series of tests, we
ensured that BBR promoted miR-214-3p expression and
suppressed the protein expression of its targets secretin
(SCT).

2. Materials and Methods

2.1. Cell Culture. Two human breast cancer cell lines (MCF-
7 and MDA-MB-231) were purchased from Chinese
Academy of Sciences cell bank (Shanghai, China). )e cells
were cultured in RPMI-1640 medium (Gibco, )ermo)
supplemented with 10% fetal bovine serum (Gibco,)ermo)
and incubated in an atmosphere of 37oC humidified and 5%
CO2.

2.2. Introduction of Plasmids and siRNA into Cells.
Lipofectamine® 3000 ()ermo Fisher Scientific, Inc.) was
used to transfect the plasmids into cells in accordance with
the protocols. Reagent of miR-214-3p mimic or miR-214-3p
inhibitor (Guangzhou RiboBio Co., Ltd.) was employed to
up- or downregulate the levels of miR-214-3p in 6-well plates
with a density of 2×105 cells in each well. )e negative
control (NC) was manipulated by a scrambled miRNA.

2.3. Cell Proliferation Assay. We used the Cell Counting Kit
8 (CCK8, Beyotime, China) assay and colony formation
assay to estimate the effect of BBR on cell proliferation.
Briefly, 7×103 cells/well were seeded in 96-well plates and
treated with BBR (HPLC ≥ 99%, purchased from Meilun
Biologics, Dalian China). After 72 h of incubation, a
microplate reader was used at a 450 nm optical density to test
the viability of each group cells. In colony formation assay,
cells were placed into 6-well plates and maintained in media
for two weeks and fixed by methanol and stained by 0.1%
crystal violet (Sigma, USA) for 20min.

2.4. Cell Migration and Invasion Assay. )e activity of cell
migration was evaluated by scratch wound healing assay and
gelatin-based 3D conformation assay. In scratch wound
healing assay, a sterile tip was used to scratch each well to
form a thin “wound.” Before adding the serum-free medium,
PBS was manipulated to wash the floating cells. At 0 and 12 h
after cell recovery, Image-Pro Plus software was manipu-
lated for measuring cell migration distance, and the data
were averaged. In gelatin-based 3D conformation assay,

fully-formed 3D structures were transferred to 0.1% gelatin-
coated plates and treated with BBR or miR-214-3p mimic or
miR-214-3p inhibitor. )e migration levels were evaluated
after 24 and 48 h. )e medium containing 2% FBS was
employed to reduce influence of cell proliferation in this test.
3D structures were imaged by microscope Nikon Eclipse TS
110 and quantified by ImageJ software. )e migration index
was calculated by the area of cells migrating outwards the 3D
structure.

Invasion activities of MCF-7 and MDA-MB-231 cells
were analyzed by using transwell invasion assay. On the upper
surface of the membrane, the chambers were coated with
Matrigel (1 : 5; 80 μl/well, BD Biosciences). DMEM with 10%
FBS was added to the lower chamber. After 24 h incubation,
4% paraformaldehyde was used to fix the upper chambers for
10min. )en, it was stained by crystal violet. )e microscope
(Olympus) was used to count the numbers of passed cells.

2.5. Apoptosis Assay and Cell Cycle Analysis. )e levels of
apoptosis were measured by annexin-V and propidium
iodide (PI) staining as previously described [35]. Cells were
seeded to 6-well plate and treated with DMSO, BBR, miR-
214-3p mimic, or BBR with miR-214-3p inhibitor. After
24 h, cells were harvested and stained with annexin-V and
propidium iodide for 20min and then run on a BD
FACSCanto II cell analyser (BD Biosciences, USA). At least
10000 single cell events were acquired per sample and an-
alyzed by FlowJo software v10.5.0 (FlowJo, USA).

)e methods of cell cycle analysis were performed
according to previous report [36]. Cells were seeded to 6-well
plate and treated with DMSO, BBR, miR-214-3p mimic, or
BBR with miR-214-3p inhibitor. After 24 h, cells were
resuspended in ice-cold Dulbecco’s phosphate buffered saline
(DPBS) with 70% ethanol. Cells were centrifuged at 300 xg for
5min and resuspended in DPBS. After 2 h staining of pro-
pidium iodide and bovine pancreas ribonuclease, cells were
run in BD FACSCanto II cell analyser (BD Biosciences, USA).
50000 single cell events were captured per sample and ana-
lysed by FlowJo software v10.5.0 (FlowJo, USA).

2.6. Detection of miRNAs and lncRNAs. We used TRIzol
reagent (Invitrogen, CA) to extract total RNA of MCF-7 and
MDA-MB-231 cells in each group. SYBR Green PCR kit
()ermo) was used for PCR amplification. Each sample was
provided with three repeated holes. Internal reference of
GAPDH was manipulated to adjusting and the data of
mRNA expression were calculated by the 2−ΔΔCt method.
Primer sequences were shown in Table 1.

2.7. Protein Detection of Levels of SCT. )e total protein of
MCF-7 and MDA-MB-231 cells was extracted with RIPA
lysis method. )e protein concentration of each well was
detected with a BCA method. Protein content was adjusted
to 4 μg/μl, 12% SDS-PAGE electrophoresis separation was
carried out, and the membrane was transferred to PVDF
membranes after ionization. Staining was carried out with
Ponceau working solution. )e antibodies of GAPDH
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(Sigma no. 2275-PC-020) and SCT (Sigma no. AF6387-SP)
were diluted to 1 : 5000 and 1 :1000, respectively. )e dil-
uents were added to be sealed overnight at 4°C. Quantity
One software was employed to analyze the gray value of
scanned protein bands. )e relative expression was equal to
the ratio of target protein gray value and GAPDH gray value.

2.8. Prediction of Target Genes. Targetscan7.2 and miRwalk
were used to predict downstream target gene of miR-214-3p.
Reporter gene plasmids containing wild-type and mutant
SCT 3′UTR, psiCHECK-2 plasmids (Promega, C8021,
USA), miR-214-3p mimic, and their controls were trans-
fected into MCF-7 and MDA-MB-231 cells for 48 hours and
then used. Dual-luciferase reporter gene detection kits were
used for operation. Finally, collected cells were detected by
chemiluminescence. )ree repetitions were designed for
each group of experiments, and each experiment was re-
peated for three times.

2.9. StatisticalAnalysis. )e data were analyzed by SPSS 20.0
software and the results were drawn by Graph Prism 8.0. All
the data were expressed as mean± standard deviation
(SD±means). )e comparisons of each group were calcu-
lated by Student’s t-test or one-way ANOVA methods.
When p< 0.05, there were statistical differences.

3. Results

3.1. BBRCanObviously Increase the Expression ofmiR-214-3p
in Both MCF-7 and MDA-MB-231 Cells. We first built a
panel of 18 miRNAs and 9 lncRNAs that were reported to
participate in the mechanism of breast cancer.)e RT-qPCR
results suggested that BBR illustrated a dosage-dependent
pattern in the stimulation to miR-214-3p in bothMCF-7 and
MDA-MB-231 cells (Figure 1).

3.2. BBR Upregulates miR-214-3p Expression to Repress Cell
Growth, Invasion, andMigration. )en, we performed gain-
and-lose function tests to validate the role of miR-214-3p
contributing to the anticancer effects of BBR on MCF-7 and
MDA-MB-231 cells. )e transfection efficiency was con-
firmed by RT-qPCR (Figure 2(a)). )e results of colony
formation assay demonstrated that both BBR treatment and
miR-214-3p mimic could reduce the colony numbers of
MCF-7 cells by 56.62% and 60.33% and MDA-MB-231 cells
by 50.42% and 56.21%, respectively (Figure 2(b)). CKK8
assay showed that both BBR treatment and miR-214-3p
mimic could reduce the cell viability ofMCF-7 cells by 35.4%
and 27.4% and MDA-MB-231 cells by 27.4% and 11.5%,
respectively (Figure 2(c)). )ese results indicated that both
BBR treatment and miR-214-3p mimic could inhibit the
proliferation of MCF-7 and MDA-MB-231 cells. Scratch
wound healing assay (Figure 3) and gelatin-based 3D

Table 1: Primer sequences.

Forward Reverse
miR-101 5′-UACAGUACUGUGAUAACUGAA-3′ 5′-CAGUUAUCACAGUACUGUAUU-3′
miR-21 5′-CGCGCTAGCTTATCAGACTGA-3′ 5′-GTGCAGGGTCCGAGGT-3′
miR-155-3p 5′-CCACAGGTGATGGGCAGAAT-3′ 5′-TTCCTGTGGGGGATCGGTAT-3′
miR-381 5′-CCAGAUCGUAAGUGGUACCGUU-3′ 5′-CUCUACACCGAACUAUAUCAGU-3′
miR-216b-5p 5′-CCTGGCGTCGTGATTAGTG-3′ 5′-TCAGTCCTGTCCATAATTAGCC-3′
miR-205-3p 5-GAGGATCCCCGGGTACCGGTAGGCCTTT-3′ 5′-CACACATTCCACAGGCTGCTACGGTGGTGGCGT-3′
miR-200c 5′-GGGAACACACCTGGTTAAC-3′ 5′-CAGTGCGTGTCGTGGAGT-3′
miR-188-5p 5′-GCG CAT CCC TTG CAT GGT-3′ 5′-AGT GCA GGGTCCGAG GTATT-3′
miR-214-3p 5′-GCACAGCAGGCACAGACA-3′ 5′-CAGAGCAGGGTCAGCGGTA-3′
miR-616 5′-ACACTC CAGCTGGGAGTCATTGGAGGGTTT-3′ 5′-TGGTGTCGTGGAGTCG -3′
miR-129-5p 5′-AATCTAGAA CCCTGCCTGTGGTCCTGA-3′ 5′-AACTCTAGA AGAGAGTCCCTAGT-3′
miR-26a-5p 5′-AGAAGATGGCA GCAAGAGCG-3′ 5′-TCAAGTCAGGCTGAGATGCTAGT-3′
miR-203a 5′-TTGGATCACAGCGATACAAACTT-3′ 5′-AGCGCACGCCAATAAAGACAT-3′
miR-7 5′-AAAAGAACACGTGGAAGGATAG-3′ 5′-CGCCTAACGTACCGCGAATTT-3′
miR-211-5p 5′-CCCTTTGTCATCCTTCGCCT-3′ 5′-GCGAGCACAGAATTAATACGACTC-3′
miR-138-5p 5′-TGCAAT GGGTTTGGCGTAGAAC-3′ 5′-CCAGTGCCG CAGGGTAGGT-3′
miR-186-5p 5′-CCCGA TAAAGCTAGATAACC-3′ 5′-CAGTGCGT GTCGTGGAGT-3′
LINC02582 5ʹ-ATCAACAGCCAACAAATACC-3ʹ 5ʹ-TTCTTATCACCGTCACCCT-3ʹ
SNHG3 5ʹ-TTCCGGGCGTTACTTAAGG-3ʹ 5ʹ-GGTCAAGAACAAGCACACCAA-3ʹ
AC073284.4 5′-TCATGGCTCACTGCAGCCTC-3′ 5′-TGGGAGGCCAAGGTGACAGA-3′
H19 5′-ATCGGTGCCTCAGCGTTCGG-3′ 5′-CTGTCCTCGCCGTCACACCG-3
Lnc101069 5′-GCTTAGAAATTTCTTCCACCTG-3′ 5′-CTGCCCTAGCGATTTGTGAA-3′
DRHC 5′-CAGTGGGGAACTCTGACT CG-3′ 5′-GTGCCTGGTGCT CTCTTACC-3′
RUNXOR 5′-ATGTTTAGTATTTTAAATGATGGGATT-3′ 5′-ACCTACCCTCCCCCAAACTATAC-3′
LINC01287 5′-CCGCATCCAAACCTACATACTAACCC-3′ 5′-CGACCGAAAAAATTCCATTCCCTCAA-3′
SNHG6 5′-TTGGGATGTTGATAGTTTTAGATGGAGGT-3′ 5′-AATAAATCCATCCCTCATAACRA-3′
GAPDH 5′-GGGAGCCAAAAGGGTCAT-3′ 5′-GAGTCCTTCCACGATACCAA-3′
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conformation assay (Figure 4) suggested that both BBR
treatment and miR-214-3p mimic could repress the mi-
gration capacities of MCF-7 and MDA-MB-231 cells. It was
observed that both BBR and miR-214-3p mimic prevented
the invasion capacities of MCF-7 and MDA-MB-231 cells by
transwell invasion assay (Figure 5). However, miR-214-3p
inhibitor counteracted all these suppressions of BBR
treatment (Figures 2–5).

3.3. BBR Upregulates miR-214-3p Expression to Induce Cell
Apoptosis and G2/M Arrest. After BBR and miR-214-3p
mimic administration, there were significant increases of
8.3-fold and 6.9-fold in the rates of total apoptotic cells in
MCF-7 cells and 6.3-fold and 4.8-fold inMDA-MB-231 cells,
respectively (Figure 6(a)). BBR and miR-214-3p mimic
treatment increased the ratio of Bax/Bcl-2 by 4.8-fold and

3.1-fold in MCF-7 cells and by 3.9-fold and 3.2-fold in
MDA-MB-231 cells, respectively (Figure 6(b)). All these
indicated that both BBR and miR-214-3p mimic induce
apoptosis of breast cancer cells. Cell cycle analysis was
employed to compare the levels of cell combination dose
induced by cell loss.)e results indicated that BBR and miR-
214-3p mimic administration could increase the percentage
of G2/M cells by 20% and 17% in MCF-7 cells and by 13%
and 9% in MDA-MB-231 cells, respectively (Figure 7).
However, miR-214-3p inhibitor counteracted all these
stimulations of BBR treatment (Figures 6 and 7).

3.4. BBR Promotes miR-214-3p Expression and Represses
Protein Expression of Its Targets SCT. Based on the Tar-
getscan7.2 and miRwalk bioinformatics analysis, it was
identified that SCT and miR-214-3p had targeted binding
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Figure 1: BBR increases the levels of miR-214-3p in both MCF-7 andMDA-MB-231 cells. RT-qPCR results suggested that BBR illustrated a
dosage-dependent pattern in the stimulation of miR-214-3p in bothMCF-7 andMDA-MB-231 cells in a panel of 18miRNAs and 9 lncRNAs
that were reported to participate in the mechanism of breast cancer. ∗p< 0.05 vs. NC group. #p< 0.05 vs. BBR (25um) group.
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sites (Figures 8(a) and 8(b)). So, we first verified it by dual-
luciferase reporter. Activity of luciferase in miR-214-3p
mimic group inpsiCHECK-2-SCT-WT was obviously lower
than that of independent sequence group (p< 0.05), while
activity of luciferase in miR-214-3p mimic group in psi-
CHECK-2-SCT-MUT group was not significantly different
from that of independent sequence group (p> 0.05)
(Figure 8(c)).)en, to ensure the assumption that BBR could
promote miR-214-3p expression and suppress the protein
expression of its targets SCT, we further confirmed that BBR
could massively and dose-dependently reduce the mRNA
expression and protein levels of SCT in both MCF-7 and
MDA-231 cells (p< 0.05) (Figures 8(d) and 8(e)). Next, we
testified that both miR-214-3p mimic and BBR could de-
crease the mRNA expression and protein levels of SCT,
while miR-214-3p inhibitor weakened these reductions

(Figures 8(f ) and 8(g)). )ese results indicated that BBR
promoted miR-214-3p expression and repressed the protein
expression of its targets SCT.

4. Discussion

BBR is a natural alkaloid mainly found in the famous
Chinese herb Coptidis Rhizoma. In the beginning, BBR was
used in treating diarrhea and gastroenteritis [37]. In sub-
sequent studies, BBR was proved to possess other properties,
for instance, antibiosis, cardioprotection, glucose regulation,
and antineoplastic activity [12, 13, 35, 38]. In this study, it
was found that BBR obviously suppressed the abilities of
growth and invasiveness in both MCF-7 and MDA-MB-231
cells. )ese results were consistent with previous studies
[39, 40]. Kim et al. found that berberine could efficiently
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Figure 2: Transfection efficiency and proliferation evaluation. (a) )e transfection efficiency was confirmed by RT-qPCR. (b) Colony
formation assay demonstrated that both BBR treatment and miR-214-3p mimic could reduce the colony numbers of MCF-7 cells by 56.62%
and 60.33% and MDA-MB-231 cells by 50.42% and 56.21%, respectively. (c) CKK8 assay showed that both BBR treatment and miR-214-3p
mimic could reduce the cell viability ofMCF-7 cells by 35.4% and 27.4%, andMDA-MB-231 cells by 27.4% and 11.5%, respectively. ∗p< 0.05
vs. NC group. #p< 0.05 vs. BBR group.
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inhibit growth by inducing cell cycle arrest in anoikis-re-
sistant MCF-7 and MDA-MB-231 cells [39]. It was also
indicated that the growth inhibitory effects of berberine
treatment on MCF-7 cells might be partly due to the effects
on side population cells and ABCG2 expression [40]. Fur-
ther analysis of these phenotypes is essential for under-
standing the effect of berberine on anoikis-resistant breast
cancer cells. Nonetheless, the antitumor mechanism of BBR
in breast cancer cells still remains ambiguous.

In our investigation, the focus was to seek the key
ncRNA and its target pathway in the antibreast cancer
mechanism of BBR. We first listed a panel of 18 miRNAs
[6–8, 16–30] and 9 lncRNAs [9, 10, 15, 29–34] that were
previously reported to be related with breast cancer, and we
found that BBR illustrated a dosage-dependent pattern in the
stimulation to miR-214-3p in both MCF-7 and MDA-MB-
231 cells. miRNA is one of the important regulators that act
as a posttranscriptional suppression officer. Abnormal levels
of miRNA could result in a diversity of regulation in diverse
cellular pathways. )ere is a strong proof that some crucial
miRNAs are involved in the progress of breast cancer [41].
To validate the role of miR-214-3p in the suppression of BBR
to breast cancer cells, we performed a rescue test and ob-
served that both BBR and miR-214-3p mimic could repress
the abilities of growth, invasiveness, and migration in MCF-

7 and MDA-MB-231 cells, while miR-214-3p inhibitor
counteracted these suppression. We also found that BBR
upregulated miR-214-3p expression to induce cell apoptosis
and G2/M arrest. )ese results indicated that BBR presented
anticancer effects through miR-214-3p. Another study
showed that lncRNATSLNC8 inhibited miR-214-3p/FOXP2
axis to suppress the proliferation and G1/S phase transition
of breast cancer cells [42]. It has been reported that the
expression of miR-214-3p is correlated with the proliferation
and apoptosis of breast cancer cells [21] and acts as a breast
tumor suppressor through the regulation of EMT [43]. In the
fields of breast cancer, these studies have established that
miR-214-3p had a vital role in the progress of breast cancer.
Our results indicated that miR-214-3p was also the target of
BBR to present anticancer effects.

)en, after using bioinformatics analysis and searching
previous studies, we identified that SCT might be the
downstream target of miR-214-3p. To confirm the as-
sumption that BBR could promote miR-214-3p transcrip-
tion and raise the suppression of its downstream target SCT,
we first confirmed that BBR could dose-dependently reduce
SCT in both levels of mRNA and protein. After that, we
found that both miR-214-3p mimic and BBR repressed SCT
mRNA and protein, while miR-214-3p inhibitor weakened
these reductions. In physiological conditions, SCT binds to
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Figure 6: Cell apoptosis assays. (a) )e total apoptotic cells and representative scatter plots. After BBR and miR-214-3p mimic ad-
ministration, there were significant increases of 8.3-fold and 6.9-fold in the rates of total apoptotic cells in MCF-7 cells and 6.3-fold and 4.8-
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its receptor to mediate the effect of the gastrointestinal
hormone on digestion and water homeostasis. )e over-
expression of SCT in MCF-7 cells led to an increase of the
cell proliferation index and cellular migration [44]. )e data
of this study revealed the fact that miR-214-3p inversely
acted on SCT in both MCF-7 and MDA-MB-231 cells.
However, whether SCT is an oncogene or a tumor sup-
pressor is still controversial. A number of studies hold the
idea that it is an oncogene, as high expression was observed
in breast cancer [44], whereas other studies indicated the
downregulation of the gene in colorectal cancer [45] and
prostate cancer [46]. SCT acts as a gene with double-edge
sword activities, which possesses both oncogenic and tumor-
suppressive effects. It plays a tumor-suppressive role in
normal cells and a proliferation and migration stimulating
role in cancer cells. It has been reported that SCTsuppresses
the proliferation of normal breast cells, while the gene
stimulates the proliferation and migration of cancer cells
[44].

In conclusion, BBR is indicative of the suppression to
MCF-7 and MDA-MB-231 breast cancer cells by upregu-
lating the expression of miR-214-3p and increasing its in-
hibition to SCT. )e miR-214-3p/SCTaxis is the therapeutic
target in the mechanism of BBR to suppress breast cancer.
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