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The hippocampus plays an important role in emotional and cognitive processing, and both of these domains are
affected in patients with major depressive disorder (MDD). Extensive preclinical research and the notion that
modulation of serotonin (5-HT) neurotransmission plays a key role in the therapeutic efficacy of selective serotonin
reuptake inhibitors (SSRIs) support the view that 5-HT is important for hippocampal function in normal and disease-
like conditions. The hippocampus is densely innervated by serotonergic fibers, and the majority of 5-HT receptor
subtypes are expressed there. Furthermore, hippocampal cells often co-express multiple 5-HT receptor subtypes that
can have either complementary or opposing effects on cell function, adding to the complexity of 5-HT
neurotransmission. Here we review the current knowledge of how 5-HT, through its various receptor subtypes,
modulates hippocampal output and the activity of hippocampal pyramidal cells in rodents. In addition, we discuss the
relevance of 5-HT modulation for cognitive processing in rodents and possible clinical implications of these results in
patients with MDD. Finally, we review the data on how SSRIs and vortioxetine, an antidepressant with multimodal
activity, affect hippocampal function, including cognitive processing, from both a preclinical and clinical perspective.
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Clinical Implications
’ The hippocampus is involved in the regulation of emotional

and cognitive processing, both of which are compromised
in patients with major depressive disorder (MDD).

’ Serotonin (5-HT) plays an important role in hippocampal
function.

’ Multiple 5-HT receptors are often co-expressed on the same
cell types in the hippocampus with functions that can either
be complementary or opposing. Overall, 5-HT appears to
inhibit pyramidal cells in the hippocampal circuit in rodents.

’ While selective serotonin reuptake inhibitors (SSRIs) have
the potential to normalize hippocampal output under stress
conditions and to treat mood symptoms in MDD, their
effects on cognitive function are less clear.

’ The multimodal antidepressant vortioxetine has shown
clinical efficacy on mood as well as cognitive symptoms in
patients with MDD. 5-HT3 receptor inhibition of GABAergic
interneurons is thought to play an important role in
mediating these effects.

Introduction

There is extensive evidence that depression and other
stress-related conditions are associated with hippo-
campal dysfunction.1,2 In several magnetic resonance
studies, patients with major depressive disorder (MDD)
have reduced hippocampal volumes compared with
matched control subjects.3–5 Furthermore, Sheline et al 6
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have shown that there is an inverse correlation between
hippocampal volume and the duration of untreated
depression. A meta-analysis of 12 clinical studies indi-
cated that the number of depressive episodes may be
correlated with a reduction of hippocampal volume in the
right hemisphere.7 Reduced hippocampal volume in
MDD patients has also been associated with impaired
memory (eg, MacQueen et al 8). Memory function related
to hippocampal integrity decreases with increasing
numbers of depressive episodes.9 In addition, functional
magnetic resonance imaging (fMRI) studies of depressed
patients have consistently shown overactivity in the
frontolimbic circuitry, including the dorsolateral prefron-
tal cortex and hippocampus during working memory
performance.10,11

In addition to disturbances in mood and emotional
processing, MDD is associated with deficits in several
cognitive domains, including executive function, proces-
sing speed, and attention, as well as learning and
memory.12–14 There is evidence that cognitive impairment
varies independently of mood state and does not
necessarily resolve when the patient is considered to be
in clinical remission.15 This may imply that cognitive
control and the regulation of emotion have distinct
neuronal bases in depression.16 While the literature
suggests that antidepressants may potentially treat cogni-
tive dysfunction in some patients with MDD, these studies
were not designed to distinguish between the direct effects
on cognitive domains versus indirect effects on cognition
via improvements in mood. Overall, small sample
sizes, methodological constraints, and the absence of
replication make it difficult to draw firm conclusions
from the majority of these studies.17,18

Since the selective serotonin (5-HT) reuptake inhibitors
(SSRIs) and serotonin norepinephrine (NE) reuptake
inhibitors (SNRIs) are the predominant pharmacothera-
pies used for the treatment of MDD, modulation of
serotonergic neurotransmission is assumed to play a
pivotal role in achieving their antidepressant efficacy.
Many 5-HT receptor subtypes are extensively expressed
in the hippocampus. However, even though a large
number of preclinical studies in rodents are strongly
supportive of antidepressant treatments restoring
hippocampal function, their mechanisms of action have
not been fully elucidated. Furthermore, it is not well
understood how the clinical efficacy of currently used
antidepressants might be related to changes in hippo-
campal function in patients with MDD.19 Therefore, a
thorough understanding of how 5-HT receptor modula-
tion affects hippocampal functions is essential to the
understanding of how antidepressants might work. Here
we review the current knowledge of how 5-HT, through
its various receptor subtypes, might modulate hippo-
campal activity in rodents. In addition, we discuss its
relevance for cognitive processing and the possible

clinical implications for patients with MDD. Finally, we
review available data on how SSRIs and vortioxetine, an
antidepressant that, in addition to inhibition of 5-HT
reuptake, also modulates a number of 5-HT receptor
subtypes, affect hippocampus function from a preclinical
and clinical perspective.

Anatomy of the Hippocampus

To understand how 5-HT modulates hippocampal func-
tion at a molecular level, it is necessary to gain insights
into how 5-HT modulates the different cell types and
subregions that comprise the hippocampal microcir-
cuits. Along the longitudinal axis, the hippocampus is
segregated into dorsal, intermediate, and ventral regions
in rodents (reviewed in Fanselow and Dong20 and Moser
and Moser21), and analogous posterior and anterior
regions in primates and humans22 that project to distinct
brain areas.23 Lesion and electrophysiology studies in
rodents have shown that the dorsal hippocampus is
primarily involved in the cognitive functions, including
spatial learning and memory,24,25 whereas the ventral
hippocampus is primarily involved in regulating stress,
emotion, and anxiety.26–28 However, this division of
functions is somewhat ambiguous, since parts of the
ventral hippocampus have been also shown to be
involved in memory tasks.29

The hippocampus is subdivided into several distinct
zones: the dentate gyrus (DG), CA3, CA2, CA1, and the
subiculum regions that were first described by Ramon y
Cajal in 191130 and Lorente de Nó in 1934 31 (Figure 1).
The CA3, CA2, and CA1 regions are sometimes called
the hippocampal gyrus or Ammon’s horn. Granule cells
in the DG receive projections from the surrounding
entorhinal cortex and send their axons, called mossy
fibers, to the CA3 area. Pyramidal cells in the CA3 area
project axons, known as Schaffer collaterals, to the CA2
and CA1 areas. Pyramidal cells in the CA1 area send their
axons to the surrounding deep cortical layers of the
entorhinal cortex and to the subiculum which is the
final processing stage of the hippocampal microcircuitry
(Figure 1). In addition to this main “trisynaptic circuit,”
there are direct connections from the superficial layers
of the entorhinal cortex to the CA3 and CA1 areas,
and synaptic connections from inhibitory gamma-butyric
acid (GABA)ergic interneurons to excitatory gluta-
matergic pyramidal and granule cells within the
hippocampus.32

There are 2 types of principal cells in the hippocampal
circuit: glutamatergic pyramidal cells in the Ammon’s
horn and subiculum regions, and glutamatergic granule
cells in the DG (Figure 1). They generally have excitatory
effects on the neurons to which they send axon terminals
including other glutamatergic and GABAergic, as well
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monoaminergic [5-HT, norepinephrine (NE), dopamine
(DA)], cholinergic, and histaminergic (HA) cells. There
are also 3 major populations of GABAergic inhibitory
interneurons that can be identified by the expression
of the calcium-binding proteins parvalbumin, calbindin,
and calretinin. These interneurons can be further
subdivided based on their morphology and presence of
receptors for neuropeptides and other neurotransmitters.
In total at least 16 different subtypes of interneurons have
been identified in the hippocampus with different firing
properties and functions.33,34 Each of these interneuron
subpopulations has a distinct placement within the
network, as well as a distinct role in modulating the
behavior of pyramidal neurons.

Parvalbumin-immunoreactive interneurons are present
within the pyramidal cell body layer (divided into stratum
oriens and pyramidale), and synapse onto the soma and/or
axons of pyramidal neurons.35 In contrast, calbindin
immunoreactive interneurons are present in the dendritic
layers of the hippocampus (divided into stratum radiatum
and moleculare)36 and are thought to synapse onto

pyramidal neuron dendrites.37 Finally, calretinin immu-
noreactive interneurons frequently form local synaptic
connections onto other interneurons.38 Thus, hippo-
campal interneurons can modulate the activity of both
pyramidal cells and other interneurons.38

The processing of information within the hippo-
campus is complex and is influenced by multiple
neurotransmitters and neuromodulators, including
glutamate, GABA, DA, NE, HA, acetylcholine (ACh),
and 5-HT. Serotonergic receptors are found on both
excitatory cells and inhibitory interneurons. As will be
discussed in the following sections, 5-HT neurotransmis-
sion can have a direct effect on pyramidal neuron firing
by modulating its membrane potential and indirect
effects via modulating GABA neurotransmission.

5-HT Receptors in the Rodent Hippocampus

Nearly all of the identified 5-HT receptor subtypes are
expressed in the hippocampal circuit in rodents.39

Interestingly, 5-HT fibers often lack direct synaptic

FIGURE 1. Schematic illustration of the rat hippocampal circuit with 5-HT receptor localization. The main areas of the hippocampus, including the dentate
gyrus (DG), CA3, CA2, CA1, and the subiculum regions, and synaptic connections between them are indicated. Principal (granule and pyramidal) cells are
shown in blue, and interneurons are shown in green. Expression of 5-HT receptor subtypes on hippocampal CA1 and CA3 pyramidal cells, granule cells, and
interneurons are shown. References for 5-HT receptor localization are listed Table 1. At least 16 subtypes of interneurons have been identified in the
hippocampus; one representative interneuron is shown for illustrative purposes. Note that the 5-HT1A heteroreceptor is expressed at high levels throughout the
hippocampus. The 5-HT1B receptor is found at highest levels in the subiculum. Based on histology data, the 5-HT3 receptor is only expressed on the
interneurons, and the 5-HT4 receptor is only expressed on pyramidal cells. Other 5-HT receptors subtypes are found on both principal cells and interneurons.

EFFECTS OF SEROTONIN IN THE HIPPOCAMPUS 145



contacts, and in many cases 5-HT receptors have been
detected on neurons that do not receive serotonergic
innervation.40–42 This suggests that in the hippocampus,
as in other brain areas, 5-HT is released diffusely by
volume transmission and acts more as a neuromodulator
whose function might be to maintain homeostasis in
the brain.

The specificity and diversity of 5-HT signaling arises
from at least 14 different receptor subtypes grouped in
7 receptor families with distinct characteristics and
expression patterns (Table 1, Figures 1 and 2). The
5-HT1 receptor family is inhibitory; it is coupled to
G-protein-coupled inwardly rectifying potassium (GIRK)
channels and Gi/o proteins. Activation of GIRK channels
exerts hyperpolarizing effects on cell function. Activation
of Gi/o proteins inhibits adenylyl cyclase and decreases
cyclic adenosine monophosphate (cAMP) concentration.
The 5-HT2 receptor family is stimulatory and signals via
activation of Gq proteins that are coupled to phospholipase
C. Phospholipase C hydrolyses membrane phosphoinosi-
tides into inositol triphosphate (IP3) and diacylglycerol
(DAG), which elevate intracellular calcium. One of the
downstream targets of 5-HT2 receptors are potassium leak
channels. Activation of 5-HT2 receptors closes these
channels, resulting in cell depolarization. The 5-HT3

receptor family is stimulatory and the only non-
G-protein coupled receptor. Activation of 5-HT3 receptors
opens a non-selective Na+/K+ ion channel that depolarizes
neurons and increases neurotransmitter release. The
5-HT4, 5-HT6, and 5-HT7 receptors are stimulatory and
increase neuronal excitability. They are coupled to Gs

protein and signal via activation of adenylyl cyclase and
elevation in cAMP levels. Finally, 5-HT5 receptors are
inhibitory, and, as for the 5-HT1 receptor family members,
are coupled to Gi/o proteins that suppress adenylyl cyclase

and decrease cAMP levels.43,44 In the hippocampus, cells
often co-express several types of 5-HT receptors that can
have either complementary or opposing effects on cell
function (Figure 1 and Table 1). Moreover, 5-HT receptors
can form homodimers or heterodimers with other
G-protein coupled receptors, which adds further complex-
ity to 5-HT signaling.45 For example, heterodimers of
5-HT1A-5HT7 receptors and 5-HT2A-mGlu2 (metabotropic
glutamate 2) receptors have been shown to have character-
istics that differ from their individual counterparts.45–47

Below we describe the expression patterns of 5-HT
receptors and discuss their effects on hippocampal
circuitry and hippocampus-mediated behavioral responses
based on published results and our data in rodents. We
chose to only include behavioral models of memory and
learning, since these models have the best link to
hippocampal function.48–50

5-HT1A receptors

Among all 5-HT receptor subtypes, 5-HT1A receptors
have the highest affinity for 5-HT (Table 1). In the
hippocampus, they are found on non-serotonergic cells
as heteroreceptors and inhibit cellular activity via
activating GIRK channels.51 They are defined as hetero-
receptors because they control release of neurotransmit-
ters other than 5-HT. 5-HT1A receptors are moderately to
highly expressed throughout the hippocampus52

(Figure 2A). They have been detected on both glutama-
tergic principal cells and at least two subtypes of
GABAergic interneurons (Table 1).

Activation of 5-HT1A receptors primarily leads to
inhibition of hippocampal pyramidal cells.53–59 Interest-
ingly, in the prefrontal cortex, 5-HT1A receptor agonists
produce both excitatory and inhibitory effects on cortical

TABLE 1. 5-HT receptor subtypes in the rodent hippocampus

Receptor Structure Affinity for 5-HT (Ki/Kd, nM)* Function Expression Cell type Ref.

5-HT1A GPCR 0.20–0.79 I ↓cAMP, ↑GIRK ++ / + ++ Pyr, Gran, Calbin-( + ) IN, PV-( + ) IN 37,52

5-HT1B GPCR 4.0–32 I ↓cAMP, ↑GIRK + / + + + Pyr, Gran 63,65,155

5-HT1D GPCR 2.5–6.3 I ↓cAMP, ↑GIRK –/ + ? 64,66

5-HT2A GPCR 1.3 S ↑PLC + / + + + Pyr, Gran, Calbin-( + ) IN, Calre-( + )
IN, PV-( + ) IN

71,72

5-HT2C GPCR 2.5–160 S ↑PLC ? ? 163

5-HT3 Ligand-gated ion
channel

130–320 S ↑ Ion conductance
(K+, Na+)

+ / + + Stronger in ventral/
caudal hippocampus

CCK-( + ) IN, Calbin-( + ) IN, Calre-
( + ) IN

76,77,79

5-HT4 GPCR 1.6–4.0 S ↑cAMP + / + + Pyr 89–91

5-HT5 GPCR 130–200** I ↓cAMP + / + + Pyr, Gran, IN 95

5-HT6 GPCR 13 S ↑cAMP ++ / + ++ Pyr, Calbin-( + ) IN, Calre-( + ) IN 97,98

5-HT7 GPCR 1.0–7.9 S ↑cAMP + / + + + Pyr, IN? 104

* Affinities for 5-HT were calculated from pKi/pKd data obtained from the IUPHAR data base. For further details and references see http://www.iuphar-db.org.
** 5-HT5a. Expression strength is indicated by –: absent, + : low, + + : moderate, + + + : strong, ?: unknown.
Abbreviations used: GPCR: G-protein-coupled receptor; I: inhibitory; S: stimulatory; ↑: increase; ↓: decrease; Pyr: pyramidal; Gran: granule; IN: interneuron; PV: parvalbumin;

CCK: cholecystokinin; Calbin: calbindin; Calre: calretinin.
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pyramidal cells.60 This might be ascribed to a difference
in the distribution of 5-HT1A receptors on interneurons
versus pyramidal cells in these 2 brain regions.

The function of 5-HT1A receptors has been extensively
studied in multiple behavioral studies, 16 of which are

listed in Table 2. Modulation of 5-HT1A receptor activity
in animal models of memory and learning has produced
inconsistent results that range from impairment to
improvement (Table 2). Some of these inconsistencies
might be due to differences in experimental design

FIGURE 2. Expression of several classes of 5-HT receptors and the 5-HT reuptake transporter (SERT) by ex vivo autoradiography in the rat hippocampus.
Autoradiographic images representing total (left panels) and non-specific binding (right panels) for each of 5 separate serotonergic targets in coronal brain
sections (20 µm in thickness). 5-HT1A receptors were mapped using 3 nM [3H]8-OH-DPAT (A) alone or (B) in combination with 1 µM of the 5-HT1A receptor
selective antagonist WAY100635 to determine the level of nonspecific binding. 5-HT1B/1D receptors were mapped using 1 nM [3H] GR125743 (C) alone or (D) in
combination with 1 µM of the 5-HT1B receptor preferring SB216641 to determine the level of nonspecific binding. 5-HT3 receptors were mapped using 3 nM [3H]
LY278584 (E) alone or (F) in combination with 1 µM ondansetron to determine the level of nonspecific binding. 5-HT7 receptors were mapped using 4.5 nM [3H]
SB269970 (G) alone or (H) in combination with 1 µM of unlabeled SB269970 to determine the level of nonspecific binding. Finally, SERT was mapped using
4.5 nM [3H] escitalopram (I) alone or (J) in combination with 1 µM paroxetine to determine the level of nonspecific binding. Scale bars represent 5 mm.
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TABLE 2. Effects of serotonergic manipulations on hippocampal dependent memory tests in rodents

Mechanism Species

Spatial memory tasks (Morris
water maze (MWM), Radial

arm maze (RAM), Barnes maze
(BM), Object

placement/preference (OP))

Associative/Affective memory
tasks (Contextual fear

conditioning (CFC), Pattern
separation (PS))

Working memory tasks
(Spontaneous

alternation (SA), Forced
alternation (FA),

Delayed alternation (DA))

↑5-HT tone
Increase tryptophan or other 5-HT

precursor
Rat ↑164,165 or ÷ 165 MWM; ↑ 122 or

↓ 166 RAM
↓ CFC 167

5-HTT KO Mouse or Rat ↓ MWM 168; ÷ BM 168 ↑ 169 or ÷ 170 CFC
SSRIs
Fluoxetine, paroxetine, citalopram,

escitalopram
Mouse or Rat ↓ 171–173 or ÷ 174–176 MWM;

↑ BM 177; ÷ RAM 178,179;
↓ OP 171,172

↓ or ÷ CFC 167 when administrated
before the testing session; ↑
CFC 180 when administrated
before training

↓ FA 181; ÷ pCPA deficit in
SA 182

Multimodal
Vortioxetine Rat ↑ CFC 183 Ø pCPA deficit in SA 182,184

↓5-HT tone
5,7-DHT Rat ÷ 185–190 or ↓ 191,192 MWM; ÷ RAM

186–190

÷ 185,188 or ↓ 187 FA;
÷ SA 186; ↓ DA 185

pCPA Rat ÷ MWM 193; ÷ RAM 194 ↓ SA182

Tryptophan depletion Mouse or Rat ÷ MWM 195,196 ↓ CFC 196

Conditional KO Lmx1b
transcription factor lack all
central 5-HT neurons

Mouse ↓ MWM 197 ↑ CFC 197

5-HT1A receptors
5-HT1A Over-expression Mouse ↓ 198 or ÷ 199 MWM
5-HT1A KO Mouse ↓ in young mice; ÷ in old mice in

MWM 200

↑ CFC 201; ↓ PS 201

5-HT1A receptor agonists
8-OH-DPAT (also activates 5-HT7

receptors); S15535; flesinoxan
Mouse or Rat ↑ 61; ÷ 202 or ↓ 61 MWM; ↓ 203-206

or ÷ 207 RAM
↓ CFC 208,209 Ø pCPA deficit in SA 184

5-HT1A receptor antagonists
WAY100635, WAY100135,

WAY101405, NAN-190,
NAD-299

Mouse or Rat ↑ MWM 210; ÷ RAM 204 ↑ 209 or ÷ 167 CFC

5-HT1B receptors
5-HT1B over-expression (in dorsal

raphe nucleus)
Rat ↓ CFC 211

5-HT1B KO Mouse ↑ MWM 212,213 ÷ CFC 213 ÷ SA 213

5-HT1B receptor agonists
CP93129, Anpirtoline Rat ↓ MWM 214; ↓ RAM 207 ↓ CFC 211

5-HT1B receptor antagonists
GR127935 (5-HT1B/1D), NAS-181 Rat ÷ MWM 214 ÷ CFC 167

5-HT2 receptor agonists
DOI, mCPP Rat ↑ MWM 215; ↓ RAM, 166

5-HT2 receptor antagonists
Ritanserin, ketanserin, ICI169369 Rat ↑ 216 or ↓ 215 MWM; ÷ RAM 217 ÷ CFC 167

5-HT2A receptor
5-HT2A antisense Rat ↑ MWM 218

5-HT2A KO Mouse ÷ CFC 208

5-HT2A receptor agonist
TCB-2 Mouse ↑ CFC 219 (both consolidation and

extinction)
5-HT2A receptor antagonist
MDL 11,939 Mouse ↓ CFC 219 (extinction)
5-HT2C receptor
5-HT2C null mutant Mouse ↓ MWM 220 ↓ CFC 220; ÷ PS 220

5-HT2C receptor antagonist
SB242084 Rat ÷ CFC 221

5-HT3 receptor
5-HT3 over expression Mouse ↑ CFC 224

5-HT3A KO Mouse ÷ CFC 208
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across studies. Multiple factors, such as drug dose,
length of treatment (acute vs chronic), whether the drug
was administered before or after the training period, and
also the age and stain of animals, could all influence
the behavioral outcome. However, in some studies
(eg, Haider et al 61), opposing results were obtained with
different doses of the same compound under the same
experimental conditions. This suggests that the varia-
bility in results might be partially due to the complex
effects of 5-HT1A receptors expressed on different cell
types. For instance, 5-HT1A receptors can inhibit both
principal (glutamatergic) neurons and GABAergic inter-
neurons. Inhibition of GABAergic interneurons would
disinhibit principal cells and thus counteract the direct
effects of 5-HT1A receptors expressed on principal
neurons. Therefore, selectively targeting 5-HT1A recep-
tors may not be an optimal strategy for modulating
hippocampal function, unless these receptors could be
targeted in a regional or cell-specific manner.62

5-HT1B and 5-HT1D receptors

5-HT1B heteroreceptors are found throughout the
hippocampus at levels ranging from low to very
high.63–65 They are expressed on axonal terminals and
dendrites of principal cells, which include pyramidal
cells in Ammon’s horn and granule cells in the DG
(Table 1). The highest expression is found in the dorsal

subiculum, which might originate from axonal terminals
of CA1 pyramidal cells that project to that region
(Figure 2C).65 Interestingly, in our experiments, the
subiculum had the strongest signal for 5-HT1B receptor
expression in the rodent forebrain.

Much less is known about the 5-HT1D receptor.
5-HT1D receptors are generally thought to be expressed
at much lower levels than 5-HT1B receptors in the rodent
brain.64,66 5-HT1D and 5-HT1B receptors are often
expressed in the same brain regions.64 However, no
5-HT1D receptor-specific binding has been detected in
the dorsal subiculum, where 5-HT1B receptor-specific
binding is very strong.66 Interestingly, Xie et al 67 suggest
that when 5-HT1B and 5-HT1D receptors are
co-expressed, they might exist in a heterodimerized
state. Thus, it can be questioned if the effects of 5-HT1B

and 5-HT1D receptors should be considered separately.
Activation of 5-HT1B receptors attenuates glutamate

transmission in the subiculum and CA1 regions of the
hippocampus.68,69 The effect of 5-HT1B receptor mod-
ulation in behavioral models of memory and learning has
been far less studied than that for 5-HT1A receptors
(Table 2). In general, several studies suggest that 5-HT1B

receptor stimulation may negatively affect performance
in hippocampal-dependent memory tests. Antagonism of
5-HT1B receptors, in spite of its associated increase in
extracellular ACh levels in the dorsal hippocampus,70

does not seem be effective in these models (Table 2).

TABLE 2: Continued

Mechanism Species

Spatial memory tasks (Morris
water maze (MWM), Radial

arm maze (RAM), Barnes maze
(BM), Object

placement/preference (OP))

Associative/Affective memory
tasks (Contextual fear

conditioning (CFC), Pattern
separation (PS))

Working memory tasks
(Spontaneous

alternation (SA), Forced
alternation (FA),

Delayed alternation (DA))

5-HT3 receptor antagonists
WAY 100289, granisetron,

tropisetron, ondansetron,
DAU6215

Mouse or Rat ↓ 216 or ÷ 222,223 MWM; ↑ RAM 88 ↓ 167,208,224 or ÷221 in CFC ÷ pCPA deficit in SA 184

5-HT4 receptor
5-HT4 KO Mouse ÷ MWM 225

5-HT4 receptor agonist
prucalopride, RS 67333 Rat ÷ MWM 226 ↑ FA227

5-HT4 receptor antagonist
RS 67532 Rat ÷ MWM 228

5-HT6 receptor
Antisense oligonucleotide Rat ↑ MWM 229

5-HT6 receptor antagonists
SB271046, SB357134, Ro046790 Mouse or Rat ↑ 229-231, ÷ or ↓ 232 MWM
5-HT7 receptor
KO Mouse ÷ BM 233; ↓ OP 233 ↓ CFC 233

5-HT7 receptor antagonists
SB656104A, SB269970 Mouse or Rat ↑ RAM 233,234 ↓ OP233

÷: no effect; ↑: increase/improve; ↓: decrease/impair; Ø: prevented/reduced deficits. Abbreviations used: MWM: Morris Water Maze; RAM: Radial Arm Maze; BM: Barnes Maze; OP:
Object Placement (Preference); CFC: Contextual Fear Conditioning; PS: Pattern Separation; SA: Spontaneous Alternation; FA: Forced Alternation; DA: Delayed Alternation.
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5-HT2A and 5-HT2C receptors

5-HT2A receptors are broadly present within the hippo-
campus, but little is known about the expression of
5-HT2C receptors.71,72 5-HT2A receptors are expressed on
both principal glutamatergic cells (on their somatic and
dendritic regions) and on all known subtypes of hippo-
campal interneurons (Table 1). There is also some
evidence suggesting that 5-HT2A receptors are expressed
on mossy fibers in the CA3 region.71,73 Thus, since
5-HT2A receptors are stimulatory and are expressed on
both principal cells and GABAergic interneurons, it would
be expected that they would have mixed effects on the
firing of principal cells. However, data from 2 electro-
physiological studies in brain slices suggest that the effects
that 5-HT2 receptors have on interneurons might over-
whelm their direct excitatory effects on principal
cells.74,75 Further research is needed to confirm these
observations and clarify which of the 2 effects of 5-HT2

receptors (indirect inhibition or direct excitation of
principal neurons) prevails in physiological conditions.

Studies of selective 5-HT2 receptor ligands in
behavioral models show variable effects (Table 2),
possibly reflecting differences in experimental design
across studies and the fact that 5-HT2 receptors are
expressed on multiple cell types in the hippocampus
(Table 1). Little is known about the effects of 5-HT2C

receptor modulation due to a lack of selective com-
pounds. Thus, as with the 5-HT1A receptor, selective
targeting of 5-HT2 receptors may not be an optimal
strategy for modulating hippocampal function due to
their varying functions in this brain region.

5-HT3 receptors

5-HT3 receptors are also found throughout the hippo-
campus.76,77 Autoradiographic data from our laboratory
suggest that 5-HT3 receptors have a distinct expression
gradient within the hippocampus, with the highest
expression observed in the caudal and ventral portions
(Figure 2E). Interestingly, histological evidence in the
rodent forebrain suggests that 5-HT3 receptors are
almost exclusively expressed on GABAergic interneur-
ons.78,79 5-HT3 receptor-expressing interneurons are
generally immunopositive for cholecystokinin, and for
the calcium binding proteins calretinin and calbindin.79

Based on this histological evidence, it can be
hypothesized that 5-HT3 receptors provide a fast
excitatory drive onto hippocampal GABAergic inter-
neurons and inhibit hippocampal principal cells.
Consistent with this hypothesis, pharmacological
activation of 5-HT3 receptors depolarizes hippocampal
interneurons80,81 and increases inhibitory drive onto
CA1 pyramidal cells.82–85 Conversely, 5-HT3 receptor
antagonists inhibit hippocampal interneurons, increase

the firing rate of pyramidal cells, and enhance long-term
potentiation (LTP) in in vivo electrophysiology recordings
in rats.86–88 Taken together, these mechanistic findings
might point to a pro-cognitive effect of 5-HT3 receptor
antagonism. However, behavioral studies of selective
5-HT3 receptor antagonists in models of memory and
learning have again shown inconsistent results (Table 2).

5-HT4 receptors

Autoradiographic studies have demonstrated the
presence of 5-HT4 receptors throughout the hippocam-
pus.89,90 In general, protein expression is low-
to-moderate, with the highest levels found in the stratum
oriens and pyramidale of Ammon’s horn, subiculum, and
the molecular layer of the DG (Table 1). 5-HT4 receptor
mRNA has been detected in hippocampal pyramidal
cells.91 Interestingly, 5-HT4 receptor mRNA was not
found in cells expressing glutamic acid decarboxylase
65 (GAD65), which is thought to be a selective marker of
GABAergic neurons.91 Thus, it appears that 5-HT4

receptors preferentially act to stimulate pyramidal
neurons, without directly modulating GABA neurotrans-
mission. In support of this hypothesis, 2 electrophysio-
logy studies have shown that stimulation of 5-HT4

receptors increases the excitability of CA1 pyramidal
cells.92,93

5-HT4 receptors have been shown to modulate the
cholinergic system. In microdialysis recordings, applica-
tion of the 5-HT4 receptor agonist SC53116 causes a
release of ACh, and this effect is blocked by the 5-HT4

receptor antagonist GR113808.94 Thus in theory, 5-HT4

receptor agonists should be pro-cognitive. This hypoth-
esis has been investigated in preclinical models, but the
results to date have been disappointing (Table 2).

5-HT5 receptors

Immunohistochemical expression studies have shown that
5-HT5 receptors are present in some portions of the
hippocampus. For example, Oliver et al 95 observed
moderate immunoreactivity levels in CA1, CA2, and CA3
regions and weak immunoreactivity levels in the DG. This
study also reported that 5-HT5 receptors were present on
pyramidal and granule principal cells and on interneurons
in the DG.95 Due to the lack of selective compounds, no
mechanistic and behavioral studies targeting 5-HT5

receptors have been performed in rodents.

5-HT6 receptors

Histochemical studies suggest that 5-HT6 receptors
are expressed at moderate-to-high levels in all subfields
of the rodent hippocampus.96,97 The expression is
particularly strong in the molecular layer of the DG and
in the stratum oriens and stratum radiatum of CA1,
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where 5-HT6 receptors are thought to be expressed on
dendritic processes of pyramidal cells.97 Moderate levels
of 5-HT6 receptor immunoreactivity have been observed
in CA2 and CA3 regions. There has been also one report
showing the expression of 5-HT6 receptors on a subset
of calretinin- and calbindin-positive hippocampal
interneurons.98

Pharmacological stimulation of 5-HT6 receptors by
the 5-HT6 receptor agonist WAY-181187 increases GABA
transmission and attenuates LTP in the CA1 area of the
hippocampus.99 Both of these effects were blocked by the
selective 5-HT6 receptor antagonists SB-399885.99

Furthermore, systemic administration of WAY-181187
increases GABA levels in several brain regions, including
the dorsal hippocampus.100 Consistent with its enhan-
cing effect on GABA transmission, antagonism of 5-HT6

receptors increases extracellular glutamate levels in the
frontal cortex and dorsal hippocampus.101 However,
although the potentiating effects of 5-HT6 receptors on
GABA transmission have been well documented, it is not
clear whether these responses are due to direct effects of
5-HT6 receptors on GABAergic interneurons.102

Several 5-HT6 receptor antagonists are currently in
clinical development for the treatment of Alzheimer’s
disease.103 However, in rodent hippocampus-dependent
behavioral models, the effects of 5-HT6 receptor antago-
nists have been only investigated in a small number of
studies with variable results (Table 2).

5-HT7 receptors

Immunohistochemical data suggest that 5-HT7 receptors
are expressed throughout Ammon’s horn, especially on
the soma and dendrites of pyramidal neurons.104 There is
also weak 5-HT7 receptor expression in the DG.104 It is
important to note that in the rodent brain expression
of 5-HT7 receptors changes during development. It is the
highest during the first 2 post-natal weeks and progres-
sively decreases with age.105–107 Our autoradiographic
data using the selective 5-HT7 receptor antagonist [3H]
SB269970 did not show strong binding in the hippo-
campal sections taken from adult rats (Figure 2G). This
result raises questions regarding the level of expression
of 5-HT7 receptors in the adult rodent hippocampus.

5-HT7 receptor stimulation increases the firing of
pyramidal neurons and glutamatergic transmission in
hippocampal brain slices.108–111 Stimulation of 5-HT7

receptors also enhances inhibitory transmission in the
hippocampus.112 This suggests that 5-HT7 receptors
might be expressed on GABAergic interneurons; how-
ever, there are no histological data available to support
this notion. In behavioral studies, both 5-HT7 agonists
and antagonists have shown both memory-enhancing
and memory-impairing properties depending on the
animal model and test conditions (such as 5-HT tone)

(Table 2).113,114 Thus, additional research is needed to
determine the role of 5-HT7 receptors on cognition and
memory function.

Effect of 5-HT and SSRIs on CA1 Pyramidal Cells and
Hippocampal Function

Given that most 5-HT receptors are expressed on both
excitatory cells and inhibitory interneurons and can
function in either a stimulatory or inhibitory manner
depending on the receptor subtype, it would be expected
that the net effect of 5-HT on hippocampal function
depends on local 5-HT concentration, the ratio of
different 5-HT receptor subtypes expressed, and the
density of 5-HT receptors in a particular population of
cells. In general, 5-HT inhibits CA1 pyramidal cells and
thereby decreases hippocampal output in rodents
(reviewed by Ciranna108). Stimulation of the serotoner-
gic projection from the dorsal raphe nucleus to the
hippocampus decreases the firing rate of CA1 pyramidal
cells in anesthetized animals.55,115–118 In a similar
manner, application of 5-HT to hippocampal brain slices
inhibits the function of pyramidal neurons by hyperpolar-
izing their membrane potential and increasing local GABA
transmission.53,74,83–85 There have also been reports of
excitatory effects of 5-HT on pyramidal cell function, but
the magnitude of excitation was much smaller than the
5-HT-induced inhibition.53,119 However, one has to be
careful in interpreting the ex vivo results obtained in brain
slices; in most of these studies, 5-HT was exogenously
applied at moderately high concentrations (15–50 micro-
molar), which might be higher than physiologically
relevant concentrations of 5-HT in the brain. Therefore,
these studies might exaggerate a contribution of certain
subtypes of 5-HT receptors to its overall response. In
summary, it seems that the overall effect of 5-HT on the
hippocampal circuit in rodents is to inhibit pyramidal cell
output. However, a majority of the studies that have led to
this conclusion were either done in anesthetized animals
or in brain slice preparations, and conclusions from such
studies should be therefore interpreted with caution.

The inhibitory effect of 5-HT in the hippocampus is
mediated via its actions on 5-HT1A, 5-HT1B, 5-HT2A/
5-HT2C, 5-HT3, 5-HT6, and possibly 5-HT7 recep-
tors.53–55,74,81–84,99,112,120 Activation of 5-HT1A recep-
tors has a direct inhibitory effect on pyramidal cell firing
by hyperpolarizing their membrane potential via activat-
ing a potassium conductance.53–55 Other 5-HT receptors
subtypes decrease the activity of pyramidal cells indirectly
by mainly activating interneurons and enhancing
GABA transmission onto pyramidal cells.74,81–84,99,112,120

Multiple synaptic connections from hippocampal inter-
neurons onto pyramidal cells might further amplify the
inhibitory effect of 5-HT in the hippocampus.102

EFFECTS OF SEROTONIN IN THE HIPPOCAMPUS 151



SSRIs, which act through the inhibition of the 5-HT
transporter, are among the most studied serotonergic
agents. Microdialysis studies in rodents have shown that
systemic administration of SSRIs rapidly enhances
extracellular 5-HT concentrations in multiple brain
regions, including the ventral hippocampus.121–123

Although SSRIs are selective for the serotonergic system,
they do not show selectivity for 5-HT receptor subtypes
and could, in theory, simultaneously activate all 5-HT
receptors. However, since 5-HT receptors have different
affinities for 5-HT, with 5-HT1A receptors being the most
sensitive type (Table 1), local 5-HT concentrations in the
brain would determine which 5-HT receptor subtypes
become engaged upon SSRI treatment. In addition,
chronic treatment with SSRIs, which is often required to
achieve clinical efficacy, can desensitize and change
expression patterns of 5-HT receptor subtypes.124 For
instance, chronic treatment with paroxetine desensitizes
presynaptic 5-HT1A autoreceptors in the raphe nuclei,
which leads to increased serotonergic transmission.125,126

In electrophysiology studies, the effect of SSRIs in the
hippocampus has been mostly studied in relationship to
hippocampal LTP, which is thought to be important for
learning andmemory.127 In a majority of studies in normal
animals, both the application of 5-HT and acute and
chronic treatments with SSRIs inhibit hippocampal
LTP.87,128–132 Interestingly, exposure to stress also impairs
LTP in the CA1 and DG regions of the hippocampus
(reviewed by Pittenger et al133 and Popoli et al134). Chronic
treatments with SSRIs can reverse these stress-induced
deficits in LTP,135,136 which suggests that SSRIs can
restore hippocampal function in disease-like conditions.
The positive effects of SSRIs are thought to bemediated, at
least in part, by increasing the expression of brain-derived
neurotrophic factor (BDNF) and neurogenesis in the
hippocampal and cortical circuits.23,133

Consistent with the hypothesis that SSRIs might
stimulate multiple hippocampal 5-HT receptors expressed
on different cell types, their net effects in behavioral
cognition models have been limited and variable. The
clinical experiencewith SSRIs is alignedwith the preclinical
data. Thus, while fMRI studies reveal that the neural
systems important for emotional processing are adequately
normalized by SSRIs in the treatment of depression,137

SSRIs are unable to correct the over-activation of the
frontolimbic circuitry important for the non-emotional
cognition.11 Although there are studies showing that SSRIs
can remediate “hippocampal-related” cognitive deficits in
patients with depression,19 a recent study by Herzallah
et al138 indicates that SSRIs can also impair hippocampus-
dependent generalization of past learning to novel contexts.

In conclusion, the regulation of hippocampal function
by 5-HT is complex, involvingmultiple receptor subtypes
and diverse expression patterns of 5-HT receptors
on principal glutamatergic cells and GABAergic

interneurons. Thus, administration of an SSRI may not
be a rational approach to achieve enhanced hippocampal
output and subsequent improvement of cognitive func-
tion in patients with MDD due to the potential of
activation of multiple receptor subtypes, which may have
opposing effects on cell function. On the other hand,
targeting a single 5-HT receptor subtype may not be a
viable strategy either due to redundancies in the
serotonergic system. The consequences of modulating
one 5-HT receptor may be attenuated by effects through
other 5-HT receptor subtypes. Drugs designed to target
single 5-HT receptors have so far not yielded new
pharmacological treatments. For example, the selective
5-HT1A receptor agonist flesinoxan was under develop-
ment for the treatment of generalized anxiety disorder
for many years, but its clinical program was stopped in the
late 1990s after it failed to show efficacy in 2 large phase-3
clinical trials.139 The 5-HT1B/1D receptor antagonist
elzasonan (CP-448187) was recently under development
for the treatment of MDD and was tested in several
phase-2 clinical trials, but its development program was
also discontinued.140 An alternative approach to targeting
a single receptor subtype could be to target a combination
of 5-HT receptor subtypes that would work in a concerted
manner. Themultimodal antidepressant vortioxetine is an
example of such an approach.

Effects of the Multimodal Antidepressant Vortioxetine
on Hippocampus Function

Vortioxetine is a 5-HT3, 5-HT7, and 5-HT1D receptor
antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A

receptor agonist, and a SERT inhibitor in cellular
assays.141,142 Vortioxetine has been approved for the
treatment of MDD in the US, the EU, Australia and
several other countries. Furthermore, clinical studies
with cognitive outcome measures have shown that
vortioxetine significantly improves cognitive function in
MDD patients compared with placebo treatment. The
efficacy of vortioxetine on cognitive function has been
demonstrated in 3 randomized, double-blinded, placebo-
controlled studies in MDD patients.143–145 One clinical
trial was conducted in elderly MDD patients with
cognition as a secondary pre-defined outcome and
included 128 patients in the placebo group, 136 patients
in the vortioxetine-treated group, and 128 patients in
the duloxetine-treated group.143 The other 2 clinical
trials were designed to compare the efficacy of vortiox-
etine to that of placebo on cognitive function as the
primary efficacy outcome and on depressive symptoms as
the secondary efficacy outcome.144,145 The study by
McIntyre et al144 included 196 patients in the placebo
group, 195 patients in the 10mg vortioxetine group, and
207 patients in the 20mg vortioxetine group. The study
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by Mahableshwarkar et al145 had 194 patients in the
placebo group, 198 patients in the vortioxetine-treated
group, and 210 patients in the duloxetine-treated group.
These clinical studies demonstrated that vortioxetine
improves objective measures of processing speed, execu-
tive function, attention and learning, and memory,
including hippocampus-dependent memory mea-
sures.143,144,145 Path analyses suggested that the effect
on cognitive function was largely independent of its
effect on improvements in mood symptoms, supporting
the hypothesis that these domains do not necessarily
track together. Furthermore, an fMRI study showed that
vortioxetine reduced neural activity in the left hippo-
campus during a working memory task in patients
remitted from depression.146 This indicates that vortiox-
etine, unlike SSRIs, might restore compensatory over-
activation in the hippocampus by increasing neural
efficiency.11

Consistent with clinical findings, vortioxetine has
shown antidepressant as well as pro-cognitive activities
in a number of preclinical animal models.147 Further-
more, in several behavioral and mechanistic studies that
engaged hippocampal and cortical circuitry, vortioxe-
tine’s effects differentiated from those of SSRIs and
SNRIs.147 In the following paragraphs, we review
these preclinical results and discuss how vortioxetine
might modulate hippocampal function and affect
hippocampus-dependent cognitive behaviors in rodents.

Acute and chronic treatments with vortioxetine
increase extracellular 5-HT levels in the rat ventral
hippocampus to a much greater extent than those
observed with SSRIs.148,149 Interestingly, combining an
SSRI with the 5-HT3 receptor antagonist ondansetron
resulted in a similar potentiating effect on 5-HT
levels.148 This suggests that the effect of vortioxetine
was at least partially due to its 5-HT3 receptor antagon-
ism. Since 5-HT3 receptors are expressed on GABAergic
neurons,76,150 it was hypothesized that vortioxetine,
through its blockade of 5-HT3 receptors, reduces GABA
release and thereby attenuates the inhibitory effect that
GABA exerts on 5-HT release in the hippocampus.151

Recent data by Riga et al151 support this hypothesis.
In their study, local application of ondansetron to the
ventral hippocampus augmented the effect of the SSRI
escitalopram on increasing extracellular 5‐HT levels.
This effect was reversed by the local application of the
GABAB receptor agonist baclofen, which restored
GABAB receptor tone in the hippocampus.151 Locally
applied baclofen also attenuated the potentiating effect
of vortioxetine on extracellular 5‐HT. Taken together,
these results indicate that 5-HT3 receptor antagonism
plays a prominent role in the vortioxetine’s effect on
5-HT levels in the hippocampus.

Although 5-HT3 receptor antagonism is important in
the pharmacology of vortioxetine, contributions from its

other receptor activities cannot be ruled out. For
instance, an in vivo electrophysiology study of pyramidal
neurons in the CA3 area of the hippocampus by El
Mansari et al152 showed that vortioxetine acts as a partial
agonist of 5-HT1B receptors and can function as either an
agonist or an antagonist depending on the endogenous
5-HT tone. Vortioxetine enhanced the inhibitory effect of
the stimulation of the 5-HT bundle at a high, but not at a
low frequency, and reversed the inhibitory effect of the
5-HT1B receptor agonist CP 94253.152 Thus, vortioxetine
alsomodulates the intra-hippocampal circuitry through its
effects at 5-HT1B receptors. 5-HT1B receptors are densely
expressed in the subiculum, the main output area of the
hippocampus (Figure 2C), and are believed to play an
important role in memory function.153,154 Thus, vortiox-
etine, through its partial agonism at 5-HT1B receptors,
might have a positive outcome on memory processing.
Additional studies are needed to confirm this hypothesis,
as well as to test the potential role of vortioxetine’s other
receptor activities on hippocampal function.

Acute and sub-chronic treatments with vortioxetine
also increase extracellular levels of NE and HA in the
ventral hippocampus.149,155 Increases in DA and ACh
levels have also been observed, but only after the acute
treatment.148,149 Furthermore, a study in rat hippocam-
pal slices showed that vortioxetine disinhibited CA1
pyramidal neurons in response to 5-HT, again most likely
through its 5-HT3 receptor antagonism, whereas escita-
lopram had no effect on this measure.82 In line with these
findings, several results indicate that vortioxetine pro-
motes glutamate-dependent neuronal plasticity in the
hippocampus to a greater degree than SSRIs. For
example, vortioxetine, unlike escitalopram, produced a
significant increase in LTP in rat hippocampal slices.82

Furthermore, in mice aged 12 months, chronic treat-
ment with vortioxetine activated neuronal plasticity–
related genes and improved hippocampus-dependent,
visual-spatial memory deficits, whereas fluoxetine had
no effect on these readouts.156 In another study
performed in rats, vortioxetine increased cell prolifera-
tion in the hippocampal DG faster than fluoxetine (3 days
for vortioxetine compared to 10 days for fluoxetine).157

Vortioxetine also produced a larger degree of hippocam-
pal dendritic branching than fluoxetine after 2 weeks
of dosing in mice.158 In line with these mechanistic
data, vortioxetine showed pro-cognitive effects in
hippocampus-dependent cognition models in rodents,
such as footshock-induced fear conditioning and sponta-
neous alternation (Table 2). However, these findings are
relatively recent, and vortioxetine has been studied less
than other serotonergic drugs and receptors. For
instance, there have been only 3 behavioral studies on
the effects of vortioxetine on hippocampal-dependent
memory versus 16 studies on 5-HT1A receptors and
10 studies on 5-HT2 receptors with different
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pharmacological and genetic approaches (Table 2).
Thus, confirmation and expansion of these results are
important.

Taken together, vortioxetine’s effects in the hippocam-
pus support the notion that its antidepressant activities
and pro-cognitive effects are mediated, at least to some
extent, through increased glutamate neurotransmission
and increased neuroplasticity. It is important to note that
although increased glutamate neurotransmission is
thought to favor neuronal plasticity, it is also clear that
excessive glutamate release (for instance, in relation to
stress) can be neurotoxic (reviewed in Sanacora and
Banasr159 and Sanacora et al160). Vortioxetine’s effects on
glutamate are limited to enhanced neuronal function. This
has been shown in microdialysis studies, where the
treatment with vortioxetine did not result in measureable
changes in extracellular glutamate in the ventral hippo-
campus and prefrontal cortex.161

In conclusion, vortioxetine’s combined inhibition of
5-HT reuptake and 5-HT receptor modulation results in
a differentiated effect on hippocampus function and
hippocampal-dependent behavior compared to SSRIs.
The full implication of vortioxetine’s modulation of
multiple neurotransmitter systems on its antidepressant
and pro-cognitive potential is complex and remains to be
elucidated in future studies.

Overall Conclusion and Future Directions

There is considerable evidence to support the notion that
the hippocampus plays an important role in emotional and
cognitive processing, and that both of these functions are
affected in patients with MDD. SSRIs and SNRIs are the
predominant pharmacotherapies for treating MDD, and
their enhancing effects on 5-HT levels are believed to be
important for their therapeutic efficacy. However, the
biological processes that lead to the recovery from the
depressive state remain poorly understood. Furthermore,
despite several decades of extensive research, the role of
5-HT in regulating hippocampal function in normal or
disease states is not well understood, probably due to the
high degree of complexity of the serotonergic system.

Multiple classes of 5-HT receptors are often
co-expressed on the same cell types with functions that
can either be complementary or opposing, and little is
known about the interactions between different 5-HT
receptors subtypes. Furthermore, the majority of 5-HT
receptors in the hippocampus are found on both
principal glutamatergic cells and GABAergic interneur-
ons. The 2 known exceptions are the 5-HT3 receptor
subclass, which has only been found on interneurons, and
the 5-HT4 receptor subclass, which has only been found on
pyramidal cells. 5-HT3 receptors are also the only non–G
-protein-coupled receptors that function as a ligand-gated
ion channel. The impact of the unique expression pattern

and effector system of the 5-HT3 receptor remains to be
elucidated. However, given the key role that 5-HT3

receptor antagonism appears to have in mediating the
pharmacological effects of vortioxetine, at least in pre-
clinical behavioral, electrophysiology, and microdialysis
studies,148,157,162 this receptor subtype might have an
important role in the hippocampus. 5-HT4 receptors have
been less studied, and understanding their function in the
hippocampus remains to be elucidated in further detail.

The effect of SSRIs on hippocampal function remains
poorly defined. While SSRIs have the potential to
normalize hippocampal plasticity under stress conditions
and to treat mood symptoms in MDD, their effects on
cognitive function are less clear. Since SSRIs do not
possess selectivity for 5-HT receptor subtypes, their
efficacy might be weakened due to opposing activities of
different 5-HT receptor subtypes. In this context, multi-
target drugs or combination therapies might be a better
strategy to modulate both emotional and cognitive
processes in the hippocampus. Future insights into
interactions between different serotonergic subtypes
might therefore lead to novel treatment options for the
treatment of MDD.
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