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Abstract: Received signal strength indication (RSSI) obtained by Medium Access Control (MAC) layer
is widely used in range-based and fingerprint location systems due to its low cost and low complexity.
However, RSS is affected by noise signals and multi-path, and its positioning performance is not
stable. In recent years, many commercial WiFi devices support the acquisition of physical layer
channel state information (CSI). CSI is an index that can characterize the signal characteristics with
more fine granularity than RSS. Compared with RSS, CSI can avoid the effects of multi-path and
noise by analyzing the characteristics of multi-channel sub-carriers. To improve the indoor location
accuracy and algorithm efficiency, this paper proposes a hybrid fingerprint location technology
based on RSS and CSI. In the off-line phase, to overcome the problems of low positioning accuracy
and fingerprint drift caused by signal instability, a methodology based on the Kalman filter and
a Gaussian function is proposed to preprocess the RSSI value and CSI amplitude value, and the
improved CSI phase is incorporated after the linear transformation. The mutation and noisy data
are then effectively eliminated, and the accurate and smoother outputs of the RSSI and CSI values
can be achieved. Then, the accurate hybrid fingerprint database is established after dimensionality
reduction of the obtained high-dimensional data values. The weighted k-nearest neighbor (WKNN)
algorithm is applied to reduce the complexity of the algorithm during the online positioning stage,
and the accurate indoor positioning algorithm is accomplished. Experimental results show that the
proposed algorithm exhibits good performance on anti-noise ability, fusion positioning accuracy, and
real-time filtering. Compared with CSI-MIMO, FIFS, and RSSI-based methods, the proposed fusion
correction method has higher positioning accuracy and smaller positioning error.

Keywords: indoor fingerprinting localization; Gaussian filter; Kalman filter; received signal strength
indicator; channel state information

1. Introduction

With the development of wireless communication technology, the demand for location-
based services (LBS) has increased greatly. The complex indoor environment makes
GPS [1–4] signals that belong to the outdoor positioning system vulnerable to multi-path
effects, which makes it impossible to apply in indoor positioning. The GPS [1–4] signal
is blocked or reflected by the wall, so the satellite signal cannot be received in the indoor
environment. Therefore, GPS cannot be used for positioning in an indoor environment.
Common indoor positioning technologies include ultra-wideband (UWB), infrared, radio
frequency identification (RFID), ultrasonic, LED visible light, ZigBee, Bluetooth, WiFi,
geomagnetic, etc. There are many localization methods for wireless sensor networks.
At present, these methods can be categorized into the followings: distance/angle-based
positioning algorithm (Range-Based) and distance-independent positioning algorithm
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(Range-Free). The representative range-based positioning algorithms are time of arrival
(TOA) [5], time difference of arrival (TDOA) [6], angle of arrival (AOA) [7], and received
signal strength indication (RSS) [8,9]. On the other hand, representatives of range-Free
positioning algorithms are centroid algorithm, DV-Hop algorithm, Amorphous algorithm,
APIT algorithm, etc. The performance evaluation criteria for a positioning algorithm
mainly include positioning accuracy, node density, fault tolerance and adaptability, power
consumption, cost, etc. Among them, the widespread deployment of indoor WiFi wireless
access point (AP) has rendered the WiFi positioning technology feasible, and the location
method based on location fingerprint is becoming the mainstream of indoor positioning
due to its low cost and simple method. The traditional fingerprint location method usually
includes two phases: offline training phase (offline phase) and online prediction phase
(online phase). In the offline phase, the wireless signal characteristics of each reference
point Reference Point (RP) are collected as fingerprints, and a database is established. In
the online stage, by matching the wireless signal fingerprint characteristics of the user’s
location with the database information, the location corresponding to the fingerprint with
the highest matching degree is obtained as the user’s final location. Most of the existing
fingerprint location systems use RSSI as coarse-grained fingerprint information, which is
simple and does not need additional equipment configuration.

IEEE 802.11 protocol does not give specific processes or algorithms to generate RSSI.
RSS refers to the MAC layer signal strength received by the client. Because RSS is coarse-
grained information, it is often affected by multi-path effect and noise signal, and the
location performance is not stable, so it can not meet the requirements of indoor precise
location. In recent years, CSI [10,11] can be obtained through commercial Wi Fi devices.
CSI is the channel state information that measures the channel condition. It belongs to
PHY layer and comes from the sub-carriers decoded in Orthogonal Frequency Division
Multiplexing (OFDM) [12] system. CSI is fine-grained physical information, which is more
sensitive to the environment, so it is applied in the fields of action recognition, gesture
recognition, tracking, and so on. The CSI based on the physical layer makes up for the
shortcomings of the average superimposed amplitude processing method in the traditional
RSSI. The phase information of each sub-carrier is added to provide more precise and stable
signal characteristic information for indoor WiFi fingerprint positioning technology. CSI
can minimize the effects of multi-path and noise by analyzing the transmission of different
sub-channel signals. CSI has opened up a new space for the WiFi-based indoor positioning
technology and the research effort has been directed to this field.

In Reference [13], CSI amplitude information is used for positioning and important
fingerprint features. The phase information is not used. A positioning system Pinloc is
proposed in Reference [14]. Pinloc estimates the distribution of a single sub-carrier in the
complex plane through the probability density function, and then realizes the position
estimation. However, the Pinloc system only uses the frequency diversity of CSI and
does not consider the effect of spatial diversity. Reference [15] proposed a data processing
method to reduce the phase deviation, but this paper did not consider the combined effect
of random phase deviation and random delay deviation. Reference [16] also designed a
fine-grained indoor fingerprint location system FIFS using CSI. Although FIFS utilizes both
frequency diversity and spatial diversity, this method only aggregates the power of all sub-
channels. The CSI-MIMO positioning system [17] only considers the amplitude and phase
information of each sub-carrier. However, CSI-MIMO only considers spatial diversity and
frequency diversity when generating location fingerprints, neglecting the characteristics
of multiple receiving antennas, and the uniqueness of the location can not be reflected
further. In recent years, the industry has proposed many fingerprint-based positioning
methods, using different features (such as RSSI and CSI) as fingerprints to distinguish
different locations. Although CSI-based methods generally have higher accuracy than
RSSI-based methods, it is found that the positioning results of different methods usually
compensate each other. By fusing different features, a more accurate positioning result
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can be obtained than a single feature. Following these backgrounds, this paper proposes a
high-precision fingerprint positioning method based on RSSI and CSI.

Currently, most methods based on CSI fingerprints do not incorporate RSS information,
thereby reducing the computing resources required for positioning. Therefore, this paper
uses RSS and CSI, which are two kinds of information with different granularity, to realize
regional location and precise location, respectively, and to make full use of the advantages
of different granularity information. Compared with the distance estimation method,
the complex indoor environment has less influence on fingerprint method. Based on
the above reasons, this paper studies the indoor location method based on the hybrid
fingerprint of RSS and CSI. Combining the respective characteristics of RSS information
and CSI information, this paper proposes an improved fingerprint precise positioning
algorithm based on RSSI and CSI. In the offline phase, the mobile terminal collects the
RSSI signal and CSI signal from each AP in the known reference position. After denoising
the original RSSI signal and CSI amplitude value by using the Kalman filter, the phase
of CSI is preprocessed to build a more robust position fingerprint database. At the same
time, to reduce the complexity of the fingerprint data and positioning error, we use the
weighted k-nearest neighbor (WKNN) algorithm [18] to perform fingerprint matching and
find the position coordinates in the online stage. Analyzing the experimental results shows
that the improved fingerprint positioning algorithm has higher positioning accuracy in
indoor environments.

The main contributions of this paper can be divided into the following:

1. This paper proposes a novel cross-layer approach including MAC layer information
and physical layer information that enables fine-grained indoor fingerprint location
algorithm in OFDM-MIMO WLANs.

2. The obtained RSSI value and CSI amplitude value are denoised, and CSI phase value
is linearly transformed. The processed measurements information can express the
difference of fingerprints between different locations.

3. The proposed algorithm reduces the dimension of the amplitude and phase values of
CSI, and constructs a fingerprint database that can map the location feature data.

4. In this paper, an indoor fingerprint location method based on RSSI and CSI in high
load AP environment is proposed. It improves the difficulty of getting RSS and CSI
information of AP in high load WiFi channel due to beacon delay. The proposed
method can be used in a high-load AP environment.

5. The positioning accuracy of the proposed method in two typical indoor environments
is high. This method is higher than several traditional localization algorithms, and it
is a more accurate WLAN Indoor fingerprint location algorithm.

This article includes the following chapters: Section 2 introduces RSSI, CSI, and WKNN.
In Section 3, the proposed fingerprint location method is described. We process the original
RSSI and CSI information, respectively, and obtain the effective fingerprint database in the
offline stage. We use the WKNN algorithm to estimate the location through the fingerprint
database established by the effective RSSI and CSI. Section 4 analyzes the experimental
results and discusses the performance of the algorithm. Finally, Section 5 is conclusions
and future work.

2. Related Work
2.1. Characteristics of RSSI

RSSI refers to the received signal strength received by the client, which belongs to
the MAC layer and comes from each packet. The multi-path propagation of wireless
signal refers to the reflection, diffraction, and scattering of electromagnetic waves on the
propagation path. The signal received by the node does not come from a single path
but from multiple paths. Due to the different path distances of electromagnetic waves,
the arrival time of nodes is different, and there is phase difference. The positive and negative
superposition of different phase differences will enhance or reduce the original signal,
resulting in multi-path attenuation, which makes the indoor electromagnetic environment
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present regional and special. Therefore, the channel multi-path structure is unique for each
location, which is called the RSSI position “fingerprint” [19,20].

WLAN vendors can privately define RSSI values. Through the description in the
802.11-2007 standard [21], we know that RSSI is measured by the receiving network card,
and there is path attenuation in the middle, so the sender can not determine the specific
receiving power of the receiver. The process or algorithm of RSSI generation is not given in
the 802.11 protocol. According to the protocol, the RSSI value ranges from 0 to 255, and the
RSSI value increases monotonically with the energy of PHY preamble. Therefore, only the
PHY preamble measurement can be selected as the RSSI value. The instantaneous value of
RSSI is obtained by integrating baseband IQ power. The theoretical calculation formula of
RSSI is as follows:

RSSIInstan =
√

I2 + Q2 (1)

The average value of RSSI within 1 s is obtained by averaging the instantaneous values
of 8192 RSSIs. The average value of RSSI is calculated as follows:

RSSIAve =
∑8192

i=1 RSSIInstan

8192
(2)

Power is sampled directly in time domain. Since most wireless signals are MW level,
they are polarized and converted into dBm, which does not mean that the signal is negative.

2.2. Channel State Information Amplitude and Phase

CSI data belongs to the physical layer information of wireless communication protocol.
The physical layer (PHY) of 802.11 protocol [17] is the interface between MAC and wireless
media. CSI can be represented by the value of each element in the channel gain matrix
H [22,23]. Channel impulse response (CIR) can describe the multi-path effect of wireless
channel. It can be expressed in the following formula.

Hk = ‖Hk‖ej∠Hk (3)

where Hk is the CSI of the kth sub-carrier. ‖Hk‖ and ∠Hk represent amplitude and phase
of kth sub-carriers, respectively. H appears in a complex form a + bi. CSI represents
the coefficient of a wireless channel. We can get the modulus

√
(a2 + b2) and argument

θ = argtan b
a of the complex number, that is, the corresponding amplitude and phase.

Channel frequency response (CFR) [24] can be used to describe transmission by am-
plitude frequency and phase frequency. And because CFR and CIR are Fourier transforms
for each other in the case of infinite bandwidth, CFR can be expressed as follows.

h(τ) =
N

∑
i=1

aie−jθi δ(τ − τi) (4)

where ai is the amplitude attenuation of the ith path. θi is the phase offset of the ith path. τi
is the time delay of the ith path. N is the total number of paths propagated. δ(τ) is a Dirac
impulse function.

Since CSI is the frequency response of multiple sub-carriers, it can accurately describe
frequency selective channels. According to the Fourier transform of CIR and CFR, multiple
propagation paths can be distinguished in time domain.

2.3. Comparison of CSI and RSSI

RSSI is the superposition of multiple path signals, which is very unstable. In a certain
range, the probability of RSSI coincidence in different locations is relatively large, which
makes it difficult for RSSI to complete high-precision indoor positioning, and it is only
suitable for rough estimation of positioning range. CSI is not the superposition of all the
sub-carrier information, it describes the signal of multiple paths, has more characteristics,
and contains the channel state information of multiple sub-carriers. The amplitude and
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phase of CSI sub-carriers in different positions are crossed, so single sub-carrier cannot be
distinguished. But if we use the diversity of CSI frequency and all the sub-carrier data,
through a certain algorithm, we can distinguish different locations. Table 1 shows the
differences between RSSI and CSI.

Table 1. Compare the difference between received signal strength indication (RSSI) and channel state
information (CSI).

Category RSSI CSI

Layer MAC layer Physical layer
Granularity Coarse-grained Fine-grained

Time resolution Packet Multipath signal cluster
Frequency resolution None Subcarrier

Stability Low High
Dimension One dimension High dimension

Power consumption Low High
Mathematical value Real number Complex number

Universality All Wi-Fi devices Some Wi-Fi devices

2.4. Weighted K-Nearest Neighbor (WKNN) Algorithm

The K-nearest neighbor (KNN) is a deterministic algorithm. It obtains the fingerprint
of the first K reference points which are closest to the location point in space and calculates
the location estimation value of the K reference points according to the coordinates of the
K reference points. The basic distance space can be calculated as Equation (5).

dq =

(
n

∑
i=1
|si − Si|q

) 1
q

, (5)

where si is the RSSI from the positioning phase. Si is the RSSI from the fingerprint database.
The variable q depends on the distance preferred by the algorithm. When q = 2, it rep-
resents Euclidean distance. Although it is not accurate compared with the probabilistic
algorithm, the KNN is one of the most popular algorithms because of its low computa-
tional complexity.

(x̂, ŷ) =
1
k

k

∑
i=1

pi pi ∈ D1:k. (6)

The weighted k-nearest neighbor (WKNN) [25] algorithm was proposed to improve
the KNN algorithm. KNN algorithm is to calculate the mean value of the coordinates of K
reference points, while WKNN multiplies each reference point by a weighted coefficient,
and then G weights and averages K reference points to obtain the location coordinates of
the point to be located, as shown in Equation (7).

(x̂, ŷ) =
k

∑
i=1

1
di+ε

∑k
j=1

1
dj+ε

· (xi, yi), (7)

where di represents the spatial distance between the fingerprint data of the ith reference
point and the data measured in the online stage, ε is a positive number tending to 0, and the
denominator in the formula is 0. (xi, yi) is the position coordinate of the ith reference point,
and (x̂, ŷ) is the position coordinate of the point to be located.

3. Proposed Indoor Fingerprint Localization Architecture and Methodology

To ensure location accuracy, this paper proposes an indoor hybrid fingerprint location
algorithm based on RSSI and CSI. Because of the influence of multi-path effect, AP loss,
heterogeneous network interference, and other factors, the collected fingerprint data can
not be directly used, and this paper will carry out the relevant data processing work.
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This part first introduces the structure of the indoor fingerprint positioning model. Sec-
ondly, it describes the process of RSSI and CSI data fusion after the establishment of the
fingerprint database.

3.1. Indoor Fingerprint Localization Architecture

The indoor fingerprint location method proposed in this paper includes two parts:
offline phase and online phase. In the offline phase, a modified device supporting OFDM-
MIMO is used to collect RSSI and CSI measurement data at the reference point. Then,
according to the proposed method, the abnormal packets which significantly deviate from
the whole in the continuous RSSI and CSI packets are removed. According to the location
fingerprint generation method designed in this paper, the position fingerprint containing
RSSI, CSI amplitude, and CSI phase information is generated. The fingerprint uses the
characteristics of frequency diversity and space diversity of the Orthogonal Frequency
Division Multiplexing (MIMO) system to obtain CSI and RSSI values on different antennas.
In each sub-carrier, RSSI and CSI are aggregated in the unit of receiving antenna. At the
same time, the anti-jamming ability and stability of the location fingerprint are further
enhanced and the uniqueness of the location is better reflected, which helps to improve the
accuracy of the location. Next, the location fingerprints generated in each reference location
are collected to construct the location fingerprint map and database. In the offline phase,
the coordinates of the target location are obtained by matching the fingerprint database.
Figure 1 shows the flow chart of the positioning system structure.

Figure 1. Indoor fingerprint localization architecture.

3.2. Proposed Indoor Fingerprint Localization Methodology

This section describes the fingerprint generation process of the fusion location method
proposed in this paper. The features of the RSSI are its low characteristic dimension
and easy obtainability, however, it also suffers from poor signal stability and low spatial
resolution. On the other hand, the CSI retains the characteristics of fine signal granularity,
high stability, high characteristic dimension, and high computational complexity. Based
on the above characteristics, a fingerprint fusion localization method based on RSSI and
CSI is proposed. Table 2 shows the available information about CSI [26]. It can be seen
from Table 1 that the CSI obtained contains RSSI values on different antennas. To obtain
more accurate positioning, we use MATLAB to obtain the RSSI value on the receiver
antenna. According to the mathematical expressions of RSSI and CSI in time domain and
frequency domain and their corresponding characteristics, RSSI and CSI are compared
and preprocessed.
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Table 2. Channel state information (CSI).

Data Information Properties

Bfee-count Number of Bfee count beamforming
Nrx Number of receiver antennas
Ntx Number of transmitter antennas

rssi-a,rssi-b,rssi-c RSS of each receiving antenna
rate Transmission rate of each data packet

noise noise
CSI CSI is a 3-dimensions array of Nrx × Ntx ×30

3.2.1. Processing of Raw RSSI Based on Gaussian-Kalman Filter

For indoor environment, the multi-path effect is obvious and RSS is more unstable.
There may be some abnormal values in the measurement results of RSSI packets. If these
abnormal values are used as the received signal strength, the positioning results will greatly
deviate. The indoor location algorithm based on fingerprint similarity comparison needs
to take the whole RSS vector as a whole. The fluctuation and noise of an RSS signal will
have a great impact on the overall comparison results. We first process the RSSI value
using Gaussian filtering [27]. The basic principle of Gaussian filtering is to establish a
Gaussian distribution model for numerical values. Gaussian function is introduced in
this method, and Gaussian function is discretized. The Gaussian function value at the
discrete point is the weight value, that is, the RSSI values at the high probability occurrence
regions are selected. The Gaussian filter can effectively filter the data significantly deviated
from the true values and suppress the positioning error caused by signal mutation, but it
is not effective in dealing with shadow effect, energy reflection, and other interference
problems. Next, to smooth the output of RSSI data, this paper also uses the Kalman filter
algorithm [28,29]. Kalman filtering can effectively filter indoor interference noise that obeys
a normal distribution. After the Kalman filtering, the smoothed RSSI value of the reserved
part is taken as the mean value and the final effective RSSI value is obtained. The above
analysis shows that the proposed Gaussian-Kalman linear filter can obtain a more effective
measurement value RSSI.

In this paper, the Dell notebook modified the wireless network card was used for data
collection at Kyungpook National University (KNU), and the RSSI on different antennas
was obtained. The detailed process of the experimental environment and data collection is
described in detail in Section 4.1. Figures 2 and 3 show the raw RSSI values of AP1 obtained
at the reference point (0,1) in the corridor of the IT1 building and at the reference point (0,1)
in the lobby of the IT2 building, respectively. It can be seen from Figures 2 and 3 that the
RSSI value obtained on antenna c is abnormal and cannot be used for positioning, so it
needs to be filtered out. At the same time, we perform Gaussian filtering on the RSSI values
obtained at antenna a and antenna b. Figures 4 and 5 show the Gaussian filtered RSSI value
of AP1 on the effective antenna obtained at the reference point (0,1) in the corridor of the
IT1 building and at the reference point (0,1) in the lobby of the IT2 building, respectively.
To filter out the residuals of the Gaussian filtering, we further perform the Kalman filtering
on the obtained smooth values. Figures 4 and 5 also show the Gaussian-Kalman filtered
RSSI values obtained in the two environments.

The algorithm can effectively eliminate the mutation data and noise fluctuation in
RSSI fingerprint data. We use the aforementioned data processing method to uniformly
process the RSSI values obtained in other indoor environments. The algorithm realizes the
accurate and smooth output of RSSI values and is used to establish an accurate fingerprint
database, which makes the subsequent positioning more accurate.
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Figure 2. The raw RSSI value of access point AP1 obtained at the reference point (0,1) in the corridor
of IT1 building.

Figure 3. The raw RSSI value of AP1 obtained at the reference point (0,1) in the lobby of IT2 building.
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Figure 4. The Gaussian filtered RSSI value and the Gaussian-Kalman filtered RSSI value of AP1 on
the effective antenna obtained at the reference point (0,1) in the corridor of IT1 building.

Figure 5. The Gaussian filtered RSSI value and the Gaussian-Kalman filtered RSSI value of AP1 on
the effective antenna obtained at the reference point (0,1) in the lobby of IT2 building.
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3.2.2. Kalman Filtering and Dimension Reduction Processing Based on CSI
Amplitude Value

The Wi-Fi signal using the 802.11n transmission protocol can use the OFDM modula-
tion method to modulate the signal to each sub-channel for transmission and to extract CSI
on each channel. The CSI data of physical layer is mainly used for wireless network opti-
mization and it is generally difficult to access these data. In recent years, Inter and Atheros
network card suppliers have processed some of their network card firmware programs and
some relevant organizations have opened corresponding software development packages.
We can modify the open-source driver of network card in Linux and WIN system and
use debugging mode to obtain CSI data of some wireless network cards. The Intel5300
network card provides sub-carrier level channel measurement for OFDM system, convert
the measured value into more abundant multi-path information, and provide more stable
measurement value and higher positioning accuracy.

As mentioned above, all software and scripts to read and parse channel measurements
are performed by the MATLAB. Finally, a channel matrix with 30 sub-carrier groups is
obtained, that is, the 802.11n channel state information is acquired. By giving full play to
the advantages of the frequency diversity and space diversity of the MIMO system, while
using the characteristics of multiple receiving antennas, the location fingerprint can better
reflect the uniqueness of the location. We aggregate CSI in units of receiving antennas
under each sub-carrier:

Hcsi−1 =
p

∑
m=1

hm1

Hcsi−2 =
p

∑
m=1

hm2

· · ·

Hcsi−q =
p

∑
m=1

hmq

, (8)

where p is the number of antennas at the transmitter; hm1, hm2, · · · , hmq are sub-carriers
received by receiving antennas 1, 2, · · · q, respectively. Figures 6 and 7 show the acquired
unprocessed CSI on different receiving antennas in the two environments. It can be seen
from Figures 6 and 7 that the CSI value obtained on antenna 3 cannot be used. Here, q = 2.
Then, the amplitudes are calculated as

Ham−i = |Hcsi−i|, i = 1, 2. (9)

For each sub-carrier, the mean value of the two amplitudes obtained by the receiving
antenna is calculated, so that the dimension of the amplitude becomes 30 dimensions.
Figures 8 and 9 show the amplitude of the sub-carriers for 160 measurements in two
different indoor environments. The Kalman filtering was performed on the amplitudes of
the 30 CSI sub-carriers obtained from different antennas. The obtained CSI value of the
Kalman filter is represented by Ĥam. The ordinate is the magnitude of the amplitude and
the abscissa is the time scale. The Kalman filter smooths the waveform further and the CSI
amplitude value positioning using the filtering results is feasible. The amplitude of the two
sub-carriers at both ends of the obtained sub-carrier are subtracted and dimension-reduced,
the effective amplitude fingerprint from an antenna is reduced to 15 dimensions:

CSIAMn =
1
2

[
Ĥam30 + Ĥam1 , Ĥam29 + Ĥam2 , · · · , Ĥamk/2+1 + Ĥamk/2

]
, (10)

where k = 30, n = 1, 2, · · · , 15. Figures 10 and 11 show the amplitude of the effective CSI
sub-carriers on antenna a at reference point (0,1) of AP1 in two different indoor environments.
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Figure 6. Raw CSI obtained on different receiving antennas at reference point (0,1) of AP1 in the
corridor of IT1 building.

Figure 7. Raw CSI obtained on different receiving antennas at reference point (0,1) of AP1 in the
lobby of IT2 building.
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Figure 8. The amplitude of the 30 CSI sub-carriers on antenna a at reference point (0,1) of AP1 in the
corridor of IT1 building.

Figure 9. The amplitude of the 30 CSI sub-carriers on antenna a at reference point (0,1) of AP1 in the
lobby of IT2 building.
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Figure 10. The amplitude of the effective CSI sub-carriers on antenna a at reference point (0,1) of AP1
in the corridor of IT1 building.

Figure 11. The amplitude of the effective CSI sub-carriers on antenna a at reference point (0,1) of AP1
in the lobby of IT2 building.

3.2.3. Linear Transformation and Dimension Reduction of CSI Phase Values

Figures 12 and 13 show the phase of each sub-carrier of the acquired CSI. If the center
frequencies of the receiver and transmitter cannot be accurately synchronized (frequency
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offset), the carrier frequency offset (CFO) will occur. In addition, ADC also produces
sampling frequency offset (SFO) [30]. The i-th sub-carrier phase can be expressed as:

ϕ̂i = ϕi − 2π
ki
N

δ + β + wZ. (11)

Among them, ϕi is real phase information, δ is timing offset of receiver, β is unknown
phase offset, and wZ is phase measurement noise. k denotes the index of the i-th sub-carrier.
N is the FFT size.

The existence of the error offset causes the original phase information to not be directly
used. Assuming that the value of measurement noise wZ is small, to eliminate the error of
δ and β, linear transformation can be used as follows:

a =
ϕ̂i − ϕ1

kn − k1
=

ϕi − ϕ1

kn − k1
− 2π

N
δ, (12)

b =
1
n ∑

1≤j≤n
ϕ̂j =

1
n ∑

1≤j≤n
ϕj −

2πδ

nN ∑
1≤j≤n

k j + β, (13)

where a is the slope of the received response phase. b is the offset. If the sub-carrier
frequency is symmetric, then ∑n

j=1 k j = 0, ϕi − aki − b can eliminate the error introduced
by δ and β. Because the real phase can not be obtained, only the relationship between the
calibrated phase ϕ̃i and the real phase can be obtained, and the difference is a constant
multiple Ci related to frequency.

σ2
ϕ̃i
= ciσ

2
ϕi

, (14)

ci = 1 + 2
k2

i

(kn − k1)
2 +

1
n

. (15)

Figure 12. The phases of the 30 CSI sub-carriers on antenna a at reference point (0,1) of AP1 in the
corridor of IT1 building.
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Figure 13. The phases of the 30 CSI sub-carriers on antenna a at reference point (0,1) of AP1 in the
lobby of IT2 building.

Figures 14 and 15 give the phase information processed linearly, which is much more
stable than the original phase in Figures 12 and 13. The phase received by the receiving
end has random errors due to time delay and multi-path effects, which are the main factors
affecting the accuracy of phase estimation, and they need to be eliminated to improve the
accuracy. The CSI is processed by a linear transformation, which effectively eliminates
the phase error and obtains a higher-precision estimated phase. It is possible to establish
more accurate indoor fingerprints, and, for each sub-carrier, the three calibration phases
are subtracted to make the fingerprint of phase information 30 dimensions:

Hph = Hph−1 − Hph−2, (16)

where Hph−i = ϕ̃i, i = 1, 2.
After analyzing the trend of CSI phase, this paper proposes a data dimension reduction

method.This method is easy to operate and reduces the calculation at the same time. Since
the information contained in the adjacent sub-carriers is nearly similar, we remove the
amplitude of the even-numbered adjacent sub-carriers according to this feature, and only
preserve the phase information of the odd-numbered sub-carriers. Finally, the effective CSI
obtained by dimension reduction can be used to establish offline CSI fingerprint database.
Dimensionality reduction processing is carried out for the phase information of the two
sub-carriers symmetric about the center sub-carrier, and the phase information from an
antenna is reduced to 15 dimension:

CSIPHn =
[

Ĥph1 , Ĥph3 , · · · , Ĥphk/2
, · · · , Ĥphk−3

, Ĥphk−1

]
, k = 30, n = 1, 2, · · · , 15. (17)
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Figure 14. The phases after linear transformation of the 30 CSI sub-carriers on antenna a at reference
point (0,1) of AP1 in the corridor of IT1 building.

Figure 15. The phases after linear transformation of the 30 CSI sub-carriers on antenna a at reference
point (0,1) of AP1 in the lobby of IT2 building.

Figures 16 and 17 show the variation trend of CSI phases in different dimensions
under different indoor environments. It can be seen that, even though the phase dimension
of the sub-carrier is 15, the phase change trend can be clearly presented.
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Figure 16. Compare the phases change trends with different dimensions on antenna a at reference
point (0,1) of AP1 in the corridor of IT1 building.

Figure 17. Compare the phases change trends with different dimensions on antenna a at reference
point (0,1) of AP1 in the lobby of IT2 building.

3.2.4. Location Fingerprint Generation Based on Data Fusion

By the aforementioned processing of RSSI, CSI amplitude, and CSI phase information,
we obtain the fingerprints containing 2 × 1 dimensional RSSIs, 2 ×15 dimensional CSI



Sensors 2021, 21, 2769 18 of 25

amplitude, and 2 × 15 dimensional CSI phase information, respectively. (xm, ym) can give
the uniqueness of the position coordinates.

(xm, ym) = [RSSIi CSIi AMn CSIiPHn], (18)

where m represents the number of packets collected. i represents the number of antennas
and i = 1, 2. n = 1, 2, · · · , 15. In addition, when there are multiple access points (APs) in
the positioning system, they can be aggregated for the participate of location fingerprints.

(xRP, yRP) =


RSSIi1, CSIi AMn1, CSIiPHn1
RSSIi2, CSIi AMn2, CSIiPHn2

· · ·
RSSIis, CSIi AMns, CSIiPHns

, (19)

where s represents the number of APs, and, in this paper, s = 3. (xRP, yRP)is the position
coordinates of the reference point stored in the fingerprint database during the offline
phase. Online phase, the user’s fingerprint information is compared with the fingerprint
database to obtain several different areas. In this paper, we select t test points for fingerprint
matching, and the coordinate value of the test point is (xTest, yTest). The WKNN algorithm
is used to aggregate the above regions and to select the optimal estimation location.

(xTest, yTest) =


RSSIi1, CSIi AMn1, CSIiPHn1
RSSIi2, CSIi AMn2, CSIiPHn2

· · ·
RSSIi t, CSIi AMnt, CSIiPHnt

. (20)

4. Experimental Environment and Performance Evaluation
4.1. Experimental Environment

Figures 18 and 19 verify the performance of the proposed algorithm in the corridor on
the 3rd floor of IT1 building and the hall on the 1st floor of IT2 building in KNU. The floor
plan is shown in Figures 20 and 21.

Figure 18. Real corridor environment on the 3rd floor of Kyungpook National University (KNU)
IT-1 building.
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Figure 19. Real lobby environment on the 1st floor of KNU IT-2 building.

Figure 20. Floor plan of the corridor on the 3rd floor of KNU IT-1 building.

Figure 21. Floor plan of the lobby on the 1st floor of KNU IT-2 building.
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The receiver of this paper is a laptop with ubuntu14.04.4 operating system and in-
tel5300 wireless network card. The network card is attached with three dual-frequency
external antennas of 2.4 G/5 GHz. The green dots in the figure indicate the positions of
reference points. The accuracy of RSSI signal and CSI signal is the highest at a height
of 1 m from the ground, so the distance between the AP antenna and the ground is 1 m.
When collecting RSSI signal and CSI signal data, the tester holds a portable notebook
device and stands at the reference point for data collection. The reference point receives
signals from three APs. Each reference point collects RSSI data and CSI data for 30 min
and saves them to the PC. The RSSI data and CSI data are extracted by MATLAB, and the
original RSSI data and CSI data are filtered at the same time. Take the effective RSSI value
and the effective CSI value to establish the database as the feature vector of the point.
The experimental starts from the lower-left corner, and its coordinates are (0,0). The grid
size of the fingerprint database is 1 m. In the corridor environment, fingerprint information
of 24 locations are collected, and 27 locations are collected in the lobby environment. The
performance of the algorithm is evaluated by the distance error between the estimated
position of the reference point and the real position.

4.2. Performance Evaluation

In the indoor environment, there are many factors that affect the positioning results,
such as the number of people in the positioning area and their status, static or moving,
receiver location and antenna orientation, and the influence of other indoor equipment
movements, etc. We consider these conditions that are difficult to control and evaluate the
generality of the proposed algorithm. To weaken these external factors, the same set of
location data is processed to compare the performance of the location algorithm.

4.2.1. Impact of the Number of Packets

During the construction of fingerprint database, the number of samples makes a
great impact on the positioning performance. For the similarity comparison method of
fingerprint database, the location accuracy largely depends on whether the fingerprint
samples in the fingerprint database can accurately describe the distribution of the overall
fingerprint or not. For this experiment, each unit area is sampled for 5 min, and nearly
1000–3000 CSI samples can be sampled for each AP. In the case of the same environment
parameters, we selected different numbers of sample sets for training to verify the existing
indoor location method. We also investigated the influence of the different sample set
number in the proposed fingerprint location method on the positioning performance. The
sampling frequency of sampled data is equal to 1500 packets/s.

Figures 22 and 23 show the impact on positioning performance when the number of
samples in the process of establishing a fingerprint database is 100, 500, 1000, and 2000,
respectively. In the two experimental scenarios, we select three APs to establish fingerprints
and set k = 3 in the WKNN algorithm. The number of samples in the on-line phase is about
50, 250, 500, and 1000, respectively. When the sampling rate is increased from 100 to 500
packets, as shown in the figure. When it increased from 500 to 1000, the positioning accuracy
showed a trend of improvement. When it is between 1000 and 2000, the positioning
accuracy has not improved. Based on the above experimental results, the positioning
accuracy of 1000 packets achieved the highest score under certain conditions. We also
compared the average distance errors at reference point (1.1) and reference point (4,2),
as shown in Figures 22 and 23. It can be seen from Figures 22 and 23 that selecting 1000 data
packets at different reference points to build a database obtained more accurate positioning.
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Figure 22. Distance estimation errors at reference points (1,1) in two different experimental environ-
ments.

Figure 23. Distance estimation errors at reference points (4,2) in two different experimental environ-
ments.

4.2.2. Comparison with Existing Fingerprint Location Methods

In the positioning error analysis, cumulative distribution function (CDF), standard
deviation, and average error were used to analyze the performance of the positioning
method. In two indoor environments, the proposed method is compared with the RSSI-
based fingerprint positioning system and two CSI-based fingerprint positioning systems
(FIFS and CSI-MIMO). In the test process, WKNN is used as fingerprint matching algorithm
and three APs are used to generate fingerprint. We use Euclidean distance to estimate the



Sensors 2021, 21, 2769 22 of 25

similarity measure between the reference point (RP) coordinates (XRP, YRP) and the test
point (TP) coordinates (XTP, YTP). The formula is as follows:

d̂ =
√
(XRP − XTP)2 − (YRP −YTP)2. (21)

The CDFs of location distance error in the two scenarios are shown in Figures 24 and 25.
Figure 24 is the CDF figure obtained from the experiment in the corridor of IT-1 building.
It can be seen from the figure that RSSI-based approach is vulnerable to environmental
interference and is very unstable, and the error is the largest among the four positioning
methods. FIFS and CSI-MIMO use channel state information as fingerprint eigenvalues.
Due to the finer granularity of channel state information, the multi-path interference can
be suppressed to some extent and the positioning accuracy of these two methods is higher
than that of the RSSI-based approach. The proposed location method, based on FIFS
and CSI-MIMO, and according to the characteristics of multiple antennas, improves the
positioning accuracy by improving the fingerprint feature dimension. The red curve in
Figure 24 shows that the probability of positioning error within 1.5 m reaches 60%, which is
33.33% higher than that of CSI-MIMO and 51.24% higher than that of FIFS. Figure 25 is the
CDF diagram of the experiment in the lobby of IT-2 building. Compared with Figure 24,
the accuracy rate is improved, which indicates that the environment affected the accuracy
of the experiment. However, it can be seen from Figure 25 that the positioning accuracy
of the proposed method is still higher than those of the FIFS and CSI-MIMO methods.
The probability of positioning error within 1.5 m is 81.4%, which is 4.7% higher than that of
CSI-MIMO and 41.4% higher than that of FIFS. Finally, the proposed method, FIFS method,
and CSI-MIMO method are compared in two experimental environments by using the
average positioning error, standard deviation. The results are shown in Tables 3 and 4.

Figure 24. Comparing the cumulative distribution function (CDF) value of localization error of four
algorithm in IT-1 building.
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Figure 25. Comparing the CDF value of localization error of four algorithm in IT-2 building.

Table 3. Comparison of four indoor fingerprint location algorithms (corridor of IT-1 building).

Fingerprint Algorithm Average Distance Error (m) Standard Deviation (m)

RSSI-based algorithm 2.122 m 1.097 m
CSI-based algorithm (FIFS) 1.802 m 0.853 m

CSI-MIMO algorithm 1.319 m 0.605 m
Proposed algorithm 1.171 m 0.587 m

Table 4. Comparison of indoor fingerprint location algorithms (lobby of IT-2 building).

Fingerprint Algorithm Average Distance Error (m) Standard Deviation (m)

RSSI-based algorithm 2.078 m 1.007 m
CSI-based algorithm (FIFS) 1.767 m 0.781 m

CSI-MIMO algorithm 1.269 m 0.559 m
Proposed algorithm 1.094 m 0.488 m

It can be seen from the table, in terms of the average positioning error, the performance
of the proposed method is about 1.171 m in the corridor environment, which is about 12.6%
higher than CSI-MIMO and 36.9% higher than that of FIFS. The average positioning error
of the RSSI-based method is about 2.122 m, it is lower than the positioning accuracy
of the proposed method; In the lobby experimental scenario, the proposed method is
about 1.094 m, which is 15.9% and 61.5% higher than CSI-MIMO and FIFS, respectively.
The average positioning error of the RSSI-based method is about 2.078 m. Through the
series of experiments, we confirmed that the method proposed in this paper was effective
in improving the accuracy of positioning. The positioning method proposed in this paper
can effectively improve the positioning accuracy by the following reasons. The reasons for
the proposed algorithm to improve accuracy are as follows. Firstly, the fingerprints in the
fingerprint database are integrated with RSS and CSI, which are not based on CSI or RSS
alone; secondly, the fingerprint features are preprocessed effectively in the offline phase,
and the integrity of the data is preserved; thirdly, WKNN is used to reduce the positioning
error. In addition, since the proposed method performs the dimensional reduction for the
fingerprint, its computational complexity is also improved over the CSI-MIMO and FIFS.
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5. Conclusions and Future Work

In this paper, a hybrid fingerprint algorithm is proposed to improve the positioning
accuracy of RSSI-based and CSI-based fingerprint location methods. In the offline phase,
the amplitude values of RSSI and CSI are eliminated and filtered, and the phase value
of CSI is introduced by linear transformation. This paper also proposes a method to
reduce the fingerprint feature dimension of high-dimensional data CSI obtained in OFDM-
MIMO system. Finally, combined with the effective RSSI, effective CSI amplitude value,
and CSI phase value, a novel fingerprint database containing more abundant indoor
location information was established. In the online phase, the fingerprint data is matched
according to the WKNN algorithm, which effectively improves the positioning accuracy.
This paper uses MATLAB to verify the effectiveness and superiority of the algorithm in
two indoor environments. Compared with existing algorithms, the algorithm based on
RSS and CSI hybrid fingerprints can improve positioning accuracy. At the same time,
because additional hardware is not necessary for the proposed algorithm to perform
positioning, its applicability is also high. Future research directions include the evaluation
of the performance of the proposed algorithm in a three-dimensional indoor environment,
an indoor laboratory environment with more obstacles and personnel flows.
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