Journal of Crohn's and Colitis, 2019, 956–957 doi:10.1093/ecco-jcc/jjy219 Advance Access publication December 21, 2018 Letter to the Editor

Letter to the Editor

The Importance of Molecular Immune Investigation in Therapeutic Clinical Development for Biomarker Assessment

Christopher A. Lamb^{a,b}, John C. Mansfield^{a,b}, John A. Kirby^a, Mary E. Keir^c

^aNewcastle University, Newcastle upon Tyne, UK ^bNewcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK ^cGenentech Inc., South San Francisco, CA, USA

Corresponding author: Christopher A. Lamb, Institute of Cellular Medicine, William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. Email: christopher.lamb@ncl.ac.uk

We thank Roosenboom et al. for their interest in our paper exploring the relative expression of aE integrin in the colon and ileum in inflammatory bowel disease [IBD] patients and in healthy subjects. The aE integrin [CD103] is a cell surface molecule that forms a heterodimer with $\beta7$ integrin and, through interactions with E-cadherin, serves to retain aE\beta7-expressing cells at mucosal surfaces.1 Therapeutic treatment with etrolizumab, which binds to $\beta7$ integrin and blocks both $\alpha 4\beta$ 7:MAdCAM-1 as well as $\alpha E\beta$ 7:E-cadherin interactions, led to a reduction in crypt-associated aE+ cell numbers in a phase 2 clinical trial.² Baseline levels of colonic αE expression were also associated with remission in a post-hoc analysis of the same study.² Our present study was designed to evaluate the prevalence and localization of αE + cells in the colon and ileum and the potential impact of inflammation and concomitant medication on aE expression.³ We found aE expression to be stable and not dependent on either concomitant medications or degree of inflammation. These findings are of importance given the future potential of biopsy-based predictive biomarker assessment for etrolizumab treatment.

Roosenboom *et al.* suggest that the role of αE + cells in IBD pathobiology is not currently understood.⁴ While studies are on-going, previous work from our labs and others using enzymatic digestion of intestinal biopsies has shown that αE integrin is expressed on approximately 90% of intraepithelial lymphocytes in the intestine, 40% of T cells in the lamina propria, and <3% of circulating T lymphocytes.^{5,6} As many αE+ cells are intra-epithelial, appropriate digestion of tissue prior to analysis is critical and studies that have used only mechanical isolation of cells have shown lower levels of aE+ cells with high variability.7 Mechanical isolation techniques have been demonstrated to result in low cell yield, functional alterations⁸ and inversion of the CD4:CD8 ratio⁹ that may affect the interpretation of studies that have not used enzymatic digestion.^{7,10} Our previous studies using enzymatic digestion have shown a potential inflammatory role for CD4+ α E+ T helper cells,^{6,11} more interferon- γ in aE+ CD8+ T cells,6 and a striking increase in tissue aE+ CD4 T cells during inflammation in ulcerative colitis.12 Other groups have shown that aE is induced on Th9 cells, a key CD4 helper T cell population *in vitro*, and blockade of both $\alpha E\beta 7$ and $\alpha 4\beta 7$ is superior to blockade of $\alpha 4\beta 7$ in inhibiting homing of these cells, as well as CD8 T cells, to the inflamed intestine.¹³ Taken together, these data implicate α E+ T cells in the pathophysiology of IBD.

Personalized medicine has been identified as a major unmet research need of importance to patients and clinicians in IBD,¹⁴ and has the potential to direct the right treatment to the right patient at the right time, thereby maximizing the likelihood of a positive clinical outcome whilst aiming to minimize risk of side effects and cost. The potential utility of α E or other genes¹¹ as predictive biomarkers for etrolizumab is being tested prospectively in on-going phase 3 clinical trials. To reach the goal of personalized medicine for IBD patients, predictive biomarkers such as α E for etrolizumab must be prospectively tested as well as evaluated in patient datasets to move the field forward.

References

- Lamb CA, O'Byrne S, Keir ME, Butcher EC. Gut-selective integrintargeted therapies for inflammatory bowel disease. J Crohns Colitis 2018;12:653–68.
- 2. Vermeire S, O'Byrne S, Keir M, *et al.* Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. *Lancet* 2014;384:309–18.
- Ichikawa R, Lamb CA, Eastham-Anderson J, *et al.* AlphaE integrin expression is increased in the ileum relative to the colon and unaffected by inflammation. *J Crohns Colitis* 2018;12:1191–9.
- Roosenboom B, van Lochem EG, Horjus Talabur Horje CS. AlphaE expression in IBD: a biomarker for the use of etrolizumab? J Crohns Colitis 2018.
- Cerf-Bensussan N, Jarry A, Brousse N, Lisowska-Grospierre B, Guy-Grand D, Griscelli C. A monoclonal antibody (HML-1) defining a novel membrane molecule present on human intestinal lymphocytes. *Eur J Immunol* 1987;17:1279–85.
- Lamb CA, Mansfield JC, Tew GW, *et al.* αΕβ7 integrin identifies subsets of pro-inflammatory colonic CD4+ T lymphocytes in ulcerative colitis. J Crohns Colitis 2017;11:610–20.
- Horjus Talabur Horje CS, Middendorp S, van Koolwijk E, et al. Naive T cells in the gut of newly diagnosed, untreated adult patients with inflammatory bowel disease. *Inflamm Bowel Dis* 2014;20:1902–9.
- Bland PW, Richens ER, Britton DC, Lloyd JV. Isolation and purification of human large bowel mucosal lymphoid cells: effect of separation technique on functional characteristics. *Gut* 1979;20:1037–46.

[©] European Crohn's and Colitis Organisation (ECCO) 2018.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

- Carrasco A, Mañe J, Santaolalla R, *et al.* Comparison of lymphocyte isolation methods for endoscopic biopsy specimens from the colonic mucosa. J Immunol Methods 2013;389:29–37.
- Smids C, Horjus Talabur Horje CS, van Wijk F, van Lochem EG. The complexity of alpha E beta 7 blockade in inflammatory bowel diseases. J Crohns Colitis 2017;11:500–8.
- Tew GW, Hackney JA, Gibbons D, *et al.* Association between response to etrolizumab and expression of integrin αE and granzyme A in colon biopsies of patients with ulcerative colitis. *Gastroenterology* 2016;**150**:477–87.e9.
- Lamb CA, Kirby JA, Keir ME, Mansfield JC. T lymphocytes expressing AlphaE beta7 integrin in ulcerative colitis: associations with cellular lineage and phenotype. J Crohns Colitis 2017;11:1504–5.
- 13. Zundler S, Schillinger D, Fischer A, *et al.* Blockade of α E β 7 integrin suppresses accumulation of CD8+ and Th9 lymphocytes from patients with IBD in the inflamed gut in vivo. *Gut* 2017;**66**:1936–48.
- 14. Hart AL, Lomer M, Verjee A, et al. What are the top 10 research questions in the treatment of inflammatory bowel disease? A priority setting partnership with the James Lind Alliance. J Crohns Colitis 2017;11:204–11.