
fcell-07-00205 September 19, 2019 Time: 10:16 # 1

REVIEW
published: 20 September 2019
doi: 10.3389/fcell.2019.00205

Edited by:
Kazuhito Toyo-oka,

Drexel University, United States

Reviewed by:
Emily L. Casanova,

University of South Carolina,
United States

Hidenori Tabata,
Aichi Human Service Center, Japan

*Correspondence:
Xiao-Bing Yuan

xbyuan@brain.ecnu.edu.cn

Specialty section:
This article was submitted to
Cell Adhesion and Migration,

a section of the journal
Frontiers in Cell and Developmental

Biology

Received: 19 May 2019
Accepted: 06 September 2019
Published: 20 September 2019

Citation:
Pan Y-H, Wu N and Yuan X-B

(2019) Toward a Better
Understanding of Neuronal Migration

Deficits in Autism Spectrum
Disorders.

Front. Cell Dev. Biol. 7:205.
doi: 10.3389/fcell.2019.00205

Toward a Better Understanding of
Neuronal Migration Deficits in
Autism Spectrum Disorders
Yi-Hsuan Pan1, Nan Wu1 and Xiao-Bing Yuan1,2*

1 Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics,
School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai,
China, 2 Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States

Newborn neurons in developing brains actively migrate from germinal zones to
designated regions before being wired into functional circuits. The motility and trajectory
of migrating neurons are regulated by both extracellular factors and intracellular signaling
cascades. Defects in the molecular machinery of neuronal migration lead to mis-
localization of affected neurons and are considered as an important etiology of multiple
developmental disorders including epilepsy, dyslexia, schizophrenia (SCZ), and autism
spectrum disorders (ASD). However, the mechanisms that link neuronal migration
deficits to the development of these diseases remain elusive. This review focuses on
neuronal migration deficits in ASD. From a translational perspective, we discuss (1)
whether neuronal migration deficits are general neuropathological characteristics of
ASD; (2) how the phenotypic heterogeneity of neuronal migration disorders is generated;
(3) how neuronal migration deficits lead to functional defects of brain circuits; and (4)
how therapeutic intervention of neuronal migration deficits can be a potential treatment
for ASD.

Keywords: autism-spectrum disorders, neuronal migration, brain structural abnormalities, mechanism-based
therapy, E/I balance

INTRODUCTION

Autism spectrum disorders (ASD) are heterogeneous developmental disorders with both strong
genetic bases and environmental influences. Core symptoms of ASD include poor social skills,
impaired language abilities, and restricted interests or repetitive/stereotyped behaviors. These
symptoms emerge during early postnatal development of autistic children (Dietert et al., 2011;
Chaste and Leboyer, 2012; Jeste and Geschwind, 2014). The cellular etiology of ASD involves one or
multiple abnormalities of developmental events including neurogenesis, neuronal migration, axon
projection, dendrite development, spine formation, synaptogenesis, and synapse remodeling. It is
generally believed that reduced GABAergic inhibitory tone occurs in autistic brains (Ferguson and
Gao, 2018) resulting in altered excitation/inhibition (E/I) balance of ASD-relevant brain circuits
(Bozzi et al., 2018; Ferguson and Gao, 2018). Currently, there is no effective treatment for ASD,
primarily because of poor understanding of how genetic defects and environmental factors alter
the structure and function of relevant brain circuits.

Neuronal migration is a fundamental event in the development of brain circuits. After being
produced in germinal zones, young neurons actively migrate to designated brain regions to be
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wired into functional circuits. The motility and trajectory
of migrating neurons are regulated by both extracellular
factors and intracellular signaling cascades (Hatanaka et al.,
2016). Neuronal migration in developing brains is highly
sensitive to various physical, chemical, and biological insults
as well as genetic mutations. Defects in the molecular
machinery of neuronal migration lead to mis-localization of
affected neurons. The consequent malformation and malfunction
of various brain circuits are considered as an important
etiology of multiple neurodevelopmental disorders including
epilepsy, intellectual disability, dyslexia, schizophrenia, and ASD
(Galaburda et al., 1985; Chang et al., 2005; Guerrini, 2005;
Alexandre et al., 2006; Wegiel et al., 2010). In addition to
neuronal migration, genetic and environmental factors also
affect other developmental processes, including axon growth
and pathfinding, dendrite arborization and pruning, spine
morphogenesis, synapse formation and remodeling. In current
studies of neurodevelopmental disorders, much attention has
been paid to the role of risk factors in synapse formation
and remodeling. The relationship between neuronal migration
deficits and functional defects of brain circuits, however,
has been largely ignored. For mechanism-based therapy of
neurodevelopmental disorders, it is important to clarify whether
neuronal migration deficits are general characteristics of the
disease and how aberrant neuronal migration leads to defects
in the function of disease-relevant brain circuits. This review
focuses on neuronal migration deficits in ASD. In addition to
reviewing clinical, neuropathological, and experimental evidence
of neuronal migration deficits in ASD, we, from a translational
perspective, also discuss how prevalent neuronal migration
deficits occur in autistic brains, how the heterogeneity of disease
phenotype is generated, and how aberrant neuronal migration
is mechanistically linked to brain circuit deficits. The potential
of treating ASD associated with neuronal migration deficits by
restoring neuronal migration is also discussed.

ARE NEURONAL MIGRATION DEFICITS
GENERAL NEUROPATHOLOGICAL
CHARACTERISTICS OF ASD?

Deformation of Autistic Brains Due to
Aberrant Neuronal Migration
From the perspective of ASD treatment, it is important to
determine whether neuronal migration deficits are a general
feature of ASD. Various forms of brain malformations in some
autistic individuals have been frequently discovered by magnetic
resonance imaging (MRI), including altered brain volume,
specifically the volume of cerebellum, frontal lobe, and limbic
system; enlarged brain ventricles; reduced cortex thickness;
various types of heterotopia; abnormal cortical gyrification; and
abnormal white matter volume (Acosta and Pearl, 2004; Ke
et al., 2008; Scott et al., 2009; Nickl-Jockschat et al., 2012; Yang
et al., 2016). Reduced volume of certain brain regions had
been considered as an evidence of neuronal migration deficits
in ASD (Peterson, 1995). However, since other developmental

processes, including the proliferation of neural progenitor cells,
generation of neurons and glial cells, neurite growth and pruning,
and cell survival, also directly affect the brain volume, MRI
findings of volumetric changes of ASD-associated brain regions
are not a direct indication of abnormal neuronal migration. MRI-
detectable brain structural abnormalities that are more directly
related to neuronal migration deficits include lissencephaly and
various types of heterotopias. In developing cerebral cortex,
hippocampus, and cerebellum of mammals, neuronal migration
guided by radial glial fibers (radial migration) is essential for
the formation of the laminar architecture and ultimately the
proper patterning of synaptic connectivity of neurons (Hatten,
2002). Abnormal radial migration is a major cause of structural
abnormalities in these brain regions. Cases of ASD associated
with pachygyria, dysplasia, and heterotopia have been frequently
reported (Korkmaz et al., 2006; Beal, 2014; Zare et al., 2019),
implying abnormal radial migration in these individuals.

It remains unclear how frequent these structural abnormalities
occur in ASD and in typically developing peers due to the lack
of a systematic comparison and consistency in clinical imaging
studies. However, several small scale studies have revealed a
frequency of 30 – 50% in ASD (Table 1). One MRI study reported
cortical malformations in 7 of 13 high-functioning male autistic
subjects, including polymicrogyria in 5 subjects, schizencephaly
and macrogyria in 1 subject, and macrogyria in 1 subject. None
of the 13 matched controls displayed any cortical abnormalities.
These structural abnormalities of the cortex are believed to arise
from deficits in radial migration of cortical neurons during the
first 6 months of gestation (Piven et al., 1990). A study combining
positron emission tomography (PET) and MRI in 13 infantile
autistic individuals showed that 5 of 13 autistic subjects displayed
neuronal migration abnormalities (focal pachygyria) (Schifter
et al., 1994). Postmortem MRI analyses of brains from 13 autistic
and 14 control subjects revealed subcortical, periventricular,
hippocampal, and cerebellar heterotopias in 4 autistic subjects
(Wegiel et al., 2010). The percentages of autistic individuals with
MRI-detectable structural abnormalities caused by abnormal
neuronal migration are highly variable in these studies, possibly
due to the difference in patient selection, imaging resolution, and
diagnose standard.

Neuropathological analysis of postmortem brain tissues allows
characterization of brain cytoarchitecture at a much higher
resolution to reveal mild structural abnormalities that cannot be
detected by clinical MRI. Qualitative and quantitative analysis of
postmortem brain sections showed altered laminar distribution
of neurons, poor patterning of the gray–white matter boundary,
and supernumerary neurons in the layer I or white matter in
most ASD cases (Bailey et al., 1998; Hutsler et al., 2007; Simms
et al., 2009; Avino and Hutsler, 2010; Oblak et al., 2011). As
summarized in Table 2, a clinicopathological study showed that 4
of 6 autistic brains displayed disturbed neuronal lamination in
various regions of the cerebral cortex and ectopic distribution
of neurons in the white matter (Bailey et al., 1998). In a
systematic analysis of whole brain serial sections, unusually small
soma size, more closely compacted neurons, and less distinctive
laminar architecture were discovered in the anterior cingulate
gyrus in 8 of 9 autistic brains (Kemper and Bauman, 1998).
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TABLE 1 | Percentages of ASD patients with diagnosable structural abnormalities of the brain in MRI studies.

MRI
studies

Patient
selection

ASD subjects Control subjects

Total
no.

Gender Structural abnormalities
relevant to neuronal
migration deficits

% Total
no.

Gender Structural
abnormalities

relevant to
neuronal

migration deficits

%

Piven et al.,
1990

High-
functioning
autistic

13 M (13) Polymicrogyria (5)
Schizencephaly and
macrogyria (1)
Macrogyria (1)

53.8 13 M (13) 0 0

Schifter
et al., 1994

Infantile autistic 13 M (9)
F (4)

Focal pachygyria (5) 38.5 – – – –

Wegiel
et al., 2010

Autistic 13 M (9)
F (4)

Subcortical heterotopia (2)
Periventricular heterotopia (1)
Hippocampal heterotopia (1)
Cerebellar heterotopia (1)

30.8 14 M (9) F (5) 0 0

M, male; F, female; %, percentage of subjects with structural abnormalities relevant to neuronal migration deficits; Numbers in brackets, numbers of subjects of each
category; Red, co-occurred with one of the above phenotypes; –, not available.

TABLE 2 | Percentages of autistic brains with aberrant neuronal migration revealed by neuropathological studies.

Neuropathological
studies

ASD subjects Control subjects

Total
no.

Gender Aberrant neuronal
migration

Affected brain
area

% Total
no.

Gender Aberrant
neuronal
migration

Affected brain
area

%

Bailey et al., 1998 6 M (5) F (1) Disturbed neuronal
lamination (4)

Frontal cortex 66.7 7 M (5) F (2) – – –

Kemper and
Bauman, 1998

9 – Less distinctive
laminar
architecture (8)

Anterior cingulate
cortex

88.9 9 – – – –

Simms et al., 2009 9 M (9) Irregular lamination
(3) increased neurons
in WM (6)

Anterior cingulate
cortex

100 4 M (4) 0 – 0

Oblak et al., 2011 8 M (8) Increased neurons in
WM (8)

Posterior cingulate
cortex

100 8 M (6) F (2) – – –

Stoner et al., 2014 11 M (8) F (3) Disruption of cortical
laminar
architecture (10)

Prefrontal and
temporal cortex

90.9 11 M (8) F (3) Disruption of
cortical laminar
architecture (1)

Prefrontal and
temporal cortex

9.1

WM, white matter; M, male; F, female; %, percentage of brains with aberrant neuronal migration; Numbers in brackets, numbers of subjects of each category; –, not
described/available.

A stereological analysis of the anterior cingulate cortex showed
irregular lamination in 3 of 9 autistic brains and increased density
of neurons in the subcortical white matter in the remaining
cases (Simms et al., 2009). A follow up study by the same
research group reported altered neuronal distribution in different
layers and increased neuronal number in the white matter of
posterior cingulate cortex in all 8 autistic brains (Oblak et al.,
2011). A recent small scale postmortem study reported that focal
disruption of cortical laminar architecture occurred in prefrontal
and temporal cortex in 10 of 11 children with ASD and 1 of
11 unaffected children (Stoner et al., 2014). These alterations in
cortical cytoarchitecture in autistic brains are strong indication
of defects in the radial migration of cortical neurons during

development, although failed neuronal apoptosis could also result
in increased neuronal density in the white matter and layer
I of the cortex (Avino and Hutsler, 2010). Together with the
aforementioned MRI imaging studies, these neuropathological
findings support the notion that most, if not all, individuals with
ASD have defects in neuronal migration in certain regions of
the brain, although in most ASD individuals, neuronal migration
deficits are mild and the overall cytoarchitecture of the brain is
maintained (Hutsler et al., 2007).

Structural MRI and neuropathological findings also showed
that neuronal migration deficits in autistic brains are highly
heterogeneous with respect to locations of occurrence, affected
cell types, quantity of ectopic neurons, and the associated
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structural changes. Aberrant neuronal migration in autistic
subjects or rodent ASD models has been observed in most
brain regions relevant to autistic behaviors, including the frontal
and temporal cortex, the cingulate cortex, the cerebellum, and
the raphe nuclei. In the cerebral cortex, deficits in both radial
migration of pyramidal neurons (Fukuda and Yanagi, 2017) and
tangential migration of GABAergic interneurons (Provenzano
et al., 2017) have been observed in subsets of individuals with
ASD. In the cerebellum of autistic brains, the presence within
the dysplastic nodule of both GABAergic Purkinje cells produced
from the cerebellar ventricular zone and glutamatergic granule
neurons produced from the rhombic lip indicates abnormal
migration of these two major cell types (Wegiel et al., 2010).
In the raphe nuclei, defects in the migration of serotonin (5-
hydroxytryptamine [5-HT]) neurons may cause abnormal 5-HT
levels in the prefrontal cortex of autistic brains (Miyazaki et al.,
2005; Kuwagata et al., 2009).

Deficits in neuronal migration have also been observed in
many rodent genetic models of ASD that mimic disease-causing
mutations in autistic individuals (Penagarikano et al., 2011;
Feliciano et al., 2012; Provenzano et al., 2017). In rodent models
that mimic ASD induced by environmental factors such as
maternal immunization (Patterson, 2011), prenatal exposure
to valproic acid (VPA) (Ranger and Ellenbroek, 2016), and
perinatal exposure to glufosinate ammonium herbicide (Herzine
et al., 2016), neuronal migration deficits are prominent features
(Kuwagata et al., 2009; Oskvig et al., 2012).

Neuronal Migration Deficits in Autistic
Brains Are Underdiagnosed
As mentioned above, more than 30% of ASD patients have
clinical manifestation of structural brain malformations that
reflect neuronal migration deficits (Table 1). As mild migration
deficits may be beyond the detection capacity of clinical
imaging technologies (Schumann and Nordahl, 2011), the
involvement of neuronal migration deficits in ASD without
visible brain deformation cannot be completely ruled out.
Clinical manifestation of brain malformation depends on the
accumulation of a large number of ectopic neurons in a focal
area. If a small population of ectopic neurons scatter in a broad
area of the brain, the general tissue structure would still be
maintained albeit the existence of misplaced neurons. Under such
situation, ectopic neurons can only be revealed by histological
analysis of postmortem brain tissues. In most ASD individuals,
neuronal migration deficits are mild and do not cause severe
brain structural abnormalities. The pathogenic impact of mild
neuronal migration deficits should not be ignored, because
studies in animals have shown that even very subtle migration
deficits involving only ten thousands of cortical neurons caused
long-lasting behavioral abnormalities (Vomund et al., 2017).
Another example is that activation of the mTOR pathway in
the interneuron lineage disrupts interneuron migration to the
cortex and reduces the seizure threshold, although this does
not lead to a visible abnormality of the brain (Fu et al., 2012;
D’Gama et al., 2017). A more rigorous method for detecting
this type of diffused neuronal heterotopia is to specifically

label different subpopulations of neurons in postmortem brain
tissues. Such technique has not been widely applied in clinical
pathology analysis, although it has been a laboratory routine in
analyzing animal tissues.

Some ectopic neurons undergo apoptosis due to insufficient
trophic support from the brain area of the migration destination.
These neurons are eliminated at later developmental stages,
resulting in a negative diagnosis. This possibility is supported by
findings in animal studies. In utero electroporation of embryonic
cortical neurons with shRNAs against the ASD risk gene Robo4
in mouse and rat led to deficits in radial migration of cortical
neurons, and the total number of neurons mis-localized in
deep cortical layers was markedly reduced at young adult stage
compared to neonatal stage (Zheng et al., 2012). A similar study
conducted in rat embryos also showed a loss of neurons that did
not migrate properly after knockdown of the disabled-1 (Dab1)
gene (Vomund et al., 2017).

Taken together, neuronal migration deficits represent an
important pathological feature of autistic brains, although some
individuals with ASD lack clear clinical diagnosis of neuronal
migration deficits. Due to the inability of current clinical imaging
techniques in detecting diffused lesions, the percentage of autistic
subjects with disorganized neuronal migration may have been
underestimated in clinical reports. Neuronal migration deficits
should be an important biomarker for ASD and an intervention
target for its treatment.

MECHANISMS UNDERLYING THE
PHENOTYPIC HETEROGENEITY OF
NEURONAL MIGRATION DEFICITS

Theoretically, behavioral consequence of neuronal migration
deficits depends on the brain region that has lost proper input
or output connectivity due to abnormal migration of a group
of neurons. Genetic studies have revealed a group of risk genes
for multiple psychiatric diseases (Cross-Disorder Group of the
Psychiatric Genomics Consortium, 2013b). Moreover, mutations
in a single ASD risk gene may be associated with different degrees
of social disability and different comorbid disorders including
schizophrenia, intellectual disability, language impairment,
epilepsy, and delayed development (Cross-Disorder Group of the
Psychiatric Genomics Consortium, 2013a). One potential reason
why mutations in a single gene can cause a broad spectrum
of clinical manifestations is that most ASD risk genes are large
genes with multiple functional domains, each interacting with
a specific signaling complex. Mutations in different domains of
the same molecule may lead to different or even opposite impact
on its downstream signaling cascades. Therefore, the phenotypic
consequences of mutations of a single gene at different sites may
be substantially different.

Recently, somatic mutations have emerged as another
important mechanism for neuronal migration disorders with
or without visible brain lesions. These mutations contribute
to a broad range of neuropsychiatric conditions including
epileptic encephalopathies, intellectual disability, and ASD
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(D’Gama and Walsh, 2018). Unlike traditional genetic mutations
that are inherited from germline cells and are present in all cells
of an affected individual, somatic mutations occur postzygotically
and are present in a subset of somatic cells. Human brain is found
to be highly vulnerable to somatic mutations during the period of
active neurogenesis (Lim et al., 2017; D’Gama and Walsh, 2018).
It has been shown that a low level of brain somatic mutations
is sufficient to cause intractable focal epilepsy (Lim et al.,
2015; Nakashima et al., 2015). Somatic mutations in neuronal
migration-associated genes randomly occur in different groups of
neural progenitors or at different developmental stages, leading
to different types of focal heterotopia (Pilz et al., 1999; Quelin
et al., 2012; Blumcke and Sarnat, 2016). Therefore, identical
mutations in the same neuronal migration-related gene may
result in heterogeneous disease phenotypes depending on when
the mutation occurs and what subpopulations of neurons are hit.

ASSOCIATION OF NEURONAL
MIGRATION DEFICITS WITH
COMPROMISED NETWORK FUNCTIONS

Due to the pleotropic nature of most genes, defects in
brain network functions upon gene mutations usually involve
multiple mechanisms. Some gene mutations directly affect
electrophysiological properties and synaptic transmission of
neurons in brain circuits, while others may indirectly alter
network activity by affecting various early developmental
processes, including neurogenesis, neuronal migration, and
axon/dendrite development. Defects in these early developmental
processes have a wide range of consequences for a timely,
coordinated establishment of interconnected neuronal networks.
Based on findings from clinical neuropathology and animal
model studies, we propose several potential mechanisms of how
abnormal neuronal migration may affect the wiring and function
of brain circuits.

One possibility is that compromised network function is
caused by abnormal function of misplaced neurons due to the
lack of appropriate afferent innervation at an ectopic location.
Many axons in the brain travel and innervate target cells in a
lamina-specific pattern (Huberman et al., 2010). Although the
overall laminar structure is maintained when a small number
of neurons fail to migrate to the proper cell layer, mis-located
neurons may lose the innervation by fibers that travel and
innervate neurons in the designated cell layer and thus do not
fire properly. Consistent with this notion is the finding that
deficits in the radial migration of cortical neurons induced by
in utero electroporation of rat cortex with shRNAs against the
doublecortin (Dcx) gene severely reduced both glutamatergic and
GABAergic synapses in ectopic neurons (Ackman et al., 2009;
Martineau et al., 2018).

Another possibility is that the failure of ectopic neurons
to innervate proper targets leads to abnormal firing of target
neurons. A typical example of such scenario is that the failure of
cortical interneurons to invade and populate the cortex resulted
in reduced inhibition of the cortical network. The distal-less
(Dlx) homeobox genes Dlx1, 2, 5, and 6 play important roles

in the maturation and migration of developing GABAergic
interneurons (Anderson et al., 1997). Point mutations in Dlx1,
2, and 6 genes have been detected in ASD patients (Liu
et al., 2009; Nakashima et al., 2010), implicating a role of
GABAergic dysfunction in ASD. Dlx1 and 2 are required
for the proper migration of all GABAergic interneurons, and
Dlx5 and 6 are required for the development of MGE-derived
parvalbumin-expressing interneurons that populate the cortex
and hippocampus (Wang et al., 2010). In Dlx1/2 double knock-
out mice, tangential migration of interneurons from ganglionic
eminences to the cortex and hippocampus is completely
abolished (Anderson et al., 1997; Cobos et al., 2005). In Dlx1 or
Dlx2 single knock-out mice, interneuron migration is generally
intact, but they have fewer interneurons, abnormal neurite
morphology, and increased seizure susceptibility (Cobos et al.,
2005, 2007; Mao et al., 2009). Misplaced cortical pyramidal
neurons due to deficits in radial migration are able to project
their axons to appropriate target regions (D’Amato and Hicks,
1980; Jensen and Killackey, 1984; Lee et al., 1997; Ackman
et al., 2009). However, recent studies combining diffusion tensor
imaging and resting state functional MRI revealed abnormal
structural and functional connection between heterotopia and
overlaying gray matter in patients with periventricular nodular
heterotopia (PVNH) (Christodoulou et al., 2012; Liu et al.,
2017). Electrophysiology studies of cortical slice from multiple rat
models of PVNH showed that the overlaying normotopic gray
matter generates epileptiform discharge that propagates to the
heterotopic gray matter, suggesting that aberrant migration of
heterotopic neurons triggered plastic changes of the overlaying
normotopic neurons to cause seizures (Sancini et al., 1998; Zhu
and Roper, 2000; Benardete and Kriegstein, 2002; Ackman et al.,
2009; Petit et al., 2014).

Misplaced neurons in autistic brains often exhibit delayed
maturation (Wegiel et al., 2010; Ben-Ari, 2014). In utero
electroporation of mouse embryos with shRNAs against several
neuronal migration-related genes, e.g., DCX and TBC1 domain
family member 24 (TBC1D24), not only retarded radial
migration of transfected neurons but also delayed maturation
of ectopic neurons (Ackman et al., 2009; Falace et al., 2014;
Martineau et al., 2018), presumably due to insufficient trophic
support from the target area. Ectopic neurons lack several mature
neuronal marker, but have immature dendritic arborization
and spine formation, insufficient dendritic spine pruning, and
delayed excitatory to inhibitory switch of GABAergic synaptic
transmission (Wegiel et al., 2010). These are also important
contributing factors of abnormal network activity in multiple
brain disorders including ASD.

THERAPEUTIC IMPLICATION OF
NEURONAL MIGRATION DEFICITS
IN ASD

As a developmental disorder, the core symptoms of ASD emerge
as a consequence of abnormal circuit wiring during embryonic
development. One major challenge for ASD therapy is that
it is not feasible to target the pharmacological intervention
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on embryonic developmental processes before the diagnoses of
the disease. Moreover, special cautions need to be paid to the
risk of unexpected side effects of any pharmacological agents
on embryos. It is important, therefore, to explore therapeutic
interventions that can effectively reverse the symptom after the
diagnosis of the disease at postnatal stage. For ASD associated
with neuronal migration deficits, therapies may be designed to
restore neuronal migration.

Several studies of experimental treatment targeting neuronal
migration in mice and rats have shown promising therapeutic
effects. In one such study, in utero electroporation of embryos
with shRNAs against Dcx in newborn cortical neurons in
mouse or rat embryos was performed to generate subcortical
band heterotopia. Electroporated animals displayed a reduced
threshold of convulsant-induced seizure, and misplaced
neurons were stimulated to migrate by re-expressing Dcx
at early postnatal stage. Re-starting migration in this way
restored both the patterning of neurons and the threshold of
convulsant-induced seizure (Manent et al., 2009). However,
this study did not address whether there is a causal relationship
between the rescue of neuronal migration and the recovery
of seizure threshold. Nevertheless, these findings suggest
that disorders of neuronal migration may be treatable by
re-engaging developmental programs to reduce the size of
cortical malformations and to restore network activities.
More sophisticated studies need to be conducted to clarify
whether migration deficits caused by mutations of other
genes can also be restored by rescuing the expression and
function of the mutated genes postnatally. It is also necessary
to determine the critical time window for effective restoration
of neuronal migration and network activity by re-expressing
the affected gene.

In a study using lissencephaly 1 (Lis1) gene heterozygous
knockout (Lis1±) mice, investigators found that in utero
knockdown of calpain by shRNA partially rescued defective
cortical layering in Lis1± offspring, and intra-peritoneal injection
of the calpain inhibitor ALLN to pregnant Lis1± dams
suppressed apoptotic neuronal cell death and neuronal migration
defects in mutant pups (Yamada et al., 2009). The same
research group later reported that postnatal treatment of Lis1±

mice with a blood-brain-barrier permeable calpain inhibitor
rescued defective neuronal migration and improved axonal
transport, brain circuit formation, and animal behavioral
performance (Toba et al., 2013). Furthermore, acute application
of the calpain inhibitor ALLN in brain slices of Lis1± mice
restored spontaneous and miniature excitatory postsynaptic
current (EPSC) frequencies to wild-type levels. This effect
may be due to inhibition in the cleavage of the calpain
substrate αII-spectrin although Lis1 protein levels were not
restored (Sebe et al., 2013). These findings showed the
possibility of postnatal application of pharmacological agents
to treat neurological defects associated with neuronal migration
deficits, although the causality between the rescue of neuronal
migration, neuronal activity, and animal behavior remains to
be investigated.

Pharmacological intervention of neuronal migration
was conducted in an autistic model of coiled-coil protein

associated with myosin II and DISC1 (CAMDI) gene knockout
mice. CAMDI maintains the acetylation of α-tubulin in the
centrosome by suppressing the activity of histone deacetylase
6 (HDAC6). In CAMDI knockout mice, hyperactivity of
HDAC6 causes deacetylation of α-tubulin in the centrosome,
resulting in aberrant migration of cortical neurons and
abnormal behaviors of the animals. Cortical radial migration
and psychiatric problems of CAMDI knockout mice were
rescued by an inhibitor of HDAC6 (Fukuda et al., 2016).
Further studies are needed to address the timing, quantity,
and brain region specificity of the drugs for effective treatment
(Fukuda and Yanagi, 2017).

Together, these findings showed that although the relationship
between the rescue of neuronal migration and the recovery of
brain function remains to be determined, neuronal migration can
be a promising target for drug screening in ASD animal models
and in tissue culture. It is conceivable that early intervention
is essential during a critical time window of postnatal brain
development, in which both neuronal migration and network
function are still reversible.

CONCLUSION

Clinical brain imaging, neuropathological analysis, and animal
model studies have revealed neuronal migration deficits as
a hallmark of autistic brains. Neuronal migration deficits
are very likely a fundamental contributing factor for ASD,
and are important biomarkers for ASD diagnosis and
phenotypic readout in drug screening for ASD treatment.
Rapid progress has been made in exploring ways for postnatal
treatment to reverse neuronal migration and brain network
defects in rodent models of neuronal migration disorders.
There is an urgent need to elucidate the postnatal time
window for restoring neuronal migration and to explore
the therapeutic effect of correcting neuronal migration
for ASD treatment.
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