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Abstract

This review evaluates the pediatric evidence for pharmacogenetic associations for drugs that are 

commonly prescribed by or encountered by pediatric clinicians across multiple subspecialties, 

organized from most to least pediatric evidence. We begin with the pharmacogenetic research 

that led to warning of increased risk of death in certain pediatric populations (“ultrarapid 

metabolizers”) who are prescribed codeine after tonsillectomy or adenoidectomy. We review the 

evidence for genetic testing for thiopurine metabolism, which has become routine in multiple 

pediatric subspecialties. We discuss the pharmacogenetic research in proton pump inhibitors, for 

which clinical guidelines have recently been made available. With an increase in the prevalence of 

behavioral health disorders including attention deficit hyperactivity disorder (ADHD), we review 

the pharmacogenetic literature on selective serotonin reuptake inhibitors, selective -norepinephrine 

reuptake inhibitors, and ADHD medications. We will conclude this section on the current 

pharmacogenetic data on ondansetron.

We also provide our perspective on how to integrate the current research on pharmacogenetics 

into clinical care and what further research is needed. We discuss how institutions are managing 

pharmacogenetic test results and implementing them clinically, and how the electronic health 

record can be leveraged to ensure testing results are available and taken into consideration when 

prescribing medications.
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Introduction

Pharmacogenetics is an emerging component of precision medicine. Many medications 

prescribed by pediatricians and pediatric subspecialists are influenced by pharmacogenetic 

variants. Yet, few pediatricians have training to incorporate pharmacogenetic results 

into practice. This review will provide an overview of pharmacogenetics, review 

pharmacogenetic research for exemplary gene-drug pairs, discuss clinical implementation, 

and provide a general perspective for the field.

Definition of Key Terms and Resources

Discussion of pharmacogenetic literature is facilitated by knowledge of key terms and 

resources (Table 1) (1–5). While the terms pharmacogenetics and pharmacogenomics are 

often used interchangeably, pharmacogenetics is the study of single genes and their effect 

on drug response, and pharmacogenomics is focused on how the entire genome influences 

drug response. Some pharmacogenes affect drug absorption, distribution, metabolism or 

excretion (“what the body does to the drug,” or pharmacokinetics). Others influence the 

therapeutic effects or risk of adverse drug events (ADEs) (“what the drug does to the 

body,” or pharmacodynamics). Precision medicine incorporates pharmacogenetic, clinical, 

environmental, and lifestyle factors into prescribing decisions.

Individual differences in drug metabolism can be partially attributed to variants (alterations 

of the DNA sequence) in genes that code for metabolizing enzymes responsible for drug 

breakdown. Cytochrome P450 (CYP450) is a superfamily of enzymes expressed in the liver, 

intestinal tissue, and elsewhere that are involved in drug metabolism. Alleles (versions of the 

same gene with one or more variants) of genes coding for CYP450 and other metabolizing 

enzymes are identified using the “star (*) nomenclature,” where *1 is the reference sequence 

to which all alleles are compared and generally the functional enzyme (6). The activity 

of each allele is assessed and determined based on in vitro activity and in vivo evidence 

for associated drugs (gene-drug pair/interaction) (4) (Table 2). The functional phenotype or 

metabolizer status resulting from the combined effect of both alleles is categorized using 

standard nomenclature: poor, intermediate, normal, rapid, and ultrarapid. This results in a 

spectrum of possible enzyme activity ranging from no function in poor metabolizers to 

increased function in ultrarapid metabolizers. Medications may be administered as inactive 

prodrugs or active drugs. Prodrugs are activated by the process of metabolism as they are 

transformed into active molecules. In contrast, active drugs can be inactivated by metabolism 

by being broken down into partially active or inactive metabolites (Figure 1A). Knowing 

whether a prescribed medication is activated or inactivated by metabolism influences the 

clinical effects of altered enzyme function, and the risk of ADEs or drug-drug interactions 

(Figure 1B).

Pharmacogenetic knowledge is rapidly changing with new evidence being produced at 

exponential rates due to active research. PharmVar, the Pharmacogene Variation Consortium, 
and PharmGKB, resources supported by the National Institutes of Health, curate and 

centralize pharmacogenetic information to facilitate the interpretation of pharmacogenetic 

testing (2,7). The Clinical Pharmacogenetic Implementation Consortium (CPIC) produces 
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evidence-based clinical guidelines on gene-drug pairs and interactions (5), including 

statements regarding how recommendations apply to pediatric patients. Finally, the Food and 

Drug Administration (FDA) has provided lists of pharmacogenetic associations for which 

data support management recommendations and how drug labels have incorporated the data 

(8,9).

Examples of Pharmacogenomic Research Supporting Clinical 

Implementation

Codeine and Morphine

One of the most well-known gene-drug interactions in children associated with life 

threatening ADEs and drug label changes is CYP2D6 and codeine. While the prodrug 

codeine has minimal analgesic effects, its most active metabolite, morphine, has a 200-fold 

greater affinity for opioid receptors, provides potent analgesic effects, and has the potential 

to cause somnolence, respiratory depression, and death (10). Low production of morphine 

from codeine may result in inadequate pain control.

Codeine is metabolized to morphine by CYP2D6, the enzyme encoded by the CYP2D6 
gene. In vitro studies demonstrated variable morphine production by human liver tissue 

and purified enzymes based on CYP2D6 genotypes (11–15). Liver enzymes isolated from 

ultrarapid metabolizers have higher morphine production when compared to enzymes from 

normal metabolizers, while enzymes from poor metabolizers produce little morphine. In 
vivo, poor metabolizers (prevalence of 0.4–5.4% (16)) have lower morphine production, less 

analgesia, and fewer ADEs compared to normal and ultrarapid metabolizers (17–27). These 

findings have been confirmed in children (28).

Given the low potency, codeine was considered safe for outpatient use, but reports of severe 

ADEs in infants of breastfeeding mothers who were taking codeine raised concern. High 

morphine concentrations were found in symptomatic infants of breastfeeding mothers taking 

codeine (29,30). In most cases the high morphine concentration was due to the dose of 

codeine, though some were also identified as CYP2D6 ultrarapid metabolizers. The FDA 

advised caution when prescribing codeine to a breastfeeding mother who is an ultrarapid 

metabolizer (31). The prevalence of ultrarapid metabolizer status varies depending on the 

biogeographic population (32), but can be above 10% in certain groups including Oceanian, 

Ashkenazi Jewish, and Middle Eastern populations (16).

In 2009, a 2 year-old child with sleep apnea was reported to have died after taking codeine 

following an uncomplicated adenotonsillectomy (33). Postmortem analysis revealed high 

morphine levels and functional duplication of CYP2D6 leading to ultrarapid metabolizer 

phenotype. After review of ADEs reported in children taking codeine after tonsillectomy 

and/or adenoidectomy (T&A) and who had altered CYP2D6 metabolism (34,35), the FDA 

issued a new boxed warning stating codeine was contraindicated in children following 

a T&A (36). In 2014, CPIC guidelines strongly recommended avoidance of codeine in 

ultrarapid metabolizers due to potential for toxicity and in poor metabolizers due to lack of 
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efficacy (36,37). While codeine prescriptions for children have decreased since the initial 

FDA warning in 2013, use has persisted in some pediatric practices (38,39).

After reviewing ADEs reported over a 45-year period in children under the age of 18, 

the FDA identified over 60 cases of severe breathing problems and 24 deaths following 

codeine administration (40). In 2017, the FDA updated codeine drug labels to strengthen 

their warnings, including a contraindication for codeine to treat pain or cough in children 

under 12 years of age. A new warning was also added, recommending against codeine use 

in adolescents ages 12 to 18 who have underlying breathing issues, such as obstructive sleep 

apnea, and in breastfeeding mothers.

Some have advocated for an exception to the FDA contraindication if pharmacogenetic 

testing is done, which could enable safe codeine use (41). By eliminating codeine as an 

option to treat pain, clinicians have resorted to alternative analgesics, including more potent 

opioids, with higher risk of serious ADEs and which also have gene-drug interactions. 

Patients with sickle cell disease often require opioids when they are in crises, and codeine 

was frequently used as it is the only Schedule III opioid analgesic available in the United 

States. Incorporation of CYP2D6 testing into clinical practice with a clinical decision 

support tool within the electronic health record (EHR) has been demonstrated to be a safe 

and effective way to prescribe codeine to children with sickle cell disease while preventing 

codeine use after T&A and in patients with CYP2D6 ultrarapid and poor metabolizer 

genotypes (42). Further research is required to identify other patient populations and 

indications in which the benefits of pharmacogenetic-guided codeine use outweighs the 

risks.

With the removal of codeine from many pediatric formularies, tramadol may be used 

more frequently for pain management. However, tramadol is also a substrate of CYP2D6 

metabolism and requires transformation into an active metabolite to provide pain relief (43). 

Similar to codeine, poor metabolizers are at risk of inadequate pain control and ultrarapid 

metabolizers have higher risk of ADEs (44).

Thiopurines

Azathioprine (a prodrug of mercaptopurine), mercaptopurine, and thioguanine are thiopurine 

immunosuppressants prescribed for pediatric dermatologic, gastrointestinal, oncologic, 

and rheumatologic diseases. Their ADEs include myelosuppression, pancreatitis, and 

hepatotoxicity, and their use may carry an increased risk of lymphoma (45). All three drugs 

are considered prodrugs and metabolized to active thioguanine nucleotides. Thiopurines 

have significant interactions with two pharmacogenes, thiopurine methyltransferase (TPMT) 

and nudix (nucleoside diphopshate linked moiety X)-type motif 15 (NUDT15). Each of 

these genes strongly influences clinical response and development of ADEs (46). Preemptive 

(pre-prescription) genetic testing for one or both of these genes has become routine for some 

pediatric subspecialists.

The interactions between TPMT and mercaptopurine, to which azathioprine is converted, 

are complex (46,47). TPMT inactivates mercaptopurine through methylation, converting 

the drug to methylmercaptopurine base and thus decreasing the amount of parent drug 
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available to produce active thioguanine nucleotides (TGNs). However, TPMT also acts on 

a secondary metabolite of mercaptopurine, thioinosine monophoshate (TIMP), and converts 

it to methyl-TIMP which has immunosuppressive effects and contributes to hepatotoxicity. 

In vitro studies have shown that mercaptopurine’s conversion to methylmercaptopurine was 

lower in cells and organ tissues isolated from intermediate metabolizers and absent in 

poor metabolizers, when compared to normal metabolizers (48–51). In poor metabolizers, 

proteosomal degradation of TPMT was responsible for enzyme deficiency (52–54).

Clinically, TPMT poor metabolizers are at high risk for severe life threatening 

myelosuppression due to toxic TGN levels (47,55). While intermediate metabolizers 

have higher TGNs than normal metabolizers, many are able to tolerate full doses of 

mercaptopurine or azathioprine because of reduced methyl-TIMP levels (46). Individualized 

mercaptopurine and azathioprine dosing based on TPMT phenotype and measurement 

of thiopurine metabolites can successfully treat acute lymphoblastic leukemia (56) and 

inflammatory bowel disease (57–59), while reducing ADEs.

TPMT testing identifies only a portion of patients at risk of myelosuppression. 

More recently, NUDT15 variants have been demonstrated to affect thiopurine 

tolerability, especially in Asian and Hispanic patients. Thiopurines are metabolized into 

cytotoxic thioguanine triphosphate (TGTP), the primary anti-leukemic metabolite and 

significant contributor to myelosuppression (46). NUDT15 converts TGTP to thioguanine 

monophosphate, a less toxic metabolite. In vitro, NUDT15 decreases thiopurine cytotoxicity 

by inactivating thiopurine metabolites (60). In children, NUDT15 deficient alleles led 

to increased levels of active thiopurine metabolites and cytotoxicity, requiring lower 

mercaptopurine doses (60–63).

CPIC updated guidelines in 2018 on thiopurine dosing based on TPMT and/or NUDT15 
genotypes (46). Recommendations on initial doses depend on the indication and the 

phenotype for each enzyme. While genotyping errors can occur and phenotypes can vary 

within metabolizer status (e.g. TPMT intermediate metabolizers), evaluation of markers of 

disease progression, myelosuppression or other toxicities, and even metabolites, will allow 

clinicians to adjust thiopurine doses from the genotype-guided starting doses.

Proton Pump Inhibitors

Proton pump inhibitors (PPIs) are commonly prescribed to children (64–66). FDA approved 

indications (with variable age ranges) include short term therapy for gastroesophageal reflux 

disease, erosive esophagitis, peptic ulcer disease, and H. pylori eradication (67–69). PPIs 

are often used off label in younger children, and for indications including eosinophilic 

esophagitis (for which PPIs are considered standard of care) and some upper respiratory 

tract inflammatory conditions, with conflicting data to support efficacy (70–72). These drugs 

act at the gastric cells by inactivating the proton acid pump which suppresses acid secretion 

(73). Common ADEs of PPIs include headache and gastrointestinal distress, and children 

are more prone to respiratory infections (67). Prior studies have suggested that the main 

route of metabolism is via sulfoxidation and hydroxylation through CYP450 enzymes with 

correlation of intrinsic clearance of PPIs to enzyme function (74). Omeprazole is considered 

Tang Girdwood et al. Page 5

Pediatr Res. Author manuscript; available in PMC 2022 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a CYP2C19 clinical index inhibitor and has been used in drug-drug interaction studies 

(75). All first-generation PPIs (omeprazole, lansoprazole and pantoprazole) and the second-

generation PPI dexlansoprazole are primarily metabolized by CYP2C19, with CYP3A4 

playing a minor role (73). Metabolism of the second-generation PPIs esomeprazole and 

rabeprazole are less CYP2C19 dependent (73).

Multiple adult studies have suggested that individuals with reduced CYP2C19 metabolism 

have increased exposure to first-generation PPIs compared to normal metabolizers (76). In 

adults, poor metabolizers have been shown to have a greater response and less acidic gastric 

pH compared to intermediate and normal metabolizers (77). Taken together, these studies 

suggest that CYP2C19 plays a clinically relevant role in PPI efficacy. CPIC guidelines are 

available to guide use of CYP2C19 metabolizer status for PPI selection and dose (78).

Prior studies have suggested increased CYP2C19 function in children compared to adults, 

thus the association of CYP2C19 function and clinical outcomes of PPI use should be 

carefully considered in the pediatric population (79). For pediatric patients, pantoprazole 

and lansoprazole are the two most commonly investigated PPIs with respect to CYP2C19 

effects. These studies have shown that poor metabolizers have higher exposure compared 

to normal metabolizers with delayed clearance and longer drug half-life (80,81). Clinical 

studies of children taking lansoprazole have associated ADEs and efficacy with CYP2C19 

metabolizer status (82). The data for omeprazole are less clear and include some studies that 

show no association of outcomes with CYP2C19 genotype (83,84). However, a recent study 

showed reduced PPI efficacy in CYP2C19 ultrarapid metabolizers vs. those with reduced 

or normal CYP2C19 function (85). Data for infants are lacking and would be of interest 

given the very low CYP2C19 function observed in fetal and neonatal periods, followed by 

PPI clearance approximating adult values around 6 months of age (86,87). In a cohort of 

children under 3 years of age (median age 7 months), increased upper respiratory infections 

were observed in normal metabolizers compared to those with increased CYP2C19 function 

(88). Taken together, these data suggest that CYP2C19 genotype can predict PPI plasma 

concentrations, efficacy, and toxicity in children, and support the use of CYP2C19 data to 

guide PPI dosing, particularly after the neonatal period.

Selective Serotonin Reuptake Inhibitors

Selective serotonin reuptake inhibitors (SSRIs) increase serotonergic activity by decreasing 

presynaptic serotonin reuptake (89). SSRIs are the most common antidepressant class used 

in pediatric patients (90). Some SSRIs are FDA approved for some pediatric indications 

such as depression and obsessive compulsive disorder, but are commonly prescribed off 

label in pediatric and adolescent patients for indications that have adult FDA approval such 

as anxiety disorders, post-traumatic stress disorder, and premenstrual dysphoric disorder 

(91). Common pediatric SSRI ADEs include activation, gastrointestinal upset, and sleep 

disturbance (92).

Some SSRIs, including sertraline, citalopram, and escitalopram, are extensively metabolized 

by CYP2C19, with other CYP450 enzymes contributing to a lesser extent (79). Paroxetine 

and fluvoxamine are primarily metabolized by CYP2D6, while both CYP2D6 and CYP2C19 
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contribute significantly to fluoxetine metabolism (79). In vitro studies correlate the effect 

of CYP variants and SSRI concentrations, and active drug and metabolite concentrations 

have been observed to correlate with the functional status of the CYP enzyme primarily 

responsible for drug metabolism (79). Poor and intermediate metabolizers have higher 

plasma concentrations than normal, rapid or ultrarapid metabolizers (93). There are CPIC 

guidelines pertaining to five of most commonly used SSRIs to assist in using CYP2D6 

metabolic status for dosing of paroxetine and fluvoxamine and CYP2C19 status for 

sertraline, escitalopram, and citalopram. These guidelines generally suggest reduced starting 

dose or alternative therapy in poor metabolizers to avoid ADEs and alternative therapies in 

ultrarapid metabolizers to avoid inefficacy (79).

For children and adolescents, the level of evidence for pharmacogenomic effects of CYPs 

varies across SSRIs. The data regarding the association of citalopram and escitalopram 

show mixed results. One small pediatric study did not show an association of citalopram 

and escitalopram concentrations or clinical symptoms to CYP2C19 genotype (94). Another 

study suggested that ultrarapid metabolizers had slower escitalopram dose escalation over 

time compared to other metabolizers, although there was no association with the clinical 

endpoint point of irritability (94,95). In contrast, one pediatric study showed poor and 

intermediate CYP2C19 metabolizers have higher citalopram/escitalopram plasma levels 

although clinical effects were not reported in this study (96). Also, one study showed a 

higher rate of discontinuation of citalopram/escitalopram in poor metabolizers compared to 

faster metabolizers, likely related to increased ADEs (97). There are three prior pediatric 

studies that do not suggest an association of CYP2C19 function and pediatric response 

or toxicity to sertraline (97–99), although another study found that children with reduced 

CYP2C19 metabolism had fewer ADEs than normal metabolizers, opposite of findings in 

adults (92). Fluoxetine, which is metabolized by CYP2D6 into an active metabolite, does 

not have CPIC guidelines. Pediatric studies investigating CYP2D6 metabolizer status and 

fluoxetine response did not show a difference in active metabolites or clinical outcomes 

(100,101). Thus, taken together the pediatric evidence for using CYP450 genetic testing for 

SSRI dosage guidance in youth is mixed and requires further study.

Some studies have examined associations of SSRI pharmacodynamic targets to attempt to 

improve pediatric efficacy. Two studies showed a correlation of the variants that encode 

the serotonin transporter and receptor, SLC6A4 and HTR2A, on the dose and response of 

sertraline (98) and fluoxetine (101). Another study showed an association of the serotonin 

transporter SLC6A4 and citalopram related agitation (102). Although candidate genes are 

emerging to predict pediatric response to SSRIs, further work in this area is needed prior to 

clinical implementation.

Attention Deficit-Hyperactive Disorder Medications

ADHD is a common pediatric disorder with evidenced based guidelines suggesting 

medication as a first line treatment for children older than 6 years of age (103). Stimulants 

are most commonly used as first line agents, but non-stimulants (atomoxetine, clonidine, and 

guanfacine) are commonly used as second line treatments or for certain populations (103). 

Most methylphenidate and amphetamine-containing medications are FDA approved to treat 
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ADHD in children 6 years and older, as are atomoxetine, clonidine, and guanfacine (104). 

Despite these options, there is often heterogeneity in response to ADHD medications, which 

might be related to genetic factors (105).

Methylphenidate is not metabolized significantly by any CYP450 enzymes, while some 

amphetamine medications (e.g. dextroamphetamine) utilize CYP2D6 as a primary metabolic 

pathway (106). There are no guidelines or adult data to suggest dosing of stimulants 

based on genotype. Overall, many reports propose multiple candidate genes for pediatric 

response to stimulants, although these often have inconsistent evidence (105). Catechol-o-

methyltransferase (COMT), an enzyme that inactivates dopamine and norepinephrine, the 

targets of methylphenidate, is the most extensively studied. Results indicate that gene 

variants resulted in decreased enzyme activity (107) and decreased medication response 

(108,109), although conflicting data are published (110). Thus, at this time there is 

insufficient evidence for using pharmacogenomics to guide stimulant dosing.

With regard to the non-stimulant medications used in ADHD treatment, atomoxetine, a 

selective norepinephrine reuptake inhibitor (110,111), is metabolized by CYP2D6 and to 

a lesser extent CYP2C19 (112). Pediatric studies suggest that CYP2D6 poor metabolizers 

had better response to atomoxetine than normal metabolizers, yet the poor metabolizers 

also experienced increased ADEs (112,113). Atomoxetine has guidance for dosing based on 

CYP2D6 from the FDA label and CPIC. The FDA label for atomoxetine suggests CYP2D6 

poor metabolizers should reach a maximum dose of 1.2 mg/kg/day while others can go 

to a maximum dose of 1.4 mg/kg/day (114). CPIC guidelines recommend the appropriate 

timing to titrate atomoxetine dose based on CYP2D6 genotype and suggest that CYP2D6 

ultrarapid metabolizers will likely not achieve appropriate efficacy from this drug at standard 

dosing regimens (112). If a clinician is prescribing atomoxetine, CYP2D6 testing may aid in 

determining the titration schedule and target dose.

Ondansetron

Ondansetron is a 5-HT3 antagonist commonly prescribed to reduce acute nausea and 

vomiting in pediatric patients. Metabolism of ondansetron is through several CYP enzymes: 

CYP3A4, CYP1A2, CYP2D6 and CYP1A1 (115). Though it only accounts for ~30% of the 

metabolism of ondansetron (116), CYP2D6 variation can influence exposure and efficacy of 

the drug. Adult CYP2D6 ultrarapid metabolizers are more likely to continue to experience 

nausea and vomiting than normal metabolizers because of reduced exposure (117,118). 

One study in pediatric stem cell transplant patients confirmed the association between 

CYP2D6 ultrarapid metabolizers and increased episodes of emesis due to chemotherapy 

(119). The CPIC guideline for ondansetron suggests that an alternative antiemetic agent (e.g. 

granisetron) be used in CYP2D6 ultrarapid metabolizers (120).

Ondansetron efficacy also depends on pharmacodynamics. The drug prevents serotonin 

from binding to vagal afferent nerves after release from the intestinal enterochromaffin 

cells, which decreases vagus nerve signaling, reducing serotonin release in the brainstem 

(120,121). There are large interindividual differences in binding of ondansetron to the 5-HT3 

receptors, and efficacy partially correlates with receptor occupancy (122,123). Variants 
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in HTR3B have been associated with early efficacy of ondansetron (124,125), but more 

research is needed, especially in pediatric patients.

Clinical Pharmacogenetic Testing

There are several potential approaches to clinical pharmacogenetic testing. Depending on 

the drug, single-gene or panel-based tests are available. Clinicians must also decide on the 

timing of testing. “Reactive” testing is pursued at the time of prescribing the associated 

drug or after an ADE has been experienced (126–128) (Figure 2). Clinical utility of 

the results could be limited by the turnaround time for the test, particularly if a drug 

needs to be prescribed immediately. This obstacle could be overcome with point-of-care, 

rapid turnaround testing (128). Alternatively, preemptive testing is performed in advance 

of prescribing decisions so that turnaround time is not an issue (Figure 2). Results are 

available (e.g. in the EHR) for all prescribers. Given readily available technology to test 

multiple variants across multiple genes at low cost, many have advocated for a pre-emptive, 

panel-based pharmacogenetic testing strategy (126,127). Large studies have demonstrated 

that >90% of patients who undergo pharmacogenetic testing harbor at least one actionable 

variant, and, further, that most patients are exposed to at least one of the associated drugs 

(129,130). As costs for panel-based testing decrease, these data support a preemptive 

panel-based strategy (129,130). However, reimbursement by insurance companies has been 

identified as a barrier to implementation (131,132).

For pediatricians to use pharmacogenetic data in routine clinical practice, they must 

have access to a valid, relevant testing assay with clear, interpretable, actionable results 

with appropriate turnaround time (126). Since most physicians have not received formal 

pharmacogenomics education and do not feel adequately informed about pharmacogenetics 

(133,134), pediatricians should be aware of resources that provide guidance in the 

interpretation of clinical pharmacogenetic tests, such as CPIC and PharmGKB. Several 

pharmacogenetics conferences offer continuing education credits, and for those interested 

in a more thorough understanding, there are certificate programs in pharmacogenetics for 

clinicians.

Ensuring that pharmacogenetic results are easily accessible in the EHR to all healthcare 

team members, including those outside the institution or the laboratory that performed the 

test, is an area of opportunity for implementation research. The EHR is the logical place 

to record results and create decision supports for current and future prescribers. Further, 

EHRs can be linked to pharmacogenomic records or biobanked specimens to provide 

research resources to further advance pharmacogenetics (135,136). Utilizing the EHR in 

this way requires collaboration of prescribers, pharmacists, laboratories, pharmacologists, 

and bioinformaticians.

Many institutions, health care systems, and countries are implementing pharmacogenomics 

via various strategies (137). In the US, some institutions are moving beyond recording 

pharmacogenomic data in the EHR by providing clinical decision support; these alerts are 

activated when a drug is being ordered for which a patient has an actionable genotype 

(137,138). Thailand has implemented wallet sized plastic cards to record pharmacogenomic 
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results that patients carry and can present to medical providers (139). Ubiquitous 

Pharmacogenomics is a European effort to pre-emptively obtain pharmacogenomic testing, 

embed this data in the clinical record, provide patients with wallet sized cards with 

pharmacogenomic data, and utilize an electronic clinical decision support system to notify 

prescribers when a patient has a risk genotype (137).

Perspective: Recommendations for Pediatricians

For pediatric researchers, the examples provided herein demonstrate the spectrum of 

the maturity of pharmacogenetic research for various drugs. The association of variable 

CYP2D6 function, predicted by CYP2D6 genetic variants, to codeine activation to morphine 

was one of the sentinel discoveries in the field of pharmacogenetics. Further research 

exploring the clinical impact of this gene-drug interaction revealed potential toxicity from 

therapeutic doses of codeine affecting neonates, infants, and children. The accumulation of 

evidence led to regulatory and practice changes. On the other hand, for ondansetron, the 

evidence for the drug-gene interaction in adults is robust, but validation in pediatric cohorts 

is lacking. While some advocate for extrapolation of adult data to adolescents and children, 

there may be unique drug-gene interactions in younger patients. For SSRIs, one pediatric 

study indicated that ADEs are more common among CYP2C19 normal metabolizers than 

poor metabolizers, opposite of what is reported in adults (92). While not discussed in our 

earlier examples due to infrequent prescription in pediatrics, for simvastatin, an increased 

effect size of SLCO1B1 variation is seen in children and adolescents vs. adults (140). These 

examples motivate validation of pharmacogenetic associations using data from pediatric 

populations prior to clinical implementation. Furthermore, the tremendous physiologic and 

metabolic changes that occur during childhood (and particularly in infancy and adolescence) 

provide the opportunity for discovery of novel, pediatric-specific drug-gene interactions.

It is important to generate high quality evidence to support clinical implementation 

of pharmacogenomics into pediatric practice, the hallmarks of which are: 1) Adequate 

sample size. Many pediatric pharmacogenetic studies are of inadequate sample size to 

provide power to detect a difference between groups, leading to inappropriate reporting 

of negative findings (Type II error). Collection of large cohorts of drug-exposed children 

representing the full spectrum of genetic variants can be difficult, particularly for drugs 

that are infrequently used in children. Large biobanks are one potential solution to 

gathering sufficient sample size. 2) Clinically meaningful endpoints. The progression of 

the codeine-CYP2D6 association from research to regulatory action was facilitated by the 

documentation of severe, life threatening events and deaths attributed to the drug-gene 

interaction. Likewise, clinical implementation of TPMT and NUDT15 testing to guide 

thiopurine dosing was supported by the observation of potentially life threatening white 

blood cell suppression. While not all pharmacogenetic associations will be associated 

with such dramatic outcomes, studies must include clinically relevant outcomes (e.g. 

for ondansetron, nausea and vomiting impacting quality of life and length of hospital 

stay). For drugs with well-known therapeutic and toxic concentrations (e.g. voriconazole), 

pharmacokinetic studies may suffice, but for many others, pharmacodynamic data will 

be required. 3) Inclusion of participants representing those exposed to the drug with 

respect to age, indication, and ancestry. Drugs often have pediatric- and age-specific 
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indications (e.g. NSAIDs for closure of patent ductus arteriosus), which may have specific 

pharmacogenetic associations. Neonates, infants, children, and adolescents may have 

developmentally regulated expression of drug transporters, metabolic enzymes, and drug 

response targets, leading to age-specific associations. Many genetic and pharmacogenetic 

studies have focused on those of European ancestry. Since the spectrum and prevalence of 

genetic variants often vary across ancestral populations, it is imperative to study diverse 

cohorts to make the findings relevant to clinical care. 4) Robust assessment of the target 

gene. While full sequencing for each gene of interest may be cost prohibitive, researchers 

must ensure that the most important and frequent variants for the gene(s) of interest, which 

may vary depending on the population, are assessed.

Clinical implementation of pharmacogenetics in pediatrics is challenging 

(132,134,136,137,141,142) and further discussion of clinical implementation is beyond the 

scope of this review. However, additional high quality studies with these four hallmarks will 

propel the field of pediatric pharmacogenetics towards clinical implementation.

Pediatric clinicians can expect increasing evidence supporting incorporation of 

pharmacogenetics into their care of children. However, care must be taken to critically 

evaluate the evidence. It has been common for some commercial pharmacogenetic testing 

companies to take a “more is better” approach to their recommendations, including genetic 

associations with very little or conflicting evidence into their pharmacogenetic test results 

(143). Recent FDA actions have encouraged laboratories performing pharmacogenetic 

testing to provide only the results of the testing, without interpretation or guidance for 

the prescriber. While this may avoid the inappropriate reliance on poor quality studies 

to guide care, it also shifts the burden of interpretation to clinicians. It is important for 

pediatricians to have access to high quality education about pharmacogenetics as more 

drug-gene interactions are demonstrated to have clinical validity for children.
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Impact Statement:

• While many reviews of pharmacogenetics literature are available, there are 

few focused on pediatrics.

• Pediatricians across subspecialties will become more comfortable with 

pharmacogenetics terminology, know resources they can use to help inform 

their prescribing habits for drugs with known pharmacogenetic associations, 

and understand the limitations of testing and where further research is needed.
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Figure 1: 
The relationship between prodrugs, active drugs and inactivated drug metabolites, and 

metabolizer status. (A) Inactive prodrugs (top) need to be metabolized into an active drug 

metabolite to have therapeutic effect. In contrast, when an active drug is administered, 

metabolism of the drug can result in an inactivated drug metabolite. (B) Since prodrugs (left) 

are metabolized to an active form of the drug to achieve therapeutic effect, poor metabolizers 

who have low enzyme function will have low active drug concentrations and are at risk for 

inefficacy. Ultrarapid metabolizers who have high enzyme function are at risk of high active 

drug concentrations and potential toxicity. Active drugs (right) are metabolized into inactive 

drugs that have minimal or no therapeutic effect. Poor metabolizers are therefore at risk of 

high concentrations of active drugs and thus potential toxicity, while ultrarapid metabolizers 

will have low concentrations of active drug and may not achieve therapeutic efficacy.
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Figure 2. 
A timeline of pharmacogenetic testing to demonstrate preemptive vs reactive testing. 

Pharmacogenetic (PGx) testing is preemptive if it occurs prior to prescription of a 

medication affected by the gene tested. If a panel of genes is tested or if a second medication 

influenced by the same gene is prescribed, a reactive test can be preemptive for the second 

medication, indicated by the dotted arrow. Clinical events are indicated by the pins along the 

timeline and brackets indicate when a test would be considered preemptive or reactive.
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Table 1:

Definitions of Key Terms and Resources in the Field of Pharmacogenetics

Pharmacogenetics Study of individual or a few genes and their effect on the variability of drug responses

Pharmacogenomics Field that combines pharmacology and genomics to study how all genes in the genome affect the drug 
response

Pharmacokinetics What the body does to the drug, including absorption, distribution, metabolism and elimination

Adverse drug event (ADE) Harm caused by the use of a drug

Pharmacodynamics What the drug does to the body, including therapeutic response and adverse effects

Precision Medicine The provision of treatments and preventions based on an individual’s genetic, environmental and lifestyle 
factors

Alleles/Gene Variants Forms of the same gene with small differences in the DNA sequence/Alterations of the most common DNA 
sequence of a gene

Metabolizing Enzymes Enzymes that are responsible for the breakdown of molecules and chemicals, including drugs, to metabolites. 
During the process of metabolism, drugs can be activated (prodrug → active drug) or fully or partially 
inactivated (active drug → partially active or inactive metabolites).

Cytochrome P450 Genes and 
Enzymes

Enzymes encoded by the cytochrome P450 genes and expressed primarily in the liver are involved in the 
synthesis and metabolism of various molecules and chemicals, including drugs. Each cytochrome gene is 
named with CYP, followed by the gene’s subgroup and a number of the gene within the subgroup (e.g. 
CYP2D6).

Star (*) Alleles Combinations of genetic variants (haplotypes) in drug metabolism genes are designated using “star 
nomenclature”. Star alleles are reported to cause no, decreased, normal, or increased function of the enzyme.

Gene-drug pair/interaction Change in the effect of a drug due to differences in a gene

Metabolizer Phenotypes Description of clinical phenotypes based on the combined impact of both alleles
Normal metabolizer: Fully functional metabolizing enzyme activity Rapid metabolizer: Increased enzyme 
activity compared to normal metabolizers but less than ultrarapid metabolizers Ultrarapid metabolizers: 
Increased enzyme activity compared to rapid metabolizers
Intermediate metabolizer: Decreased enzyme activity compared to normal metabolizer but more than poor 
metabolizers Poor metabolizer: Little to no enzyme activity

Drug-Drug Interaction (DDI) Change in the effect of a drug due to the presence of another drug in the body

PharmVar (Pharmacogene 
Variation Consortium)

Repository for pharmacogene allelic variation to facilitate the interpretation of pharmacogenetic test results 
for precision medicine

Pharmacogenomics 
Knowledge Base 
(PharmGKB)

Resource sponsored by the National Institutes of Health that curates information on human genetic variation 
and drug responses

Clinical Pharmacogenetics 
Implementation Consortium 
(CPIC)

International group interested in facilitating the clinical use of pharmacogenetics testing through the creation 
of peer-reviewed and evidence-based gene/drug clinical practice guidelines
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Table 2:

Example drug-gene pairs for medications prescribed to children with significant evidence for 

recommendations in prescribing actions as defined by the Clinical Pharmacogenetics Implementation 

Consortium

Drug Gene

allopurinol HLA-B

aminoglycoside antibacterials MT-RNR1

amitriptyline
CYP2C19

CYP2D6

atomoxetine CYP2D6

azathioprine
TPMT

NUDT15

carbamazepine
HLA-A

HLA-B

citalopram CYP2C19

clopidogrel CYP2C19

codeine CYP2D6

escitalopram CYP2C19

fluvoxamine CYP2D6

ibuprofen CYP2C9

lansoprazole CYP2C19

mercaptopurine
TPMT

NUDT15

nortriptyline CYP2D6

omeprazole CYP2C19

ondansetron CYP2D6

pantoprazole CYP2C19

paroxetine CYP2D6

phenytoin
HLA-B

CYP2C9

sertraline CYP2C19

simvastatin SLCO1B1

succinylcholine
RYR1

CACNA1S

tacrolimus CYP3A5

tramadol CYP2D6

voriconazole CYP2C19

warfarin

CYP2C9

CYP4F2

VKORC1
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