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Abstract

The blood fluke Cardicola forsteri (Trematoda: Aporocotylidae) is a pathogen of ranched

bluefin tuna in Japan and Australia. Genomics of Cardicola spp. have thus far been limited

to molecular phylogenetics of select gene sequences. In this study, sequencing of the C. for-

steri genome was performed using Illumina short-read and Oxford Nanopore long-read

technologies. The sequences were assembled de novo using a hybrid of short and long

reads, which produced a high-quality contig-level assembly (N50 > 430 kb and L50 = 138).

The assembly was also relatively complete and unfragmented, comprising 66% and 7.2%

complete and fragmented metazoan Benchmarking Universal Single-Copy Orthologs (BUS-

COs), respectively. A large portion (> 55%) of the genome was made up of intergenic repeti-

tive elements, primarily long interspersed nuclear elements (LINEs), while protein-coding

regions cover > 6%. Gene prediction identified 8,564 hypothetical polypeptides, > 77% of

which are homologous to published sequences of other species. The identification of select

putative proteins, including cathepsins, calpains, tetraspanins, and glycosyltransferases is

discussed. This is the first genome assembly of any aporocotylid, a major step toward

understanding of the biology of this family of fish blood flukes and their interactions within

hosts.

Introduction

Cardicola forsteri (Trematoda: Aporocotylidae) is a blood fluke that infects bluefin tunas

(Thunnus spp.) [1, 2]. C. forsteri parasitises Thunnus spp. hearts in its adult life cycle stage,

while adult C. orientalis are found in the branchial arteries of the gills [3, 4]. Additionally, the

co-infecting species C. opisthorchis is found in the hearts of Pacific bluefin tuna (PBT, Thunnus
orientalis) [5], but has not been found in southern bluefin tuna (SBT, Thunnus maccoyii).
While less prevalent in wild populations, infections with Cardicola spp. represents the most

significant health issue for ranched bluefin tuna, a multimillion-dollar industry operating in

Japan, Australia, and the Mediterranean [6]. Treatment with praziquantel (PZQ) has signifi-

cantly reduced mortalities of SBT since its implementation in 2013, and C. forsteri is now the
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dominant Cardicola spp. infecting SBT [7]. Despite the success of PZQ in the treatment of Car-
dicola infections, the required holding period and the risk of resistance has prompted research

into alternative control measures. A variety of animal husbandry practices can also reduce the

burden of helminthiases in ranched bluefin tunas, but additional pharmacological and immu-

nological interventions would benefit the industry [8–10]. However, very little is known about

Cardicola spp. beyond morphological characterisations and identifications of their intermedi-

ate hosts [11–13]. A full genome sequence of C. forsteri could help to answer fundamental

questions of its biology and facilitate transcriptomic and proteomic investigations.

The genomes of the human blood flukes Schistosoma mansoni and S. japonicum (Trema-

toda: Schistosomatidae), were first published in 2009 using chain-termination (Sanger)

sequencing technology [14, 15]. The advent of Illumina sequencing dramatically reduced

sequencing costs, so genomes for other digenean trematodes, including S. haematobium, Fas-
ciola hepatica, and F. gigantica, were published in the 2010s [16–18]. However, despite the rela-

tively high base call accuracy of Illumina sequencing, its short-read lengths alone cannot

bridge the large repeat regions typical of these genomes, so these initial assemblies are rela-

tively discontiguous and fragmented. The addition of Third-Generation sequencing technolo-

gies, namely PacBio single molecule real time sequencing (SMRT) and Oxford Nanopore

sequencing, has greatly improved these assemblies. The S.mansoni genome is now in its ninth

revision (GCA_000237925.5), > 95% of which is assembled into seven autosomes and two sex

chromosomes [19].

Cardicola was first diagnosed by Robert B. Short in 1953 [20], and 34 novel species have

since been added to the genus, primarily based on morphological characterisations, making

Cardicola the most speciose genus within the Aporocotylidae. Until now, only ribosomal 28S,

internal transcribed spacer 2 (ITS-2), and mitochondrial cytochrome c oxidase subunit I

(cox1) sequences of C. forsteri have been published, and these were recently used to demon-

strate polyphyly in the genus and to reclassify other species in the genus [21]. Whole genome

sequencing (WGS) could further aid in molecular phylogenetics of Aporocotylidae and their

evolutionary relationships to other trematodes. Additionally, putative functional information

can be mined from hypothetical proteins, which would direct further studies into the struc-

tural biology and host–parasite interactions of Cardicola spp.

Vaccines have been implemented in aquaculture since the 1980s to control a variety of

infections [22], and immunization of farmed bluefin tunas with immunodominant antigens

could be a viable control measure for infections with Cardicola spp. [1]. While there are cur-

rently no approved vaccines against helminthiases for fishes, several targets are undergoing

human clinical trials, and some vaccines are approved to control helminthiases in mammalian

livestock [23]. These vaccines chiefly interfere with digestive enzymes or target the surface teg-

ument, which is the primary interface of platyhelminths accessible by the host immune system.

A functionally annotated genome assembly of C. forsteri would facilitate further research into

host–parasite interactions and rational vaccine design by homology to known vaccine targets

in other digeneans. In this study, we present the first draft of the C. forsteri genome, assembled

de novo from a hybrid of short-read (Illumina) and long-read (Oxford Nanopore) sequences.

Predicted genes were functionally annotated, and putative glycosyltransferases and vaccine tar-

gets are discussed.

Methods

Specimen collection

Whole adult Cardicola forsteri specimens were flushed from the hearts of wild-caught southern

bluefin tuna (SBT, T.maccoyii), ranched in the lower Spencer Gulf, according to the protocol
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described by Aiken et al. [24]. These SBT were from untreated pontoons collected during the

2019 harvest, as per Power et al. [25]. Sampling was performed during harvesting under animal

ethics approval (RMIT Animal Ethics Committee #22802) from specimens after euthanasia,

which was performed by commercial SBT companies using industry best-practice techniques.

The C. forsteri specimens were stored in RNAlater1 at -20 ˚C.

Genomic DNA extraction and sequencing

RNAlater1 was completely washed from the specimens with Tris-buffered saline (TBS, 20

mM Tris, 150 mM NaCl, pH 7.6). For Illumina short-read sequencing, genomic (g)DNA from

two adult specimens was extracted separately using the ISOLATE II Genomic DNA Kit (Bio-

line), according to the manufacturer’s instructions. The yield of double-stranded (ds)DNA in

each sample was measured by Qubit™ 4 Fluorometer (Thermo Fisher Scientific) using the

dsDNA HS Assay Kit, according to the manufacturer’s instructions. The purity of each sample

was indicated with A260/280 and A260/230 ratios using the NanoDrop™ One microvolume

spectrophotometer (Thermo Fisher Scientific), according to the manufacturer’s instructions.

These two samples were sent to the Ramaciotti Centre for Genomics for library preparation

and sequencing. The short-read libraries from each sample were prepared using Nextera DNA

Flex Library Prep Kit (Illumina1, Inc.), according to the manufacturer’s instructions. Each

sample was sequenced in paired ends of 150-bp lengths using the NextSeq1 500 System,

which yields 300–550 bp insert size (Illumina1, Inc.).

For Nanopore long-read sequencing, high-molecular weight (HMW) gDNA was extracted

from approximately 30 pooled adult specimens using the MagAttract1HMW DNA Kit (QIA-

GEN), according to the manufacturer’s instructions. The yield of dsDNA in the sample was

measured by Qubit™ 4 Fluorometer, according to the manufacturer’s instructions. Purity was

indicated with A260/A280 and A260/A230 ratios using the NanoDrop™, according to the manu-

facturer’s instructions. Fragmentation was assessed using the TapeStation automated electro-

phoresis system (Agilent Technologies, Inc.), according to the manufacturer’s instructions.

This sample was also sent to the Ramaciotti Centre for Genomics for library preparation and

sequencing. The HMW gDNA extracted from the pooled specimens was sequenced with Grid-

ION MK1 (Oxford Nanopore Technologies Ltd.), using the FLO-MIN106 flow cell and Liga-

tion Sequencing Kit (SQK-LSK110). Long-read sequences were base called using Guppy v4.3.4

High-Accuracy model [26].

Trimming and removal of host contaminants from the short-read library

Base call quality scores were assessed using FastQC. To improve basecall accuracy, four nucle-

otides were trimmed from the 30 end of each paired-end read in the short-read library using

Trimmomatic v0.36 [27].

Each short-read sequence was queried against the genomes of Pacific bluefin tuna (T. orien-
talis, GCA_009176245.1) and S.mansoni (GCA_000237925.4) using pBLAT v2.5 with default

parameters [28, 29]. These reference genomes were chosen as the closest relatives of the host

(T.maccoyii) and parasite (C. forsteri), respectively, with high-quality published genomes [29].

Of the matching reads with high query-coverages (116–146 bp), those that matched only with

the T. orientalis and not the S.mansoni genome were removed from the short-read library.

Species identity was confirmed in silico using pBLAT, with complete sequence identity of C.

forsteri ITS-2 (AB742428.1) and 28S (AB742426.1) nucleotide sequences to the short-read

library [3, 21].
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Short-read assembly and k-mer optimisation

Short reads for each specimen were assembled using the Hamiltonian de Bruijn graph assem-

bler ABySS v2.1.5 [30], with k-mers from 50 to 102 and a minimum k-mer depth of four (kc

parameter). The contiguity statistics for each assembly were then examined, and the k-mer

that produced the highest N50 and E-size, and lowest L50 for each of the specimens was

selected as the optimal k-mer for short-read assembly of that specimen.

Estimation of the size, ploidy, and heterozygosity of the C. forsteri genome

A k-mer depth plot for each specimen was constructed with Jellyfish v2.3.0 [31], and this was

used to determine the peak k-mer depth (D0) for estimation of the haploid genome size,

according to the following equations:

D ¼
D0l

l � kþ 1

and

G ¼
nread l � kþ 1ð Þ

D0
¼

nk� mer

D0
¼

nbase

D

where G is haploid genome size, D is read depth, l is average read length, and k is k-mer length

[32].

The k-mer depth plot was also used as the input for GenomeScope [33], which estimated

the haploid size, repeat length, and heterozygosity of the C. forsteri genome. Ploidy was esti-

mated from this k-mer depth plot using Smudgeplot v0.2.5 [34].

De novo assembly of hybrid contigs

The genome was assembled de novo using the short-read contigs from each of the ABySS

assemblies and long reads as inputs for Wengan v0.2 [35]. Briefly, Wengan corrects short-read

contigs by splitting chimeric contigs that lack paired-end support. Then, a synthetic mate-pair

library is constructed from the long reads, which are mapped to the corrected short-read con-

tigs, spanning the gaps and repeat regions. This information, along with the full long reads, is

used to construct a synthetic scaffolding graph and, ultimately, hybrid contigs. The Wengan

input accounted for the size and coverage of the long reads: large genome size (> 500 Mb, -g

parameter), insert sizes of synthetic mate-pair reads 0.5–20 kb (-i parameter), 3 long-reads

required to keep a potentially erroneous mate-edge (-N parameter), and 5 kb as the minimum

length of reduced paths to convert them to physical fragments (-P parameter).

Assessment of contiguity and completeness of the genome assembly

Contiguity statistics of the hybrid contigs for each assembly were calculated using QUAST

v5.0.2 [36]. The completeness of each assembly was assessed using BUSCO v5.2.2 [37] against

the metazoa_odb10 database, which comprises 954 Benchmarking Universal Single-Copy

Orthologs (BUSCOs). These statistics were compared with those of published genome assem-

blies of other trematodes, using the same metazoan database for a like-for-like comparison (S1

Table).

Repeat masking and annotation of the draft genome

A de novo repeat library was compiled from the C. forsteri genome assembly using RepeatMo-

deler v2.0.2a [38], which comprises RECON v1.08 [39], RepeatScout v1.0.6 [40], LTRharvest
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v1.5.9 [41], and LTR_retriever v2.9.0 [42], and these repetitive elements were softmasked with

RepeatMasker v4.1.2-p1 [43].

For consistency, the genome assembly with the greater contiguity and completeness was

selected from the two for gene prediction and functional annotation. Ab initio and homology-

based gene prediction were performed using the BRAKER2 pipeline [44]. This pipeline firstly

executed the ProtHint pipeline, which generated a set of seed genes from the C. forsteri
genome assembly using the self-training ab initio gene prediction tool GeneMark-ES [45].

These seed genes were then translated into seed proteins, which were queried against a data-

base of reference proteins (S.mansoni, GCF_000237925.1) using DIAMOND [46]. The output

from ProtHint was ultimately used to train GeneMark-EP+ [47], which generated a set of

anchored genes to train AUGUSTUS v3.4.0 [48] for the final output of predicted genes. Hypo-

thetical polypeptide sequences were translated from the predicted genes, and the completeness

of the gene set was assessed using BUSCO in protein mode.

For functional annotation, the hypothetical polypeptide sequences were queried using

BLASTp (E-value� 10−5) against the curated Swiss-Prot database [49]. Select sequences were

further characterised as putative proteases, glycosyltransferases, ribonucleases, calpains, cation

channels, tetraspanins (TSPs), glutathione S-transferases (GSTs), TGF-β homologs, and fatty

acid-binding proteins (FABPs) based on BLASTp matches to the National Center for Biotech-

nology Information’s (NCBI’s) non-redundant protein sequences (NR) database and motif

identification using HMMER v3.2.2 [50] with the Pfam database v35.0 [51] and CAZy database

[52]. Signal peptides were predicted using SignalP 6.0 (probability� 0.95) [53], transmem-

brane domains were predicted using DeepTMHMM v0.0.47 (https://biolib.com/DTU/

DeepTMHMM), and N-glycosylation sites were predicted using NetNGlyc v1.0 [54].

Phylogenetic analyses

Outgroup-rooted phylogenetic trees of C. forsteri cathepsins and fucosyltransferases were con-

structed using the maximum likelihood method, with homologous proteins from SBT set as

the outgroup. The protein sequences were aligned with MUSCLE v3.8.1551 [55], and these

alignments were constructed as phylogenetic trees using RAxML v8.2.12 [56] with the Gamma

model of rate heterogeneity, the WAG amino acid substitution model, and the majority rule

consensus tree criterion.

Results

Sequencing and assembly

Approximately 450 ng of dsDNA was extracted from each C. forsteri specimen selected for

short-read sequencing, and Illumina sequencing yielded 86 million paired-end reads from

Specimen 1 and 127 million from Specimen 2 (Table 1). Due to the higher read output and the

contiguity of the resulting assemblies, only the Specimen 2 assembly is reported here, but

more information on the Specimen 1 assembly is available in S1 Table. Approximately 0.2–

0.3% of short reads were likely derived from the host (T.maccoyii) and were removed from the

library prior to assembly. The optimal k-mer length was found to be 77, based on the N50, E-

size, and L50 of the short-read assemblies (Fig 1A). Using this optimal k-mer, the peak k-mer

depth (D0) is 15, followed by a secondary peak, which indicates a large number of repetitive

bases (Fig 1B). The haploid genome size was estimated to be 530–600 Mb by calculating the

number of k-mers over peak k-mer depth, whereas GenomeScope estimated 230–236 Mb,

with 25–30 Mb (12–15%) of repetitive elements. Smudgeplot proposed C. forsteri to be diploid

in its adult life cycle stage, based on the grouping of k-mer pairs into haplotypes. As the

genome size and ploidy of C. forsteri have not been empirically validated, the GenomeScope
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estimate was selected for further calculations. Using the GenomeScope estimate of haploid

genome size, short-read sequence coverage is 80×.

For long-read sequencing, approximately 19 μg of dsDNA was extracted from pooled C. for-
steri specimens with a DNA integrity number (DIN) of 6.9, which indicates moderate degrada-

tion, and a modal fragment size of 15,640 bp (5–58 kb range). Nanopore sequencing yielded

4.97 million reads with an N50 of 5.5 kb and a total of 13.68 Gb (90.79% passed). Long-read

coverage was estimated to be> 53×, using the haploid genome size estimate of 230–236 Mb.

The short-read library was assembled with ABySS, and these short-read contigs were com-

bined with the pooled long-read data and assembled with Wengan. The size of the final hybrid

assembly is 217 Mb. The GC content of the C. forsteri genome is> 28%, which is lower than

that of other platyhelminths (schistosome GC content> 34%) [57].

Contiguity and completeness of hybrid assembly

An important quality metric of genome assemblies is contiguity, with larger contigs indicating

a less fragmented assembly. The assembly is highly contiguous, with 1,532 hybrid (assembled

from short and long reads) contigs (N50 = 430,422 and L50 = 138) (Fig 2A), and the largest

contig is > 3 Mb. These contigs are more contiguous than those of the latest F. hepatica assem-

bly (S1 Table), which comprises only short-read sequences. The BUSCO (Benchmarking Uni-

versal Single-Copy Ortholog) analysis indicates a relatively complete assembly, with 66.0% of

metazoan BUSCOs found complete in the assembly and only 7.2% fragmented (Fig 2B). This

Table 1. Statistics from short-read Illumina paired-end sequencing of Cardicola forsteri.

Number of short reads 126,882,928

Number of short reads derived from the host 278,175 (0.22%)

Optimal k-mer 77

Estimated haploid genome size (Mb) 230

Estimated short-read coverage 80×
Estimated repeat length (Mb) 25 (12%)

Estimated heterozygosity (%) 0.14

Assembled genome size (bp) a 216,531,548 (94%)

a Total sequence length of the hybrid assembly.

https://doi.org/10.1371/journal.pone.0276287.t001

Fig 1. Analyses of k-mers in the Cardicola forsteri short-read library. (A) Contiguity statistics for the short-read assembly of different k-mers. N50 and E-

size are shown as an overlaid column graph, while L50 is shown as an overlaid line graph with a secondary y-axis. (B) Plot of k-mer depth using the optimal

k-mer 77.

https://doi.org/10.1371/journal.pone.0276287.g001

PLOS ONE Cardicola forsteri draft genome

PLOS ONE | https://doi.org/10.1371/journal.pone.0276287 October 14, 2022 6 / 20

https://doi.org/10.1371/journal.pone.0276287.t001
https://doi.org/10.1371/journal.pone.0276287.g001
https://doi.org/10.1371/journal.pone.0276287


also supports C. forsteri as a more complete assembly than that of F. hepatica, which has 65.4%

and 10.5% complete and fragmented BUSCOs, respectively. For further comparison, S.man-
soni BUSCOs are 71.5% complete and 5.0% fragmented.

Repetitive elements

Contrary to the estimates of GenomeScope, a large proportion of the C. forsteri genome was

identified by RepeatModeler as repetitive and was masked prior to genome annotation. These

repetitive elements comprise 124,057,400 bp (57.29%) of the assembly (Table 2). This

Fig 2. Contiguity, completeness, and gene prediction and annotation statistics of the Cardicola forsteri genome assemblies. (A) Nx plot of the genome

assembly, depicting the contig size distribution. (B) BUSCO statistics for the genome assembly, and the hypothetical transcripts and gene set (proteins),

measured as a proportion of complete, fragmented, and missing BUSCOs from the metazoa_odb10 database. (C) Pie chart showing the sizes (bp) of

predicted CDSs, introns, and UTRs as a proportion of the genome (n = 216,531,548). (D) Pie chart showing the number of hypothetical polypeptides

(n = 8,564) that were functionally annotated, matched to the Swiss-Prot database or not (unannotated), and incomplete. BUSCOs, Benchmarking Universal

Single-Copy Orthologs; CDS, coding sequence; UTR, untranslated region.

https://doi.org/10.1371/journal.pone.0276287.g002

Table 2. Repetitive elements classified by repeat modeler and masked prior to the annotation of the Cardicola for-
steri genome.

Repetitive elements Number Length (Mb)

LINEs 173,788 50.39 (23.27%)

LTRs 10,709 3.82 (1.76%)

DNA transposons 33,663 12.04 (5.56%)

Small RNA repeats 30,817 2.85 (1.32%)

Low-complexity repeats 137,547 8.29 (3.83%)

Unclassified repeats 269,189 46.67 (21.55%)

Total 655,713 124.06 (57.29%)

LINEs, long interspersed nuclear elements; LTRs, long terminal repeats.

https://doi.org/10.1371/journal.pone.0276287.t002
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proportion is higher than most other trematode genomes (40–54%), with the exception of F.

gigantica (~ 70%) [57]. Long interspersed nuclear elements (LINEs) comprise > 20% of repeti-

tive bases, with a smaller number of DNA transposons, simple repeats, and long terminal

repeats (LTRs) identified in each assembly.

Genome annotation

The C. forsteri genome assembly was predicted to comprise a total of 8,564 protein-coding

genes (covering 41.93% of the genome) and coding regions (CDSs), which cover 15.29% of the

repeat-masked genome (Table 3). The vast majority (95.71%) of CDSs are complete, while the

remaining are missing either a start or stop codon, or both. The average predicted gene and

CDS length are 10,618 bp and 1,651 bp, respectively, with an average of 6.7 exons per gene.

The predicted genes were translated into 8,564 hypothetical polypeptide sequences, 6,620

(77.30%) of which matched to the Swiss-Prot database, with 5,837 unique matches. The hypo-

thetical polypeptide sequences (gene set) and their transcripts comprised 60.27% and 57.75%

complete metazoan BUSCOs, respectively (Fig 2B). These results are mostly consistent with

those of Schistosoma spp. assemblies, except that the average gene, intron, and exon length is

smaller [58]. Furthermore, 70 putative proteases, 47 glycosyltransferases, 14 ribonucleases, 10

calpains, 6 cation channels, 6 tetraspanins (TSPs), 2 glutathione S-transferases (GSTs), 2 TGF-

β homologs, and a fatty-acid binding protein (FABP) were functionally annotated, based on

matches to protein sequences in the National Center for Biotechnology Information’s

(NCBI’s) non-redundant protein sequences (NR) database (S2 Table). These protein families

were selected as candidate immunogens and drug targets based on research into other digen-

eans. Matches were primarily to S. japonicum, S.mansoni, and S. haematobium, as well as

some to F. hepatica and Clonorchis sinensis, which fits with known evolutionary relationships,

as all are digeneans. Proteins of interest include calpains 1 and 2, secreted cathepsins B and L,

and a CD63-like TSP with 4 predicted transmembrane domains (S2 Table).

Discussion

This is the first draft genome assembly of C. forsteri and the first of an aporocotylid. Most of

the currently available genomes of trematodes belong to Schistosoma and Fasciola spp. as etio-

logical agents of neglected tropical diseases (NTDs). C. forsteri is a significant pathogen of

bluefin tuna and a member of the Schistosomatoidea but differs from its schistosome relatives

in that it is monoecious and without suckers [11]. While schistosomes provide the closest

point of genomic comparison, the species are expected to be sufficiently divergent to warrant a

de novo genome assembly. Nanopore long reads were incorporated in this hybrid de novo

Table 3. Gene prediction statistics of the Cardicola forsteri genome assembly.

Number Total length (bp) Average length (bp)

Genes 8,564 90,783,647 (41.93%) 10,600

CDSs 8,564 14,137,916 (6.53%) 1,650

Exons 57,052 14,747,359 (6.81%) 258

Introns 48,268 76,092,320 (35.14%) 1,576

50 UTRs 203 405,498 (0.19%) 3

30 UTRs 139 203,945 (0.09%) 3

CDS, coding sequence; UTR, untranslated region.

https://doi.org/10.1371/journal.pone.0276287.t003
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assembly, which aided in spanning the large repeat regions to greatly improve the contiguity

and completeness of the hybrid assembly over short-read assemblies alone.

In silicomethods for estimating genome size from k-mer depth varied greatly in their

results, indicating that the C. forsteri genome is between 230 and 600 Mb. While C. forsteri was

assumed to be diploid throughout these analyses based on the Smudgeplot analysis and the

adult life cycle stage of schistosomes [59], this remains unknown, and polyploidy might have

confounded these estimates. Ploidy varies among platyhelminths, sometimes even within spe-

cies, so polyploidy would not be unusual for C. forsteri [60–62]. Additionally, the large number

of repetitive elements typical of trematodes (> 55%), which is far higher than the estimates

from GenomeScope (12–15%), may have interfered both with estimates of genome size and

the assembly itself. Both genome size and ploidy would be more accurately estimated using

laboratory techniques, such as flow cytometry coupled with fluorescence-activated cell sorting

(FACS) [63, 64]. As the estimated heterozygosity for both specimens is relatively low (< 1%),

this is unlikely to complicate their assemblies, so conventional assembly tools (e.g. ABySS)

were used, rather than those developed for highly heterozygous genomes [65]. However, as

with estimates of genome size, estimates of heterozygosity may not be accurate. Luo et al. [58]

reported relatively high heterozygosity of S. japonicum (1.05%).

Although the hybrid contigs are highly contiguous due to Wengan’s synthetic scaffolding

approach [35], the contigs themselves are not scaffolded. However, improvements to the conti-

guity of the assembly could not be achieved by scaffolding with the available Nanopore

sequence data using LongStitch [66], so future assemblies should incorporate mate-pair

sequences, optical mapping, or Hi-C data [67]. The contiguity statistics of these hybrid contigs

is comparable to scaffolds of early assemblies of other trematode genomes (S1 Table) [16], and

the BUSCO analyses indicates a relatively complete and unfragmented assembly. In particular,

the proportion of fragmented BUSCOs is low (< 10% for the predicted genome, transcrip-

tome, and proteome) relative to other trematode assemblies.

Ab initio and homology-based gene prediction produced 8,564 protein-coding genes

spanning > 40% of the assembled C. forsteri genome. As with other trematodes, the ratio of

intron-to-exon length is large (> 6:1). While gene length is relatively consistent with other

digeneans, the proportion of repeats is generally larger (>55%). Longer repeat regions are

being identified in more recent assemblies due to the sequencing of higher molecular weight

long reads. This phenomenon was evidenced by the most recent S.mansoni assembly, for

which Buddenborg et al. [19] found an increase of 11% repetitive bases over the previous

assembly. Luo et al. [57] showed that the increase in the proportion of repetitive elements in

Fasciola spp. largely occurs within intergenic regions, so repetitive elements could likewise be

contained within intergenic regions of the C. forsteri genome. Nevertheless, average CDS

length remains relatively consistent among digeneans (~ 1.5 kb). The predicted mRNA tran-

scripts are not supported by RNA-seq data, but the vast majority (> 77%) of polypeptide

sequences generated from the predicted gene set match to other trematodes, which fits into an

evolutionary context.

As with schistosomiases in humans, the drug of choice for treating bluefin tuna infected

with Cardicola spp. is PZQ, which is thought to induce paralysis of the parasites by interfering

with voltage-gated Ca2+ channels (VGCCs) in adult platyhelminths [68, 69]. In this study, 6

putative cation channels were functionally annotated from this C. forsteri genome assembly

(S2 Table). Park et al. [70] showed that PZQ activated a schistosomal transient receptor poten-

tial melastatin ion channel (TRPM, A0A5K4F0X5) in vitro, but a single missense mutation

(Asn1388!Thr) in the hydrophobic binding pocket confers resistance to PZQ, which occurs in

F. hepatica. Interestingly, the first 54 residues (including Asn1388) of the binding pocket do not

align with the most homologous putative CfTRPM1 (Table 4, sequence identity = 84.54%), but
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all the remaining residues identified as essential to PZQ-sensitivity are conserved. Therefore,

we conclude either that PZQ interacts differently with C. forsteri TRPM or that PZQ kills C.

forsteri via alternative mechanisms. This may indicate that the PZQ mechanism of action is

more complex than interactions with a single target.

Most of the putative C. forsteri proteins are predicted to be N-glycosylated. Correspond-

ingly, 47 putative glycosyltransferases were identified in this study (S2 Table). As expected,

many of these are likely responsible for the synthesis of N-glycans, as indicated by structural

domains in the CAZy database [52]. In its adult life cycle stage, C. forsteri predominately syn-

thesizes oligomannose N-glycans, as well as paucimannosidic and complex-type N-glycans

carrying core fucose and xylose [71]. No α1–3-linked fucoses were found in adults, but 3 puta-

tive α1–3 fucosyltransferases were identified in this study (Table 5). In particular, CfFucTD is

homologous (sequence identity > 46%) to schistosomal α1–3 fucosyltransferases D (E2EAI7),

E (E2EAI8), and F (E2EAI9), which have been functionally characterised and were shown to

synthesize Lewis X and fucosylated LacdiNAc motifs [72, 73]. Therefore, C. forsteri likely syn-

thesizes these motifs in pre-adult life cycle stages, as postulated by Coff et al. [71]. Sustained

IgG1 and IgG3 responses to cercarial multifucosylated LDN motifs have been associated with

protective immunity against schistosomiases [74–77], so glycomics is crucial to a holistic

Table 4. Select Cardicola forsteri protein homologs and their predicted conserved structural domains.

Putative protein Abbreviation Pfam-A

Calpain 1 CfCalp1 PF00648, PF01067

Calpain 2 CfCalp2 PF00648, PF01067

Cathepsin B CfCB PF00112, PF08127

Cathepsin L CfCL PF00112, PF08246

25-kDa GST Cf25GST PF14497, PF02798

27-kDa GST Cf27GST PF13417, PF14497

TRPM CfTRPM1 PF18139, PF00293, PF00520

TSP-2 (CD63-like) Cf-TSP-2 PF00335

GST, glutathione S-transferase; TRPM, transient receptor potential melastatin; TSP, tetraspanin.

https://doi.org/10.1371/journal.pone.0276287.t004

Table 5. Select putative Cardicola forsteri glycosyltransferases with their predicted structural domains.

Putative protein Abbreviation Pfam-A CAZy

Fucosyltransferases

Peptide–O-fucosyltransferase CfFucTA PF10250 –

Galactoside α1–3 fucosyltransferase CfFucTB PF00852, PF17039 GT10

CfFucTC PF00852, PF17039 GT10

CfFucTD PF00852, PF17039 GT10

α1–6-fucosyltransferase CfFucTE PF19745 NA

Xylosyltransferases

Xylosyltransferase I CfXylT1 PF02485, PF12529 GT13

Glycoprotein β1–2 xylosyltransferase CfXylT2 PF04577 GT61

N-acetylgalactosyltransferases

β1–4 N-acetylgalactosaminyltransferase CfGalNT1 PF13733, PF02709 GT7

Glucuronyltransferases

Bifunctional β1–3 glucuronyltransferase CfGlcAT1 PF03360 GT43

CfGlcAT2 PF13896 GT49

https://doi.org/10.1371/journal.pone.0276287.t005
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understanding of host–parasite interactions. Interestingly, CfFucTE is grouped with a hypo-

thetical α1–6 fucosyltransferase from SBT (XP_042246885.1) in the phylogenetic analysis (Fig

3), although this node shares only 34% sequence identity. Additionally, several putative O-

linked glycosyltransferases were identified, indicating that, like its schistosome relatives, C. for-
sterimay also synthesize O-glycans in its pre-adult life cycle stages [78, 79]. For example,

CfFucTA shares homology (sequence identity = 51.51%) with S.mansoni protein–O-fucosyl-

transferase A (G9HW08), although these two proteins are grouped with low bootstrap support

(54%). Two putative glucuronyltransferases were also identified, which could be involved in

the synthesis of hexuronic acid-carrying N-glycans found in adult C. forsteri. However, glucur-

onyltransferases are not well characterised, so these require further functional studies. Unusu-

ally for a trematode, adult C. forsteri synthesizes core-xylose carrying N-glycans, and a putative

β1–2 xylosyltransferase (CfXylT2) was also identified. Both β1–2-linked xyloses and glycosyl-

transferases elicit a humoral immune response in mammals following infection with S.man-
soni [77, 80].

Cathepsins are a family of proteases that are important virulence factors in trematodes,

facilitating tissues invasion, digestion, and immune evasion [81]. Cathepsins B and L (cysteine

proteases) are secreted in high concentrations and often elicit humoral immune responses.

These cathepsins, particularly F. hepatica cathepsin L1 (Q7JNQ9), have been the target of vac-

cination of ruminants against fascioliases [82]. A putative C. forsteri protease was classified as

CfCL (Table 4) from sequence identity (44.68%) and a conserved active site (Cys134, His281,

and Asn301), which clusters with cathepsin L1 of schistosomes (Fig 4A). Buffoni et al. [83] pos-

tulated that 42 residues within FhCL1 are responsible for protective immunity in vaccinated

sheep, however these are not well conserved in CfCL, which contains substantial non-conser-

vative substitutions. The prime schistosomal cathepsin targeted in vaccine studies is the Sm31

antigen S.mansoni cathepsin B1 (P25792), which is an abundant digestive enzyme secreted

into the gut [84–88]. However, CfCB shares closest homology (sequence identity = 69.65%)

and a phylogenetic node (Fig 4B) with SmCB2 (Q95PM1) [89], which was reactive to IgG

from mice both infected or vaccinated with S.mansoni cercariae [80]. Additionally, S. japoni-
cum cathepsin B2 (Q7Z1I6) is thought to be involved in skin penetration by the cercariae and

degradation of host immune proteins [90]. As essential secreted gut antigens, cathepsins are

Fig 3. Phylogenetic tree of Cardicola forsteri fucosyltransferases. Outgroup-rooted maximum likelihood tree of the fucosyltransferases from Cardicola
forsteri (shown in red) in Table 5 with fucosyltransferases from Schistosoma mansoni and Thunnus maccoyii (as the outgroup in blue): SmFucTA

(G9HW08), SmFucTB (E2EAI5), SmFucTC (E2EAI6), SmFucTD (E2EAI7), SmFucTE (E2EAI8), SmFucTF (E2EAI9), TmFucTA (XP_042266362.1),

TmFucTE (XP_042246885.1). Bootstrap values are shown on the branches.

https://doi.org/10.1371/journal.pone.0276287.g003

PLOS ONE Cardicola forsteri draft genome

PLOS ONE | https://doi.org/10.1371/journal.pone.0276287 October 14, 2022 11 / 20

https://doi.org/10.1371/journal.pone.0276287.g003
https://doi.org/10.1371/journal.pone.0276287


promising drug and vaccine targets. However, Farias et al. [80] found few epitopes within the

active centre of schistosomal cathepsins, so direct inhibition is likely limited, which could

explain the relative lack of success with cathepsin-based vaccines against schistosomiases com-

pared with those against fascioliases. While immunogenicity is reportedly highest against gut

antigens, tegumental proteins are also at the host–parasite interface and have been the subject

of helminth vaccinology for decades.

Highly immunoreactive, calpains are Ca2+-dependent cysteine proteases that participate in

a variety of biological functions. Wang et al. [91] showed that two calpains, SmCalp1

(P27730.1) and SmCalp2 (ATN96084.1), are expressed on the tegument of adult S.mansoni
and schistosomula, where they cleave host fibronectin, thereby preventing blood clotting. Two

putative C. forsteri calpains were classified as CfCalp1 and CfCalp2 (Table 4), based on con-

served structural domains and sequence identity (54.19% and 79.94%, respectively). Among

Fig 4. Phylogenetic tree of Cardicola forsteri cathepsins. Outgroup-rooted maximum likelihood tree of the cathepsins from Cardicola forsteri (shown in

red) in Table 4 with cathepsins from Schistosoma mansoni, Schistosoma japonicum, Fasciola hepatica, and Thunnus maccoyii (as the outgroup in blue).

Bootstrap values are shown on the branches. (A) Cathepsins L, including: SmCL1 (Q26564), SmCL3 (B4XC67), SjCL1 (C1LBR4), SjCL3 (C1LJC3), FhCL1

(Q7JNQ9), FhCL3 (B9VXS1), FhCL5 (A0A2H4PKA2), TmCL (XP_042278099.1). (B) Cathepsins B, including: SmCB1 (P25792), SmCB2 (Q95PM1),

SjCB1 (P43157), SjCB2 (Q7Z1I6), FhB3 (A7UNB2), TmCB (XP_042261887.1).

https://doi.org/10.1371/journal.pone.0276287.g004
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platyhelminths, amino acid sequences of calpains diverge greatly, however a Cys, His, and Asn

residue are conserved in the active site of calpain 1. The His residue is replaced with Gln in cal-

pain 2, and all these residues are conserved in CfCalp1 (Cys151, His310, and Asn334) and

CfCalp2 (Cys116, Gln282, and Asn310). Since 1997, SmCalp1 (the Smp80 antigen) has been a tar-

get of vaccination against schistosomiasis [92], and promising results from pre-clinical trials

have been published more recently [93, 94]. Other putative tegumental proteins of C. forsteri
that could be viable vaccine candidates include GSTs, TSPs, and an FABP.

Similar to S.mansoni and S. japonicum, putative 25-kDa and 27-kDa GSTs were identified

from the C. forsteri genome (Table 4), with homology to Class μ and Class ω GSTs, respectively

[95]. As crucial detoxification enzymes, GSTs are found on the tegument of schistosomes and

are frequently targeted by novel vaccines and drugs. The most advanced of these is Sh28GST

(P30114), which is the target of the Bilhvax vaccine against urinary schistosomiasis [96, 97].

However, research into rSh28GST has stalled following Phase III trial results that reported a

lack of efficacy in children [98]. While neither of the two putative C. forsteriGSTs shares close

homology with Sh28GST (sequence identity < 27%), Tyr7 and Arg18 are conserved in

Cf25GST, and Tyr10 and Arg21 of Sh28GST were identified by Angelucci et al. [99] to form π-

cation interactions with one another. Another tegumental target proceeding through vaccine

trials is SmTSP-2 (Q8ITD7), a CD63-like tetraspanin that is thought to be involved in tegu-

ment formation and extracellular vesicle secretion [100, 101]. Of the 6 putative C. forsteri tetra-

spanins (S2 Table), Cf-TSP-2 was predicted to be CD63-like, with low homology to SmTSP-2

(sequence identity = 33.18%). Additionally, a putative 15-kDa FABP was identified, with

homology (sequence identity = 56.49%) to the Sm14 FABP antigen (P29498), which is cur-

rently the target of Phase II clinical trials [102, 103].

Protective immunity to helminthiases is inhibited by immunomodulatory mechanisms

deployed by the parasite, which polarise an anti-inflammatory TH2 response and induce T cell

anergy. These host–parasite interactions are not fully understood but involve parasite glyco-

conjugates interacting with host C-type lectin receptors (CLRs) and toll-like receptors (TLRs)

[104]. The best described of these interactions is of schistosomal soluble egg antigens (SEA),

namely the glycosylated T2 ribonuclease ω-1, interacting with mannose receptors (MRs) on

monocyte-derived dendritic cells (Mo-DCs) [105]. No homologs of ω-1 were found in the C.

forsteri genome, but two proteins contain a TGF-β-like domain (S2 Table), and TGF-β homo-

logs are known to be expressed by other helminths to modulate host immunity [106, 107].

Nevertheless, potential mechanisms of evasion and modulation of the bluefin tuna immune

responses by C. forsteri require further investigation.

The whole genome of C. forsteri was sequenced and assembled for the first time, into high-

quality contigs. The highly repetitive genome was functionally annotated with putative glyco-

syltransferases and some potential vaccine targets, including calpains and an FABP. Future

research should be directed toward functionally characterising these putative proteins using in
vitro assays to further understand this parasite and its interactions with bluefin tuna. Addition-

ally, this genome will provide a framework for genomic investigations into other Cardicola
spp. to advance our understanding of their susceptibility to PZQ and the development of alter-

native control measures.

Supporting information

S1 Table. Cardicola forsteri assembly statistics. Comparison between the assembly statistics

of Cardicola forsteri and related digeneans. Scaffold statistics are not applicable to the C. for-
steri assembly, which is contig-level. Benchmarking Universal Single-Copy Orthologs (BUS-

COs) were assessed using BUSCO v5.2.2 [37] against the metazoa_odb10 database. Both the
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first and most recent assemblies of the related digeneans are included.

(XLSX)

S2 Table. Functional annotation of the Cardicola forsteri gene set. Functional annotation of

select Cardicola forsteri genes. The closest matches to the National Center for Biotechnology

Information’s (NCBI’s) non-redundant protein sequences (NR), Pfam v35.0 [51], and CAZy

[52] databases are included. Predicted N-glycosylations sites, transmembrane domains, and

secretion modes are also included, where relevant. Abbreviations are given, where relevant to

genes discussed in the manuscript.

(XLSX)

Acknowledgments

We thank the Australian Southern Bluefin Tuna Industry Association and commercial tuna

companies for their assistance and support in sample collection. This research was supported

by The University of Melbourne’s Research Computing Services and the Petascale Campus

Initiative.

Author Contributions

Conceptualization: Lachlan Coff, Barbara F. Nowak, Paul A. Ramsland, Nathan J. Bott.

Data curation: Lachlan Coff.

Formal analysis: Lachlan Coff, Andrew J. Guy, Bronwyn E. Campbell.

Funding acquisition: Nathan J. Bott.

Investigation: Lachlan Coff.

Methodology: Lachlan Coff, Andrew J. Guy, Bronwyn E. Campbell, Barbara F. Nowak, Paul

A. Ramsland.

Project administration: Nathan J. Bott.

Supervision: Paul A. Ramsland, Nathan J. Bott.

Validation: Paul A. Ramsland.

Visualization: Barbara F. Nowak, Paul A. Ramsland, Nathan J. Bott.

Writing – original draft: Lachlan Coff.

Writing – review & editing: Andrew J. Guy, Bronwyn E. Campbell, Barbara F. Nowak, Paul

A. Ramsland, Nathan J. Bott.

References
1. Cribb T, Daintith M, Munday B. A new blood-fluke, Cardicola forsteri, (Digenea: Sanguinicolidae) of

southern blue-fin tuna (Thunnus maccoyii) in aquaculture. T Roy Soc South Aust. 2000; 124: 117–

120.

2. Bullard S, Goldstein R, Goodwin R, Overstreet R. Cardicola forsteri (Digenea: Sanguinicolidae) from

the Heart of a Northern Bluefin Tuna, Thunnus thynnus (Scombridae), in the Northwest Atlantic

Ocean. Comp Parasitol. 2004; 71: 245–246. https://doi.org/10.1654/4135

3. Shirakashi S, Tsunemoto K, Webber C, Rough K, Ellis D, Ogawa K. Two Species of Cardicola (Trema-

toda: Aporocotylidae) Found in Southern Bluefin Tuna Thunnus maccoyii Ranched in South Australia.

Fish Pathol. 2013; 48: 1–4. https://doi.org/10.3147/jsfp.48.1

PLOS ONE Cardicola forsteri draft genome

PLOS ONE | https://doi.org/10.1371/journal.pone.0276287 October 14, 2022 14 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0276287.s002
https://doi.org/10.1654/4135
https://doi.org/10.3147/jsfp.48.1
https://doi.org/10.1371/journal.pone.0276287


4. Ogawa K, Tanaka S, Sugihara Y, Takami I. A new blood fluke of the genus Cardicola (Trematoda:

Sanguinicolidae) from Pacific bluefin tuna Thunnus orientalis (Temminck & Schlegel, 1844) cultured in

Japan. Parasitol Int. 2010; 59: 44–48. https://doi.org/10.1016/j.parint.2009.10.003 PMID: 19835980

5. Ogawa K, Ishimaru K, Shirakashi S, Takami I, Grabner D. Cardicola opisthorchis n. sp. (Trematoda:

Aporocotylidae) from the Pacific bluefin tuna, Thunnus orientalis (Temminck & Schlegel, 1844), cul-

tured in Japan. Parasitol Int. 2011; 60: 307–312. https://doi.org/10.1016/j.parint.2011.05.002 PMID:

21616163

6. Power C, Nowak BF, Cribb TH, Bott NJ. Bloody flukes: a review of aporocotylids as parasites of cul-

tured marine fishes. Int J Parasitol. 2020; 50: 743–753. https://doi.org/10.1016/j.ijpara.2020.04.008

PMID: 32619429

7. Hardy-Smith P, Ellis D, Humphrey J, Evans M, Evans D, Rough K, et al. In vitro and in vivo efficacy of

anthelmintic compounds against blood fluke (Cardicola forsteri). Aquaculture. 2012; 334–337: 39–44.

https://doi.org/10.1016/j.aquaculture.2011.12.037

8. Norbury L, Shirakashi S, Power C, Nowak BF, Bott NJ. Praziquantel use in aquaculture–Current status

and emerging issues. Int J Parasitol. 2022; 18: 87–102. https://doi.org/10.1016/j.ijpddr.2022.02.001

PMID: 35220160

9. Pennacchi Y, Shirakashi S, Nowak BF, Bridle AR. Immune reactivity in early life stages of sea-cage

cultured Pacific bluefin tuna naturally infected with blood flukes from genus Cardicola (Trematoda:

Aporocotylidae). Fish Shellfish Immunol. 2016; 58: 490–499. https://doi.org/10.1016/j.fsi.2016.09.060

PMID: 27702677

10. Kirchhoff NT, Rough KM, Nowak BF. Moving Cages Further Offshore: Effects on Southern Bluefin

Tuna, T. maccoyii, Parasites, Health and Performance. PLOS ONE. 2011; 6: e23705. https://doi.org/

10.1371/journal.pone.0023705 PMID: 21901129

11. Cribb TH, Adlard RD, Hayward CJ, Bott NJ, Ellis D, Evans D, et al. The life cycle of Cardicola forsteri

(Trematoda: Aporocotylidae), a pathogen of ranched southern bluefin tuna, Thunnus maccoyi. Int J

Parasitol. 2011; 41: 861–870. https://doi.org/10.1016/j.ijpara.2011.03.011 PMID: 21569775

12. Shirakashi S, Tani K, Ishimaru K, Shin SP, Honryo T, Uchida H, et al. Discovery of intermediate hosts

for two species of blood flukes Cardicola orientalis and Cardicola forsteri (Trematoda: Aporocotylidae)

infecting Pacific bluefin tuna in Japan. Parasitol Int. 2016; 65: 128–136. https://doi.org/10.1016/j.

parint.2015.11.003 PMID: 26571413

13. Shirakashi S, Matsuda T, Asai N, Honryo T, Ogawa K. In vivo cultivation of tuna blood fluke Cardicola

orientalis in terebellid intermediate hosts. Int J Parasitol. 2020; 50: 851–857. https://doi.org/10.1016/j.

ijpara.2020.04.006 PMID: 32592808

14. Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. The genome of the

blood fluke Schistosoma mansoni. Nature. 2009; 460: 352–358. https://doi.org/10.1038/nature08160

PMID: 19606141

15. Zhou Y, Zheng H, Chen Y, Zhang L, Wang K, Guo J, et al. The Schistosoma japonicum genome

reveals features of host–parasite interplay. Nature. 2009; 460: 345–351. https://doi.org/10.1038/

nature08140 PMID: 19606140

16. Young ND, Jex AR, Li B, Liu S, Yang L, Xiong Z, et al. Whole-genome sequence of Schistosoma hae-

matobium. Nat Genet. 2012; 44: 221–225. https://doi.org/10.1038/ng.1065 PMID: 22246508

17. Cwiklinski K, Dalton JP, Dufresne PJ, La Course J, Williams DJ, Hodgkinson J, et al. The Fasciola

hepatica genome: gene duplication and polymorphism reveals adaptation to the host environment and

the capacity for rapid evolution. Genome Biol. 2015; 16: 71. https://doi.org/10.1186/s13059-015-0632-

2 PMID: 25887684

18. Pandey T, Ghosh A, Todur VN, Rajendran V, Kalita P, Kalita J, et al. Draft Genome of the Liver Fluke

Fasciola gigantica. ACS Omega. 2020; 5: 11084–11091. https://doi.org/10.1021/acsomega.0c00980

PMID: 32455229

19. Buddenborg SK, Tracey A, Berger DJ, Lu Z, Doyle SR, Fu B, et al. Assembled chromosomes of the

blood fluke Schistosoma mansoni provide insight into the evolution of its ZW sex-determination sys-

tem. bioRxiv; 2021. p. 2021.08.13.456314. https://doi.org/10.1101/2021.08.13.456314

20. Short RB. A New Blood Fluke, Cardicola laruei n. g., n. sp., (Aporocotylidae) from Marine Fishes. J

Parasitol. 1953; 39: 304–309. https://doi.org/10.2307/3273955

21. Yong RQ-Y, Cribb TH, Cutmore SC. Molecular phylogenetic analysis of the problematic genus Cardi-

cola (Digenea: Aporocotylidae) indicates massive polyphyly, dramatic morphological radiation and

host-switching. Mol Phylogenet Evol. 2021; 164: 107290. https://doi.org/10.1016/j.ympev.2021.

107290 PMID: 34371186

22. Adams A. Progress, challenges and opportunities in fish vaccine development. Fish Shellfish Immunol.

2019; 90: 210–214. https://doi.org/10.1016/j.fsi.2019.04.066 PMID: 31039441

PLOS ONE Cardicola forsteri draft genome

PLOS ONE | https://doi.org/10.1371/journal.pone.0276287 October 14, 2022 15 / 20

https://doi.org/10.1016/j.parint.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19835980
https://doi.org/10.1016/j.parint.2011.05.002
http://www.ncbi.nlm.nih.gov/pubmed/21616163
https://doi.org/10.1016/j.ijpara.2020.04.008
http://www.ncbi.nlm.nih.gov/pubmed/32619429
https://doi.org/10.1016/j.aquaculture.2011.12.037
https://doi.org/10.1016/j.ijpddr.2022.02.001
http://www.ncbi.nlm.nih.gov/pubmed/35220160
https://doi.org/10.1016/j.fsi.2016.09.060
http://www.ncbi.nlm.nih.gov/pubmed/27702677
https://doi.org/10.1371/journal.pone.0023705
https://doi.org/10.1371/journal.pone.0023705
http://www.ncbi.nlm.nih.gov/pubmed/21901129
https://doi.org/10.1016/j.ijpara.2011.03.011
http://www.ncbi.nlm.nih.gov/pubmed/21569775
https://doi.org/10.1016/j.parint.2015.11.003
https://doi.org/10.1016/j.parint.2015.11.003
http://www.ncbi.nlm.nih.gov/pubmed/26571413
https://doi.org/10.1016/j.ijpara.2020.04.006
https://doi.org/10.1016/j.ijpara.2020.04.006
http://www.ncbi.nlm.nih.gov/pubmed/32592808
https://doi.org/10.1038/nature08160
http://www.ncbi.nlm.nih.gov/pubmed/19606141
https://doi.org/10.1038/nature08140
https://doi.org/10.1038/nature08140
http://www.ncbi.nlm.nih.gov/pubmed/19606140
https://doi.org/10.1038/ng.1065
http://www.ncbi.nlm.nih.gov/pubmed/22246508
https://doi.org/10.1186/s13059-015-0632-2
https://doi.org/10.1186/s13059-015-0632-2
http://www.ncbi.nlm.nih.gov/pubmed/25887684
https://doi.org/10.1021/acsomega.0c00980
http://www.ncbi.nlm.nih.gov/pubmed/32455229
https://doi.org/10.1101/2021.08.13.456314
https://doi.org/10.2307/3273955
https://doi.org/10.1016/j.ympev.2021.107290
https://doi.org/10.1016/j.ympev.2021.107290
http://www.ncbi.nlm.nih.gov/pubmed/34371186
https://doi.org/10.1016/j.fsi.2019.04.066
http://www.ncbi.nlm.nih.gov/pubmed/31039441
https://doi.org/10.1371/journal.pone.0276287


23. Perera DJ, Ndao M. Promising Technologies in the Field of Helminth Vaccines. Frontiers in Immunol-

ogy. 2021; 12. https://www.frontiersin.org/articles/10.3389/fimmu.2021.711650 PMID: 34489961

24. Aiken HM, Hayward CJ, Nowak BF. An epizootic and its decline of a blood fluke, Cardicola forsteri, in

farmed southern bluefin tuna, Thunnus maccoyii. Aquaculture. 2006; 254: 40–45. https://doi.org/10.

1016/j.aquaculture.2005.10.013

25. Power C, Evenden S, Rough K, Webber C, Widdicombe M, Nowak BF, et al. Prevalence and Intensity

of Cardicola spp. Infection in Ranched Southern Bluefin Tuna and a Comparison of Diagnostic Meth-

ods. Pathogens. 2021; 10: 1248. https://doi.org/10.3390/pathogens10101248 PMID: 34684197

26. Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford Nanopore

sequencing. Genome Biol. 2019; 20: 129. https://doi.org/10.1186/s13059-019-1727-y PMID:

31234903

27. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinfor-

matics. 2014; 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404

28. Wang M, Kong L. pblat: a multithread blat algorithm speeding up aligning sequences to genomes.

BMC Bioinform. 2019; 20: 28. https://doi.org/10.1186/s12859-019-2597-8 PMID: 30646844

29. Suda A, Nishiki I, Iwasaki Y, Matsuura A, Akita T, Suzuki N, et al. Improvement of the Pacific bluefin

tuna (Thunnus orientalis) reference genome and development of male-specific DNA markers. Sci

Rep. 2019; 9: 14450. https://doi.org/10.1038/s41598-019-50978-4 PMID: 31595011

30. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, et al. ABySS 2.0: resource-

efficient assembly of large genomes using a Bloom filter. Genome Res. 2017; 27: 768–777. https://doi.

org/10.1101/gr.214346.116 PMID: 28232478
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82. Cwiklinski K, Drysdale O, López Corrales J, Corripio-Miyar Y, De Marco Verissimo C, Jewhurst H,

et al. Targeting Secreted Protease/Anti-Protease Balance as a Vaccine Strategy against the Helminth

Fasciola hepatica. Vaccines. 2022; 10: 155. https://doi.org/10.3390/vaccines10020155 PMID:

35214614
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