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Abstract: Small-molecule compounds that have promising activity against macromolecular targets
from Trypanosoma cruzi occasionally fail when tested in whole-cell phenotypic assays. This outcome
can be attributed to many factors, including inadequate physicochemical and pharmacokinetic
properties. Unsuitable physicochemical profiles usually result in molecules with a poor ability to cross
cell membranes. Quantitative structure-activity relationship (QSAR) analysis is a valuable approach
to the investigation of how physicochemical characteristics affect biological activity. In this study,
artificial neural networks (ANNs) and kernel-based partial least squares regression (KPLS) were
developed using anti-T. cruzi activity data for broadly diverse chemotypes. The models exhibited a
good predictive ability for the test set compounds, yielding q2 values of 0.81 and 0.84 for the ANN and
KPLS models, respectively. The results of this investigation highlighted privileged molecular scaffolds
and the optimum physicochemical space associated with high anti-T. cruzi activity, which provided
important guidelines for the design of novel trypanocidal agents having drug-like properties.
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1. Introduction

Chagas’ disease, which is a neglected tropical disease (as defined by the World Health Organization,
WHO) caused by the protozoan Trypanosoma cruzi, is the leading cause of heart failure in Latin America,
where it is endemic [1]. According to the WHO, the disease affects 8 million people worldwide and
causes 10,000 deaths every year. Moreover, more than 25 million people live in vulnerable areas
under the risk of infection [2]. Current chemotherapy for Chagas’ disease is limited to nifurtimox
and benznidazole, which are two obsolete drugs identified in 1965 and 1971, respectively (Figure 1).
These nitroheterocyclic compounds cause several adverse effects, such as weight loss, neurological
damage, anorexia, dermatitis, depression, nausea, and gastrointestinal problems [3,4]. Furthermore,
they lack effectiveness in the chronic phase of the disease. Given these drawbacks, novel, effective, and
safe drugs for Chagas’ disease are urgently needed [5].
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Figure 1. Structures of benznidazole and nifurtimox, which are the only two available drugs for the
chemotherapy of Chagas’ disease.

T. cruzi parasites interconvert into different morphological phases during their life cycle as
they circulate between the insect host (the Triatomine bugs Triatoma infestans, Rhodnius prolixus,
and Triatoma dimidiata) and the human host. Replicative epimastigotes and infective metacyclic
trypomastigotes develop in Triatomine bugs, whereas replicative intracellular amastigotes and
non-replicative bloodstream trypomastigotes develop in humans [6]. Intracellular amastigotes,
which are found in tissues such as cardiac muscles and the digestive system, are the clinically relevant
form of the parasite, and thus are the targets of antichagasic agents [6,7]. Occasionally, compounds
that are active against isolated macromolecular targets lose their activity when tested in whole-cell
phenotypic assays [8–11]. This activity loss can stem from inappropriate physicochemical properties,
which play a key role in the ability of compounds to permeate biological membranes and reach their
molecular targets [12,13]. In this context, drug discovery players have unprecedentedly relied on
chemoinformatics to better understand the relationships between structure, physicochemical properties,
and biological activity [14–16]. Quantitative structure-activity relationships (QSAR) have played
a major role in this field [17–19]. In this study, we developed artificial neural networks (ANNs)
and kernel-based partial least squares models (KPLS) aimed at investigating the molecular events
underlying the activity of structurally diverse trypanocidal agents [20,21]. The outcome of these
models was used to generate a focused fragment collection and physicochemical heat maps, which
provide insights into privileged chemotypes and optimum physicochemical property spaces associated
with enhanced trypanocidal activity.

ANNs are aimed to mimic biological neural networks and their processing units, the neurons,
are composed of dendrites, a cell body, and axons. All input values (the dendrites) are summed
and then are assigned to a learning function (the cell body). The input values are the independent
variables and the output values are the dependent variables. The signal (axon) can be propagated
or inhibited if the value returned by the activation function is above or below a predetermined
threshold, respectively [22]. The multi-layer back-propagation algorithm was used in the ANN
models. In particular, the back-propagation method uses the forward and backward steps [23]. First,
weights are determined, and the biological activity value is predicted for a compound. The error
between experimental and predicted values provides support for adjusting the input weight in the
first intermediate layer. The main limitation of the algorithm is the convergence of the network due to
low and high values in the learning rate. To reduce this limitation, the term momentum ensures that
the learning rate is stabilized.

The fingerprint descriptors in the KPLS models are calculated from the smiles representation
of each structure in the dataset [24]. These descriptors can be classified as linear, dendritic, radial,
and molprint2D [25]. These four descriptors allow the visualization of atomic contribution maps,
which depict the contribution of each atom to the dependent variable. The linear fingerprint descriptor
uses the information from the linear fragments and ring closure to convert the structures into binary
sequences. The dendritic fingerprint includes branched parts of the molecule during the generation
of the binary sequence. Also referred to as extended connectivity fingerprints, the radial fingerprint
identifies all heavy atoms and encodes the compounds by assigning fragments that emerge radially
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from each atom. Finally, molprint2D is similar to the radial fingerprint and encodes the heavy atom
environments by identifying the atom types positioned at different topological distances.

2. Results

2.1. Chemical and Biological Landscape

The dataset used to construct the ANN and KPLS models was selected from the literature and
includes 363 structurally diverse compounds [26–64]. The trypanocidal activity of these molecules is
expressed as the concentration of the compound that inhibits 50% the growth of T. cruzi in phenotypic
assays (IC50). The IC50 values range from 2 nM to 97.97 µM (a 48,985-fold activity range) and were
converted into pIC50 values (−log IC50) prior to the QSAR modeling. This wide activity interval follows
the broad chemical diversity enclosed in the dataset. The structural and activity landscape covered
by the 363 trypanocidal agents is illustrated in Figure 2. In the structure similarity map, the distance
among the points is inversely proportional to the structural similarity, and the colors represent different
activity ranges (Figure 2A). Based on this map, training and test sets were selected to construct the
models. Structurally distinct chemotypes enclosing a wide spectrum of pIC50 values were included in
both the training (280 compounds) and test sets (83 compounds), as depicted in Figure 2B,C.
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Figure 2. Structural and activity landscape of the dataset. (A) Structure similarity map for the
entire dataset composed of 363 compounds, which shows its broad chemical diversity and activity
range. (B) Structure similarity map highlighting the training (open circles) and test set (solid circles)
compounds. (C) Activity distribution for the whole dataset and for the training and test sets.
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2.2. Artificial Neural Networks

Eleven physicochemical properties were used as molecular descriptors to build the ANNs through
which the trypanocidal activity of the dataset compounds were predicted. Hence, prior to running
the ANN analyses, the dataset was characterized with respect to its physicochemical profile. Figure 3
shows the distribution of the dataset regarding the following physicochemical descriptors: molecular
weight (MW), octanol-water partition coefficient (aLogP), hydrogen bond acceptors (HBA), hydrogen
bond donors (HBD), number of rotatable bonds (RB), and heavy atom count (HAC). Figure 4, in turn,
shows the physicochemical profile of the dataset regarding ring count (RC), polar surface area (PSA),
electrotopological state (E-state), molar refractivity (MR), and molecular polarizability (Polar).
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aLogP = logarithm of the octanol-water partition coefficient; HBA = hydrogen bond acceptors;
HBD = hydrogen bond donors; RB = number of rotatable bonds; HAC = heavy atom count;
SD = standard deviation.
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area; E-state = electrotopological state; MR = molar refractivity; Polar = molecular polarizability;
SD = standard deviation.

The calculated physicochemical descriptors for 280 training set compounds were used as inputs
to build backpropagation ANNs. The predictive power of the models was additionally evaluated by
using 83 test set molecules. Table 1 shows the performance of the ANNs as a function of the learning
rate (LR). The score value was used as the leading parameter to evaluate the performance of the models.
The top-scoring model, which was derived with an LR of 0.1, presented a score of 0.80. As the score is
derived from the correlation coefficients, this model had good performance regarding these indicators
for both the training and test sets (r2 = 0.79 and q2 = 0.85). The r2 value indicates the internal statistical
robustness of the models considering the training set only. Otherwise, the q2 value indicates the
external predictive power, since it considers the performance of the models in predicting the dependent
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variables of molecules that were not used to train the algorithm. The score value represents the general
performance of the models, considering both its internal and external predictive power.

Table 1. Performance of the ANNs as a function of the learning rate.

Training Set Test Set

LR Score r2 MAE RMSE RAE RRSE q2 MAE RMSE RAE RRSE

0.1 0.80 0.79 0.65 0.82 65 68 0.85 0.6 0.75 59 61
0.2 0.76 0.80 0.58 0.76 59 64 0.78 0.66 0.84 65 68
0.3 0.77 0.79 0.60 0.77 60 65 0.78 0.67 0.89 66 72
0.4 0.75 0.80 0.58 0.77 59 64 0.77 0.69 0.94 68 76

Note: LR = learning rate; r2 = correlation coefficient for the training set; q2 = correlation coefficient for the test set
(r2

pred); RMSE = root mean square error; MAE = mean absolute error; RAE = relative absolute error; RRSE = root
relative squared error; score = (1 − |(r2

− q2)|) × q2.

Next, the momentum parameter (MP) of the backpropagation algorithm was varied for the
top-scoring model of Table 1. This procedure was conducted to search for the best convergence criterion
and prevent the ANNs from converging to a local minimum. MP was varied from 0.1 to 0.4 in steps of
0.1, and the resulting models are shown in Table 2. As seen, the variation of MP had no influence on
the overall quality of the ANNs, as demonstrated by the resulting scores. Hence, the lowest RMSE
values (0.82 and 0.75 for the training and test sets, respectively) were considered to select the model
having an MP of 0.2 and a score of 0.80 for further optimization. Importantly, this model maintained
good correlation coefficients for both the training (r2 = 0.79) and test sets (q2 = 0.85).

Table 2. Performance of the ANNs as a function of the momentum parameter.

Training Set Test Set

MP Score r2 MAE RMSE RAE RRSE q2 MAE RMSE RAE RRSE

0.1 0.79 0.78 0.64 0.81 64 68 0.84 0.58 0.73 57 59
0.2 0.80 0.79 0.65 0.82 65 68 0.85 0.6 0.75 59 61
0.3 0.80 0.79 0.66 0.83 66 70 0.85 0.62 0.77 61 63
0.4 0.80 0.79 0.67 0.84 67 71 0.85 0.62 0.78 62 63

Note: MP = momentum parameter; r2 = correlation coefficient for the training set; q2 = correlation coefficient for
the test set (r2

pred); RMSE = root mean square error; MAE = mean absolute error; RAE = relative absolute error;
RRSE = root relative squared error; score = (1 − |(r2

− q2)|) × q2.

Finally, we varied the number of neurons in the hidden layer from one to 10, while maintaining
the optimal values of LR (0.1) and MP (0.2). The best results were produced when seven neurons were
added to the hidden layer, as shown in Table 3. A subtle improvement in the score (0.81) was observed
in this model compared to the ANN containing the default number of six neurons in the hidden layer.

The statistical indicators shown in Table 3, particularly the correlation coefficient for the test
compounds (q2 = 0.81), show the ability of the best ANN model to predict the trypanocidal activity
of novel and structurally diverse compounds. The good agreement between the experimental and
predicted pIC50 values exhibited by this model is graphically illustrated in Figure 5 for the training
and test set compounds.
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Table 3. Performance of the ANNs as a function of the number of neurons in the hidden layer.

Training Set Test Set

NN Score r2 MAE RMSE RAE RRSE q2 MAE RMSE RAE RRSE

1 - 0.51 0.86 1.03 87 68 - - - - -
2 - 0.72 0.69 0.85 69 72 - - - - -
3 - 0.75 0.69 0.86 69 72 - - - - -
4 - 0.77 0.68 0.84 68 70 - - - - -
5 0.78 0.78 0.64 0.81 65 68 0.80 0.64 0.82 63 66
6# 0.80 0.79 0.65 0.82 65 68 0.85 0.60 0.75 59 61
7 0.81 0.81 0.57 0.73 56 62 0.81 0.59 0.76 58 62
8 0.76 0.79 0.68 0.85 68 71 0.77 0.69 0.90 68 73
9 0.80 0.80 0.65 0.82 65 68 0.82 0.64 0.81 63 66

10 0.77 0.82 0.58 0.75 58 63 0.79 0.62 0.83 61 67

Note: NN = number of neurons in the hidden layer; r2 = correlation coefficient for the training set; q2 = correlation
coefficient for the test set (r2

pred); RMSE = root mean square error; MAE = mean absolute error; RAE = relative
absolute error; RRSE = root relative squared error; score = (1 − |(r2

− q2)|) × q2. #Standard NN.
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Impact of the Physicochemical Properties on the Trypanocidal Activity

Given the high predictive power of the best ANN (seven neurons in the hidden layer, Table 3),
we investigated the role played by each physicochemical descriptor on the trypanocidal activity of
the dataset compounds. Each molecular descriptor works as an input applied to the ANN neurons.
These descriptors are weighted by an activation function at each neuron, which is responsible for
processing and transmitting the signal to the other neurons. These weights can be positive or negative.
A positive weight attributed to a given physicochemical descriptor leads to a proportional increase in
biological activity; that is, increasing the value of the weight increases the activity, and decreasing this
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value decreases the biological activity. Otherwise, negative weights lead to an inversely proportional
neuron response, i.e., decreasing the weight value increases the biological activity, and increasing this
value decreases the activity.

Table 4 shows the weights of each molecular descriptor at each hidden-layer neuron. Among the
11 descriptors, MW showed the greatest difference between the number of positively and negatively
weighted neurons. Six neurons had their activation function positively weighted by MW; for most
neurons, increments in this property resulted in increased trypanocidal activity. In the second position
came aLogP, HBA, HBD, and MR, which positively weighted five out of the seven hidden-layer neurons.
The reciprocal ratio was observed for RB, that is, five neurons produced negative values. HAC, RC,
and Polar positively weighted four neurons, whereas PSA and E-state showed the inverse ratio, i.e.,
they negatively weighted four hidden-layer neurons.

Table 4. Weights attributed to each physicochemical descriptor at the individual hidden-layer neurons.

Neuron MW aLogP HBA HBD RB HAC RC PSA E-state MR Polar

1 0.51 1.94 0.90 3.34 0.73 0.46 −0.27 −0.28 −0.34 0.99 0.59
2 2.77 −3.96 −2.61 −0.11 −0.23 2.98 −2.21 −2.82 1.04 2.39 3.68
3 −1.42 1.79 0.49 2.12 −0.33 −0.20 2.44 1.55 −0.28 −1.07 −0.60
4 0.59 0.06 0.07 1.05 0.14 0.29 0.44 0.31 0.25 0.06 0.76
5 1.39 −4.91 −6.71 −0.28 −0.79 3.33 4.58 1.08 −0.20 4.85 5.49
6 0.55 2.75 0.94 3.22 −2.00 −0.55 0.66 −5.24 −3.30 1.49 −0.76
7 1.60 3.78 5.40 2.38 −2.72 −2.20 −2.52 −0.14 0.92 −1.10 −2.80

Note: MW = molecular weight; aLogP = logarithm of the octanol-water partition coefficient; HBA = hydrogen
bond acceptors; HBD = hydrogen bond donors; RB = number of rotatable bonds; HAC = heavy atom count;
RC = ring count; PSA = polar surface area; E-state = electrotopological state; MR = molar refractivity; Polar =
molecular polarizability.

2.3. Kernel-Based Partial Least Squares

Four molecular fingerprint types (dendritic, linear, molprint2D, and radial) were used as molecular
descriptors to generate the 2D QSAR models. These descriptors were correlated with the trypanocidal
activity of the dataset compounds using KPLS regression. The statistical indicators for the best models
generated with each descriptor are presented in Table 5. All fingerprint types produced models with a
similar prediction ability for the test set, with molprint2D performing slightly better (q2 = 0.84). For the
training set, the best correlation coefficients were produced by models generated with dendritic and
linear fingerprints (r2 = 0.89). The highest score, which is the result of the combination of q2 and r2, was
produced by the molprint2D-model (score = 0.82). Figure 6 illustrates the good alignment between
the experimental and predicted pIC50 values produced by the molprint2D-model. Considering these
results, this model was selected to investigate how the structure of the dataset compounds correlate
with the trypanocidal activity.

Table 5. Model performance as a function of the fingerprint types used as molecular descriptors to
build the kernel-based partial least squares (KPLS) models.

Fingerprint Score q2 r2 RMSE SD N

Dendritic 0.76 0.82 0.89 0.40 0.53 3
Linear 0.78 0.83 0.89 0.41 0.51 3
Radial 0.80 0.81 0.80 0.54 0.54 2

Molprint2D 0.82 0.84 0.81 0.52 0.50 3

Note: q2 = correlation coefficient for the test set (r2
pred); r2 = correlation coefficient for the training set; RMSE = root

mean square error; SD = standard deviation; N = number of components; score = (1 − |(r2
− q2)|) × q2.
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Contribution Maps

KPLS models can be assessed for favorable and unfavorable structural characteristics through
the generation of atomic contribution maps. Hence, the most relevant structural features for the
trypanocidal activity were investigated by generating contribution maps based on the best KPLS model
(molprint2D, Table 5). Positive, neutral, and negative contributions are depicted in red, white, and blue,
respectively, and the color intensity shows the magnitude of the effect (Figure 7). Overall, heterocyclic
aromatic rings contributed positively to activity. Aliphatic hydrocarbon chains showed negative or no
influence for most compounds. Halogen substituents showed the full range of contributions—fluorine
contributed positively, chlorine and iodine had no influence, and bromine contributed negatively.
In general, hydroxyl groups were unfavorable, and piperazine rings were demonstrated to be favorable.
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located at both ends of the trypanocidal activity range.

3. Physicochemical Profile of Favorable Fragments

Twenty-nine active compounds with pIC50 > 6 (see Table S1 for the structures) were selected
to construct a collection of 50 fragments. Only molecular fragments that were predicted to enhance
the trypanocidal activity (red areas of the contribution maps) were considered in this analysis. Next,
physicochemical descriptors were calculated for these fragments and used as an input for the best
ANN with the view of predicting their biological activity. Finally, the predicted activity values were
correlated with each physicochemical property of the fragment collection. The outcome of this analysis
is illustrated as heat maps (Figures 8–10), which allowed us to identify a specific physicochemical
space that favors trypanocidal activity. The heat maps also correlate the activity of the compounds
from which the fragments were extracted and their physicochemical profile.

Figure 8 shows the heat maps for MW, aLogP, HBD, and HBA. Fragments with MW greater than
260 Da were predicted to be the most active (pIC50 > 6). For aLogP, the most active fragments had
values predominantly between 2 and 3. Fragments with 0–1 HBD and 1–6 HBAs were predicted to have
the highest pIC50 values. Figure 9 illustrates the heat maps for HAC, RB, RC, and PSA. As shown in
the figure, fragments with HAC values greater than 20 had the highest pIC50 values. For RB, fragments
with two to eight rotatable bonds were the most active. According to the heat maps, fragments with
RC values from 2 to 3 were predicted to have the best anti-T. cruzi profile. Finally, fragments with
polar surface area (PSA) predominantly between 50 and 80 Å2 had the highest pIC50 values. Figure 10
shows the heat maps for E-state, MR, and Polar. The ANN predicted the fragments with E-state values
between 35 and 63 as being the most active. Fragments with MR ranging from 65 to 115 were predicted
to have the highest pIC50 values. Finally, the Polar descriptor was demonstrated to have optimal
values ranging from 30 to 53.
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Figure 8. Heat maps showing the correlation between physicochemical properties and biological
activity for molecular fragments extracted from the dataset. Note: MW = molecular weight; aLogP =

octanol-water partition coefficient; HBD = hydrogen bond donors; HBA = hydrogen bond acceptors.

Figure 11 shows the structure and biological activity of 35 fragments that were predicted to be the
most promising according to their trypanocidal profile. This group is characterized by a diversity of
chemical motifs having two to four rings with the predominant groups being pyridine, pyrimidine,
benzene, piperazine, triazole, benzothiazole, benzofuran, oxadiazole, and pyrazolopyrimidine.
The four most active fragments from this collection have a phenylsulfonyl-piperazine (fragments
11 and 12) or a phenylpiperazine-carboxamide moiety (fragments 13 and 14) linked to two aromatic
rings that are either pyridine, pyrimidine, or benzene. Replacing one of these aromatic rings with
a hydrogen, such as in 16 and 22, led to a reduction of the biological activity. The same effect was
observed for 24 and 27, in which one aromatic ring was kept and the benzene was replaced with a
hydrogen. The replacement of the pyridine in compound 20 with a pyrimidine in compound 21 led to
a subtle lowering of the pIC50 value. Another substitution that affected the biological activity was
the exchange between the benzofuran, benzothiazole, and pyrazolopyrimidine in fragments 17, 18,
and 19. Among these three compounds, the benzofuran derivative was the most potent. Furthermore,
replacing the pyrazolopyrimidine in compound 23 with a benzothiazole in compound 15 increased the
trypanocidal activity.
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Figure 9. Heat maps showing the correlation between physicochemical properties and biological
activity for molecular fragments extracted from the dataset. Note: HAC = heavy-atom count; RB =

number of rotatable bonds; RC = ring count; PSA = polar surface area.

After analyzing the other molecular scaffolds, it is worth mentioning that for fragments 37 and 38,
it was not possible to establish a direct relationship between the presence of the oxadiazole group and
trypanocidal activity. Replacing the oxadiazole in compound 37 with a phenyl in 44 decreased the
pIC50 value; however, the same modification involving fragments 35 and 38 produced the opposite
effect. Among cyclopentane derivatives 30, 32, and 43, replacing the benzothiazole in fragment 30
with pyrazolopyrimidine and benzofuran in 32 and 43, respectively, decreased the biological activity;
the most significant effect occurred for the benzothiazole-benzofuran exchange, which resulted in a
decrease of 0.47 in the pIC50 value. Finally, the insertion of a methyl cyclopentane moiety at the triazole
ring of 41 resulted in fragment 36 and increased the trypanocidal activity. Figure 12 shows the overall
scheme for the design of novel trypanocidal compounds based on the workflow proposed in this work.
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4. Discussion

The physicochemical characterization of the dataset revealed that most compounds follow the
Lipinski’s Rule of Five, as illustrated in Figure 3 [65]. The determinant role played by these properties
was shown by the analysis of the weights that were attributed to each physicochemical descriptor at
the hidden-layer neurons of the best ANN (Table 4). MW, aLogP, HBA, and HBD exhibited the greatest
difference between the number of positively and negatively modulated neurons. MW positively
weighted six (85.7%) out of the seven hidden-layer neurons, and aLogP, HBA, and HBD positively
weighted five (71.4%) neurons. These four descriptors are closely related to bioavailability and the
ability to permeate cell membranes, and therefore, the capacity of a compound to reach its molecular
target. The number of rotatable bonds, which had a mean value of 5.93 for the whole dataset, also
modulated most neurons in the same way—71.4% of the hidden-layer neurons were negatively
weighted by this property. HAC and RC positively weighted four out of seven hidden-layer neurons.
The predominantly positive weighting profile of HAC and RC can be associated with that of MW
and aLogP; an increase in the first two properties generally leads to an increase in the latter two.
Another finding worth mentioning is that the KPLS models led to the identification of a set of fragments
that are strongly associated with enhanced trypanocidal activity. Most of these fragments contain
between two and three rings, which follows the physicochemical profile identified by the ANN and
shown in the heat maps for these chemotypes (Figure 9). Aromatic nitrogen-containing rings and
fused rings are the most common structural features identified within this collection. Cyclopentane
and piperazine are the only representants of aliphatic rings. Functionalized short linkers (from
one to four atoms) containing amine, amide, sulfone, or ester groups are found between the cyclic
groups. Nonfunctionalized linkers are almost exclusively restricted to methylene groups. Another
aspect disclosed in this study was that the heat maps for the favorable fragments showed a more
restricted physicochemical space compared to the results for the full molecules. For example, the
following physicochemical ranges were predicted to be the most adequate for the fragment collection:
MW > 260 Da; aLogP: 2–3; PSA: 50–80 Å2; E-state: 35–63; MR: 65–115; and Polar: 30–53. These findings
can be useful guidelines for monitoring the physicochemical profile in Chagas’ disease drug design
efforts using fragment-like compounds as starting points.

5. Materials and Methods

5.1. Selection and Construction of the Dataset

The 363 dataset compounds were selected from 39 articles from the Web of Science after eliminating
compounds lacking IC50 values, and duplicated, inorganic, and metal-containing molecules [26–64].
All structures were built using the default settings of Canvas 2.9 (Schrodinger LLC, New York, NY,
USA) [66]. IC50 values were converted to pIC50 (−log IC50). The 363 dataset compounds are available
in the supporting information (Table S1).

5.2. Characterization of the Chemical and Biological Space

To characterize the structural and activity landscape of the dataset, we carried out a principal
component analysis (PCA) using SYBYL-X 2.0 and UNITY fingerprints as molecular descriptors
(Certara, Princeton, NJ, USA) [67,68]. The PCA result was converted into a structure similarity map
that provides information on the structure and activity profiles of the dataset. To generate the structure
similarity map, two principal components were initially extracted and applied as initial coordinates
of the map. Next, Tanimoto distances between the molecular fingerprints were computed to plot all
points of the map. Based on the structure similarity map, we selected the training (280 structures) and
test (83 structures) sets to run the QSAR analyses. The training and test set molecules are available in
the supporting information (Table S1).
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5.3. Physicochemical Descriptors

The physicochemical properties used as input to the ANNs were calculated using Canvas 2.9
(Schrodinger LLC, New York, NY, USA) [66]. The following descriptors were calculated: MW, aLogP,
HBD, HBA, RB, PSA, E-state, MR, Polar, HAC, and RC.

5.4. Backpropagation Artificial Neural Networks

The ANNs were built using the machine learning environment of WEKA 3.6 (University of
Waikato, Hamilton, New Zealand) [69]. The calculated physicochemical descriptors and pIC50 values
for the training set were used to train the ANNs [22]. The ANNs were built using the multilayer
backpropagation perceptron and a logistic activation function [70]. After the weights were initially
determined for each descriptor and the pIC50 values were predicted, the errors between the experimental
and predicted values were used to update the weights for the first intermediate layer [23]. During this
procedure, the adjustment of the activation function was performed through the partial derivative of
the weights. Variations in the learning rate (0.1–0.4), momentum (0.1–0.4), and number of neurons
(1–10) were explored to optimize the ANNs.

5.5. Molecular Fingerprints and 2D Contribution Maps

The KPLS models were constructed for the training set using Canvas molecular fingerprints
(Schrodinger LLC, New York, NY, USA) as molecular descriptors [66]. Four types of fingerprints
were explored: linear, dendritic, radial, and molprint2D [24,25,71]. The best KPLS model, which was
obtained with molprint2D descriptors, was used to generate the 2D contribution maps in which red,
white, and blue indicate positive, neutral, and negative contributions, respectively.

5.6. Heat Maps

Heat maps were constructed to delineate the physicochemical profile of 50 fragments that were
highlighted as positive for biological activity. The positive fragments were identified using the 2D
contributions maps and extracted from compounds that showed pIC50 > 6. The physicochemical
properties were calculated using Canvas 2.9 (Schrodinger LLC, New York, NY, USA) [66] and used as
inputs for the best ANN, which then predicted the pIC50 for the fragment collection. Next, heat maps
were built, in which the physicochemical properties that are associated with higher pIC50 values could
be visually assessed.

6. Conclusions

The discovery of novel drugs for Chagas’ disease remains an outstanding challenge. Progress in
this area requires the design of prototypes that combine activities against the molecular target and
appropriate pharmacokinetics. Achieving a suitable balance among these different and occasionally
conflicting properties requires the development of candidates with finely adjusted physicochemical
properties. In this study, a set of 363 structurally diverse compounds covering a broad interval of
trypanocidal activity was used to build highly predictive QSAR models. The final ANN showed high
predictive power for test set compounds (q2 = 0.81) and identified critical physicochemical properties
associated with the biological activity of the dataset. The best KPLS model, which yielded a q2 value
of 0.84, highlighted key fragments strongly correlated with the anti-T. cruzi activity of the dataset
compounds. The integration of the ANN and KPLS analyses enabled the generation of a privileged
fragment collection, for which an optimal physicochemical space was determined. The structural
information enclosed in the fragment collection along with the delineated physicochemical landscape
are valuable information for guiding the design of novel antichagasic agents with improved properties.

Supplementary Materials: Supplementary material can be found at http://www.mdpi.com/1422-0067/20/11/2801/
s1.
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Abbreviations

ANN Artificial Neural Network
KPLS Kernel-based Partial Least Squares
IC50 Concentration of compound that inhibits 50% of the growth of T. cruzi in phenotypic assays
pIC50 −log IC50
QSAR Quantitative Structure-Activity Relationships
WHO World Health Organization
MW Molecular Weight
aLogP Octanol-Water Partition Coefficient
HBD Hydrogen Bond Donors
HBA Hydrogen Bond Acceptors
RB Rotatable Bonds
PSA Polar Surface Area
E-state Electrotopological State
MR Molar Refractivity
Polar Molecular Polarizability
T. cruzi Trypanosoma cruzi
RC Ring Count
HAC Heavy Atom Count
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