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Abstract: Pre existing immunity to adeno-associated virus (AAV) poses a concern in AAV vec-

tor–mediated gene therapy. Localized administration of low doses of carefully chosen AAV sero-

types can mitigate the risk of an immune response. This article will illustrate the low risk of im-

mune response to AAV serotype 2 vector–mediated gene therapy to the brain with support from

clinical trial data in aromatic L-amino acid decarboxylase deficiency and Parkinson disease.
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1. INTRODUCTION
Recombinant  adeno-associated viruses  (AAVs) are  the

leading vector platform for in vivo gene therapy, with thera-
pies based on AAV serotype 2 (AAV2) and AAV serotype 9
(AAV9) currently approved by the EMA and FDA, partially
due to their nonpathogenic nature and low immunogenicity
relative to other viral vectors [1-5]. However, ≤80% of the
population is  seropositive  for  antibodies  against  wild-type
AAV after the first year of life [6, 7]. Because preexisting
immunity may theoretically reduce the efficacy of transduc-
tion or trigger an immune response in patients treated with
AAV vector–mediated gene therapy [1, 4], screening for neu-
tralizing antibodies and exclusion of seropositive subjects is
required  in  many  clinical  studies  evaluating  such  therapy
[4]. Conversely, administration of recombinant AAV vector
may itself elicit an immune response, depending on such fac-
tors as an anatomic site of administration (Fig. 1) [7-36] and
vector dosage [7, 28, 36].

AAV  vector–mediated  gene  therapy  is  often  adminis-
tered systemically for multisystem diseases affecting tissues
within or outside the central nervous system (CNS) [30]. Pre-
existing neutralizing antibodies may interfere with efficient
viral vector transduction and efficacy of systemically  admin-
istered  AAV-based  gene  therapy  [17, 23, 24, 26, 28].  Se-
roconversion  of  previously  seronegative  individuals  has
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occurred  after  systemic  administration  of  AAV  vector–

mediated gene therapy in clinical trials, potentially preclud-

ing future reapplication of the same vector [7, 21, 36]. In ad-

dition, dose-dependent cytotoxic immune responses, charac-

terized by expansion of AAV capsid–specific T cells, have

been observed in clinical trials of liver-directed, AAV-based

gene therapy in hemophilia, resulting in immune-mediated

inflammation of transduced cells and loss of transgene ex-

pression [7, 24, 26, 28, 29, 36]. Such reactions may be more

likely with systemic administration given the need for rela-

tively high vector doses to achieve sufficient transgene ex-

pression [30]. Nonspecific innate immune responses may al-

so contribute to acute immune-mediated toxicities after high-

-dose systemic AAV vector administration, as suggested in

preclinical studies and in a patient with Duchenne muscular

dystrophy who manifested acute toxicities and complement

activation  days  after  receiving  systemic  AAV-based  gene

therapy; however, broader clinical evidence delineating the

role of innate immune responses in acute immune-mediated

toxicities is limited [7, 21, 28, 37-40].

In contrast to the systemic route, localized gene therapy

may limit the risk of immunogenicity and potentially elimi-

nate  any  physiologic  barriers  to  gene  transfer  (e.g.,  blood

–brain  barrier)  while  maximizing  vector  concentration  in

proximity to target cells [7, 18, 22, 25]. In the CNS, intrathe-

cal and intracerebroventricular administration of AAV (pri-

marily AAV9) into the cerebrospinal fluid (CSF) in nonhu-

man  primates  resulted  in  widespread  viral  transduction

throughout the brain and spinal cord, at doses ≤30 times less
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than those used for systemic administration [18, 27, 31, 32].

CSF-administered AAV vector–mediated gene therapy simi-

larly yielded broad transgene expression and therapeutic ben-

efits in animal models of metabolic and neurodegenerative

conditions  [19,  27,  41,  42].  However,  this  administration

route  is  associated  with  off-target  tissue  transduction  [18,

19, 27, 35, 42], potentially resulting from vector leakage in-

to the systemic circulation [18-20]; wider vector biodistribu-

tion may increase the risk of immunogenicity [22]. Findings

suggestive of possible immunogenicity have been noted in

animal models after AAV9-mediated transfer of nonsyngene-

ic transgenes via CSF and corresponded with neurotoxic ef-

fects in some cases [16, 33]. Furthermore, CSF administra-

tion  may not  protect  against  the  effects  of  preexisting  pe-

ripheral  neutralizing  antibodies,  as  evidenced  by  a  nearly

complete lack of CNS gene transduction following intrathe-

cal administration of AAV vector–mediated gene therapy in

seropositive  nonhuman primates  [32].  Nevertheless,  given

the capacity for widespread CNS transduction via this route,

CSF-administered gene therapy may be particularly advanta-

geous in conditions that affect both the brain and spinal cord

[35, 43]. At present, early-phase human trials of such thera-

py are ongoing for several CNS disorders, including for mu-

copolysaccharidosis  types  I  [8]  and  II  [9,  10],  neuronal

ceroid lipofuscinosis [11, 12], GM2 gangliosidosis [13, 14],

and giant axonal neuropathy [15]. Other sites such as the sub-

retinal space have been investigated for inherited retinal dis-

orders, with little to no detectable immune response to the

therapy [3, 5, 28].

Fig. (1). Features of different sites for gene therapy administration [7, 36]. AAV, adeno-associated virus; AAV2, adeno-associated virus
serotype 2; AAV9, adeno-associated virus serotype 9; CNS, central nervous system; CSF, cerebrospinal fluid. Colematt via Getty Images. (A
higher resolution / colour version of this figure is available in the electronic copy of the article.)
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Compartmentalized  sites  within  the  CNS  and  the  eye,
such as the brain parenchyma and retina, benefit from adap-
tations  protecting  them from destructive  inflammatory  re-
sponses [22, 28]. Direct delivery of viral vectors into these
sites eliminates or reduces the impact of preexisting humoral
immunity,  in  contrast  to  systemic  delivery  [25,  28,  44].
Other factors that may contribute to a lower risk of immuno-
genicity of vector-based gene therapy administered via these
sites include avoidance of widespread vector biodistribution
and  the  need  for  relatively  low  vector  doses  (e.g.,

9.0×10
10

–4.7×10
12

 vg in Parkinson disease (PD) and AADC
deficiency) compared with those typically used for systemic

(e.g., 6.7×10
13

–2.0×10
14

 vg for spinal muscular atrophy), or
even CSF-based administration, especially when the target-
ed  area  is  small  and readily  isolated  [5,  7,  20,  22,  25,  30,
45].  Intraparenchymal  delivery  of  AAV  vector–mediated
gene therapy has been evaluated in early-phase clinical trials
in PD [44, 46-49], Alzheimer disease [3, 50], Canavan dis-
ease [51], and aromatic L-amino acid decarboxylase (AAD-
C) deficiency [45, 52], with ongoing trials in lysosomal stor-
age  diseases  GM2  gangliosidosis  [14]  and  mucopoly
saccharidosis  type  IIIA  [22,  53].

2. AAV2 VECTOR–MEDIATED GENE THERAPY IN
AROMATIC   L-AMINO   ACID   DECARBOXYLASE
DEFICIENCY

In intraparenchymal gene therapy, the affinity of certain
AAV serotypes to specific cell types has been leveraged to
precisely  target  disease-specific  cells  while  avoiding  the
transduction  of  other  cells  that  may  elicit  an  immune  re-
sponse [25]. AAV vector–mediated neurologic gene therapy
has been largely unaffected by the immunological response,
primarily due to the use of vectors based on AAV2, which
preferentially transduces neurons in the CNS [16]. Among
clinical trials evaluating direct intraparenchymal gene thera-
py  administration,  67%  employ  an  AAV2  vector  [25].
AAV9, another vector of considerable interest in neurologic
gene therapy given its ability to transduce astrocytes and neu-
rons,  was  associated  with  neurotoxic  immune reactions  in
preclinical  studies  of  intraparenchymal  gene  therapy,  pre-
sumably due to off-target transduction of antigen-presenting
cells in the CNS [16, 25, 33]. However, clinical experience
with intraparenchymal AAV9 vector–mediated gene therapy
in humans is limited; therefore, the impact of broader AAV9
cellular tropism in this setting is not well known [25].

AADC deficiency is a rare inherited neurologic disorder
resulting from pathological variants in the dopa decarboxy-
lase  (DDC)  gene  encoding  the  AADC  enzyme  (EC
4.1.1.28).  Lack  of  AADC  enzyme  leads  to  a  severe  com-
bined deficiency of neurotransmitters, including dopamine,
serotonin, epinephrine, and norepinephrine [54, 55], result-
ing  in  clinical  symptoms  such  as  failure  to  achieve  motor
milestones, hypotonia, oculogyric crises, delayed speech de-
velopment, and autonomic dysfunction; these symptoms are
apparent in infancy [54, 55]. Gene therapy for AADC defi-

ciency consists of an experimental, intraputaminally adminis-
tered recombinant AAV2 vector containing the entire coding
region of the human DDC gene (AAV2-hAADC) [45, 52].
Since  most  of  the  AADC activity  is  found in  the  striatum
[56], local delivery of the AADC gene is expected to allevi-
ate  symptoms.  Indeed,  intraputaminal  administration  of
AAV2-hAADC improved motor function in a clinical  trial
of  4  children  with  AADC  deficiency.  In  this  trial,  anti-
AAV2 antibody titers were measured at baseline and after
treatment  with  AAV2-hAADC [52].   All   patients   had  a
negative  antibody  titer  at  baseline,  as  measured  by  an
enzyme-linked immunosorbent assay (ELISA) method devel-
oped  for  rapid  screening  of  neutralizing  antibodies  using
whole vector particles as antigens. In the ELISA, a neutraliz-
ing antibody titer  of  1:32 in  cell  transduction assay corre-
sponded  to  an  optical  density  (OD)  of  0.5  [57].  Antibody
titers increased slightly in 2 patients after gene transfer (Fig.
2A).  There  was  no  correlation  between  antibody  titer  and
clinical  outcomes;  all  4  patients  showed  improvements  in
motor  function  [52].  A  later  clinical  trial  included  10  pa-
tients  with  AADC  deficiency.  Anti-AAV2  antibody  titers
were  measured  at  baseline  and  every  3  months  after  gene
therapy. All patients had a negative antibody titer (≤0.1 OD)
at  baseline,  as  measured  by  ELISA.  Antibody  titers  in-
creased in all patients after gene therapy and declined over
time. Antibody titer did not impact motor function improve-
ment (Fig. 2B) [45]. Results from a study conducted by a se-
parate group of investigators showed improved motor func-
tion despite elevated antibody titers (≤1:56–1:28,000) in 6
patients with AADC deficiency at 6 months after treatment
with AAV2-hAADC [58]. Although the detailed process of
antibody formation against AAV2 capsid remains unknown,
leakage of vector particles into the CSF or interstitial fluid
during infusion was the most likely mechanism eliciting an
immune reaction. Importantly, the antibodies raised against
AAV2  capsid  did  not  affect  the  persistent  expression  of
AADC in the putaminal neurons, as evidenced by increased

putaminal uptake of L-6-[
18

F] fluoro-3, 4-dihydroxypheny-
lalanine, a tracer for the AADC enzyme, on positron emis-
sion tomography at 6 [52] and 12 months [45] after AAV2-
hAADC treatment.

Clinical trial data in adults with PD  lend  additional  sup-
port  to  the  concept  that  intraputaminal  AAV2  vector
–mediated gene therapy has a low risk of provoking an im-
mune response. In 3 trials of adult patients with PD (N=29)
who received AAV2 vector–mediated gene therapy, eleva-
ted anti-AAV2 antibody titers were observed in 10 patients
at 6 months, with no impact on therapeutic efficacy or safety
[46, 47, 49]. Even in patients with high pretreatment neutral-
izing antibody titers, therapeutic efficacy was preserved, and
there  were  no  safety  issues  [44].  As  previously  noted,  the
prevalence of anti-AAV antibodies is lower in children than
adults [6]; therefore, preexisting immunity is less likely to
be a factor when AAV2 vector–mediated gene therapy is ad-
ministered to children, as is the case in AADC deficiency.
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Fig. (2). Antibody titers in patients with AADC deficiency receiving AAV2-hAADC gene therapy. (A) Four patients in 1 trial and (B)

10 patients in a later trial received 1.8 × 10
11

 vector genomes, all via bilateral intraputaminal infusion. Anti-AAV2 antibody titer was mea-
sured at baseline and at specified timepoints ≤12 months after gene therapy. AADC,  aromatic L-amino  acid  decarboxylase;  AAV2,  adeno-
associated virus serotype 2; AAV2-hAADC, AAV2 vector containing the entire coding region of the human DDC gene; OD, optical density.
Fig.  (2A)  from Hwu, W.L.,  et al.,  Gene therapy for aromatic L-amino acid decarboxylase deficiency. Sci Transl Med,  2012. 4(134):  p.
134ra61. Reprinted with permission from AAAS. (Fig. 2B) reprinted from The Lancet Child & Adolescent Health,  1, Chien YH, et al.,
265-173, © 2017, with permission from Elsevier. (A higher resolution / colour version of this figure is available in the electronic copy of the
article.)

3. PATIENT MONITORING
Our  clinical  experience  and  data  we  have  obtained

suggest that anti-AAV2 antibodies are not associated with
adverse immune responses and do not compromise the effi-
cacy of AAV2 vector–mediated gene therapy administered
to the brain (specifically the putamen); this is likely due to
the transduction of target cells prior to the development of
an immune response. No patients in the aforementioned clini-
cal trials required pretreatment prophylaxis or posttreatment
mitigation of an immune response. Based on the described
data, we can conclude that the presence of such pretreatment
antibodies  should  not  impact  the  decision  to  treat  unless
symptomatic  presentation  suggests  an  elevated  risk  for  an
immune response.

CONCLUSION
The efficacy and safety of AAV vector–mediated gene

therapy may be adversely affected by preexisting wild-type

anti-AAV antibodies  or,  rarely,  immunogenic  reactions  to

the viral vector. Strategies such as localized administration

of  low-dose  AAV  vector–mediated  gene  to  specific  sites

and, in CNS diseases, the use of vectors based on AAV sero-

types that preferentially transduce neurons in the CNS, may

reduce the likelihood of adverse immune reactions. Clinical

trials of intraputaminally administered gene therapy employ-

ing an AAV2 vector in AADC deficiency and PD suggest

that such strategies indeed reduce the risk of immune reac-

tions that adversely affect safety or efficacy. Based on these

data and our collective clinical experience, we contend that

clinical outcomes of AAV2 vector–mediated  gene  therapy

to the  brain  are  not  impacted  by  preexisting  or  acquired

anti-AAV2 antibodies.

LIST OF ABBREVIATIONS

AADC = Aromatic  L-Amino  Acid  Decarboxy-

lase

AAV = Recombinant  Adeno-Associated  Viru-

ses

AAV2-hAADC = Recombinant AAV2 Vector Containing

the  Entire  Coding  Region  of  the  Hu-

man DDC Gene

AAV9 = AAV Type 9

CNS = Central Nervous System

CSF = Cerebrospinal Fluid

DDC = Dopa Decarboxylase

ELISA = Enzyme-Linked Immunosorbent Assay

OD = Optical Density

PD = Parkinson Disease
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