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INTRODUCTION 
 

Globally, urinary bladder cancer (UBC) is one of the 

most common malignancies of the urinary tract, with 

an estimated 550,000 new cases and 200,000 deaths 

[1]. UBC is generally subdivided into 2 classes, non-

muscle invasive bladder cancer (NMIBC), which 

accounts for about 75% of UBC cases, or muscle-

invasive bladder cancer (MIBC) that makes up about 

25% of the cases. NMIBC is often treatable but is 

associated with frequent relapse. Up to 15% of 
NMIBC cases progress into MIBC, which is more 

aggressive [2]. Despite recent advances in cancer 

diagnosis and treatment, UBC is still associated with a 

high rate of metastasis [3]. Thus, there is an urgent 

need to better understand the molecular basis of UBC 

development and progression so as to improve 

outcomes. 

 

Currently the standard treatment of MIBC is cisplatin-

based chemotherapy [4]. Recent studies have 

demonstrated that UBC is characterized by high 

heterogeneity and genomic instability [5, 6]. UBC 

resulting from various driver events responds differently 

to treatment. For example, tumors characterized by a 
mesenchymal related signature appear more sensitive to 

immune checkpoint inhibitors and resistant to cisplatin-

based chemotherapy [7].  
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ABSTRACT 
 

Few studies have investigated the potential of tumor immune microenvironment genes as indicators of urinary bladder 
cancer. Here, we sought to establish an immune-related gene signature for determining prognosis and treatment 
options. We developed a ten-gene tumor immune microenvironment signature and evaluated its prognostic capacity 
on internal and external cohorts. Multivariate Cox regression and nomogram analyses revealed the prognostic risk 
model as an independent and effective indicator of prognosis. We observed lower proportions of CD8+ T cells, dendritic 
cells, regulatory T cells, higher proportions of macrophages and neutrophils in high UBC risk group. UBC tissues with 
high-risk score tend to exhibit high TP53 and RB1 mutation rates, high PD1/PD-L1 expression and poor-survival basal 
squamous subtypes, while those with low-risk score tend to have high FGFR3 mutation rates and luminal papillary 
subtypes. Unexpectedly, we found a highly significant positive correlation between glycolytic genes and risk score, 
highlighting metabolic competition in tumor ecosystem and potential therapeutic avenues. Our study thus revealed a 
tumor immune microenvironment signature for predicting prognostic and response to immune checkpoint inhibitors 
against bladder cancer. Prospective studies are required to further test the predictive capacity of this model. 
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Cancer immunotherapy has shown promise against 

various cancers [8–10]. Immune checkpoint inhibitor-

based immunotherapy targeting programmed cell with 

cytotoxic T lymphocyte antigen 4 (CTLA4), programmed 

cell death 1 (PD1) and death-ligand 1 (PD-L1) have 

shown significant efficacy against advanced cancer [11, 

12]. While UBC has been reported to respond to immune 

checkpoint inhibitors, the response to the outcomes have 

been poor [13]. Despite low efficacy, pembrolizumab 

(anti-PD1) is approved for treating metastatic UBC [14]. 

The tumor immune microenvironment (TME) is thought 

to influence UBC progression and understanding its 

characteristics may unveil biomarkers for immunotherapy 

effectiveness and precision treatment.   

 

However, from the immunotherapy perspective, recent 

studies have discussed the role of tumor glycolysis in 

therapeutic resistance [15]. Enhancing glycolysis has been 

reported to be utilized and manipulated by bladder tumor 

cells to promote tumor progression [16]. The glycolytic 

switch of cancer cell, namely “aerobic glycolysis” or 

“Warburg effect”, not only promotes tumor growth and 

metastasis but also contributes to the acidic 

microenvironment by releasing lactate into the extra-

cellular environment, limiting the development of an 

effective antitumor immune response. Sporadic reports 

have demonstrated that inhibition of tumor glycolysis 

could promote antitumor immune response [17]. Thus, 

glycolysis blockade in cancer cells could provide a novel 

approach to overcoming immunotherapy resistance. 

 

Data-mining the deposited information of multi-omics 

data using bioinformatic methods have become essential 

tools for a deeper understanding of tumor biology [18, 

19]. Transcriptome profiling has uncovered various gene 

signatures that may predict UBC risk [20, 21]. Multiple 

immune-related genes (IRGs) risk models have been 

proposed for diagnosis and prognosis of various cancers, 

including colorectal cancer [22], melanoma [23] and 

clear-cell renal cell cancer [24]. However, most studies 

have focused on diagnostic gene signatures for UBC [25, 

26]. Therefore, there is an urgent need to develop a 

modified prognostic risk model of UBC to predict 

outcome and treatment options. 

 

Herein, we evaluated publicly available UBC datasets, 

aiming to identify an IRG signature associated UBC 

prognosis (Supplementary Figure 1). We identified 158 

differentially expressed IRGs in UBC samples and 

constructed an IRG risk model using Cox and Lasso 

regression analyses. We then validated the IRG signature 

by evaluating its prognostic accuracy and the relationship 

of the signature with clinicopathological features. 
Changes in tumor immune cell infiltration, mutation 

profile, molecular subtypes and glycolytic biological 

pathway associated with the risk model of UBC were also 

explored. Finally, potential upstream regulatory 

transcription factors for the ten genes in the signature 

were analyzed. Our study may help provide a deeper 

understanding and more specific personalized therapies 

for UBCs.  

 

RESULTS 
 

Identification of differentially expressed IRGs in 

BLCA tissues 

 

Data on 403 UBC cases were downloaded from TCGA 

(TCGA-BLCA dataset) and randomly split into a training 

group (n=202) and the testing group (n=201). Another 

independent UBC dataset (GSE13507) downloaded from 

GEO constituted an independent testing set (n=165). 

Detailed demographics and clinicopathologic characteristics 

of patients are listed in Table 1. After applying cutoff 

thresholds of |log2FC|>1 and FDR<0.05, 1,924 differential-

ly expressed genes between normal urothelium tissues and 

bladder tumors from TCGA and GTEx were identified 

using the Wilcoxon signed-rank test. Of these, 870 were 

upregulated and 1,054 downregulated (Figure 1A, 1B). 

158 differentially expressed IRGs (DEIRGS) were 

extracted from these gene lists (Figure 1C).  

 

Functional enrichment analyses of DEIRGS 

 

To explore the potential function of the DEIRGS, a 

functional enrichment analysis was performed. Gene 

Ontology (GO) terms enrichment analysis was done and the 

10 most enriched terms for biological process (BP), cellular 

component (CC), and molecular function (MF) identified 

(Figure 2A). Among them, “positive regulation of cell 

migration”, “regulation of chemotaxis” and “cell 

proliferation” were considered related to cancer progression. 

Kyoto Encyclopedia of Gene and Genomes (KEGG) 

analysis identified the 7 pathways enriched for in the 

DEIRGS, such as “IL-17 signaling pathways”, “cytokine-

cytokine receptor interaction”, and “MAPK signaling 

pathway” (Figure 2B). To further illustrate the relationships 

between the enriched terms, terms of 158 DEIRGs were 

extracted and presented as a network plot (Figure 2C). 

Protein-protein interaction enrichment analysis identified 

6 closely connected network components (Figure 2D).  

 

Construction of a 10-gene risk signature using the 

UBC training group 

 

To explore the prognostic value of the above 158 genes, 

we performed univariate Cox regression analysis in the 

UBC training group and identified 14 DEGs as 

significantly associated with UBC survival (p<0.05). 

Analysis of the 14 DEIRGs using LASSO to minimize 

overfitting (Supplementary Figure 2A, 2B) identified 10 

IRGs as risk genes (Table 2). The 10 genes were then 
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Table 1. Clinical data in the training and testing sets. 

Variables Group 
TCGA-BLCA GSE13507  

Testing cohort (n = 152) Total cohort (n = 403) Training cohort (n = 202) Testing cohort (n =201) 

OS (months)      

 Mean 25.5 24.0 27.1 48.38 

 Range 0.4-168.3 0.4-168.3 0.6-168.0 1.03-136.97 

Vital status      

 Living 248 127 121 96 

 Dead 155 75 80 69 

T stage      

 Ta/1 4 2 2 104 

 T2 117 59 58 31 

 T3 192 95 97 19 

 T4 57 28 29 11 

 Unknown 33 18 15  

N stage      

 Negative 235 123 112 149 

 Positive 126 61 65 15 

 Unknown 42 18 24 1 

M stage      

 M0 195 99 96 158 

 M1 11 5 6 7 

 Unknown 197 98 99 0 

Grade      

 Low 20 10 10 105 

 High 380 190 190 60 

 Unknown 3 2 1 0 

Age (years)      

 Mean 67.9 68.1 67.7 65.2 

 Range 34-89 37-88 34-89 24-88 

Gender      

 Male 298 146 152 135 

 Female 105 56 49 30 

 

 
 

Figure 1. Analysis of differentially expressed immune-related genes. (A) Heatmap and (B) volcano plot of differentially expressed 
genes (DEGs) in UBCs compared with normal healthy bladder samples in datasets from TCGA and GTEx. (C) Venn diagram of the 158 
intersecting genes between DEGs and IRGs in UBCs. 
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 used to construct an immune-related model using the 

following formula: risk score = 0.2427 * AHNAK + 

(0.3584 * CALR) + (-0.0863 * PLA2G2A) + (-0.1880 * 

OAS1) + (-0.0401 * CDH1) + (0.2079 * PDGFRA) +   

(-0.0014 * SEMA3F) + (0.2281 * RAC3) + (-0.0702 * 

IRF5) + (-0.1192 * CARD11).  

 

Next, the risk score in each UBC case was calculated and 

ranked based on its expression of the 10 risk genes. The 

UBC cases in the training cohort were divided into a high-

risk group (n =101) and a low-risk group (n=101) based 

on the median risk score (Figure 3A). The survival status 

of the UBC cases was visualized on dot plots (Figure 3B). 

Kaplan-Meier analysis revealed significantly different 

survival rates between the two groups (p<0.05; Figure 

3C). The AUC value for the risk model was 0.780 at 3 

years and 0.754 at 5years for overall survival (OS; Figure 

3D). Expression levels of the risk genes in the 2 groups 

were visualized by heatmaps (Figure 3E).  

 

Internal and external validation of the 10-gene risk 

model 

 

Next, we tested the robustness of the 10-gene signature 

on 2 independent datasets. First, we repeated the 

analysis as described above in the internal TCGA 

testing group and observed lower survival rates for 

high-risk UBC cases relative to low-risk ones (p<0.05; 

 

 
 

Figure 2. Enrichment and protein-protein interaction analysis of differentially expressed IRGs. (A) GO analysis of the immune-related 

genes. (B) Circular plot of the top seven most significant KEGG pathways. (C) Network plot of enriched terms: colored by cluster ID, where terms 
with a similarity > 0.3 are connected by edges. (D) Protein-protein interaction network and MCODE components identified in the gene lists. 
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Table 2. Coefficients and LASSO Cox model results of each gene in 10-IRG risk signature. 

Gene HR 95% CI p value LASSO regression coefficient 
AHNAK 1.372 1.083-1.739 0.008 0.243 
CALR 1.82 1.169-2.832 0.008 0.358 
PLA2G2A 0.902 0.816-0.996 0.043 -0.086 
OAS1 0.726 0.583-0.904 0.004 -0.188 
CDH1 0.851 0.730-0.991 0.038 -0.040 
PDGFRA 1.348 1.087-1.672 0.006 0.208 
SEMA3F 0.811 0.671-0.981 0.031 -0.001 
RAC3 1.336 1.077-1.657 0.008 0.228 
IRF5 0.702 0.545-0.905 0.006 -0.070 
CARD11 0.745 0.632-0.879 0.0005 -0.119 

CI, confidence interval; HR, hazard ratio. 

 

Figure 4A). ROC curve analysis of overall survival 

revealed that the value of the AUC was 0.667 for 3 

years and 0.679 for 5 years (Figure 4B). Risk genes 

expression levels in the internal testing group were 

visualized on heatmap (Figure 4C). Next, we 

validated the 10-gene risk model in the external GEO 

testing dataset. The cases were first grouped into a 

low-risk group (n=82) and a high-risk group (n=83) 

based on median risk scores. Interestingly, cases with 

high-risk had shorter median survival relative to low-

risk ones (p<0.05; Figure 4D). In the GEO dataset, the 

AUC values were 0.652 at 3 years and 0.637 at 5 

years (Figure 4E). The expression of risk genes in the 

GEO testing cohort were visualized in heatmap 

(Figure 4F). These data indicate that the immune-

related risk model accurately predicts UBC prognosis. 

Relationship between the 10-gene risk model and 

clinicopathological features 

 

To assess the clinical value of the immune gene-related 

signature, we evaluated the association between the 10-

gene risk model and UBC clinicopathological features. 

This analysis showed that signature risk score positively 

correlates with grade, clinical stage, pathological T 

stage and metastatic lymphatic status (Figure 5A–5D). 

In the independent GEO cohort, the 10-IRG risk score 

was significantly elevated in high grade and high 

muscle-invasive UBC cases relative to low grade and 

superficial UBCs (Figure 5E–5G). No difference was 

observed between risk score and N stage (Figure 5H). 

These data suggested that our IRG risk model closely 

correlates with clinical UBC features.  

 

 
 

Figure 3. Identification of the 10-IRG risk model in the training set. (A, B) Risk score distribution and survival status of low-risk 

(green) (n=101) and high risk (red) UBC cases (n=101) in the training group. (C) Survival analysis of the high-risk UBC (n=101) and low-risk UBC 
(n=101) cases. (D) Time-dependent ROC curve analysis showing the 3-year (red) and 5-year (blue) survival of the 10 IRGs expression patterns. 
(E) Heat map showing expression level of risk genes in the high and low-risk BLCA patients in the training set. 
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Figure 4. Validation of the immune-based risk model in the internal TCGA and external GEO testing cohorts. (A, D) Kaplan-

Meier curve analysis of overall survival of high-risk UBC (n=101 for TCGA; n=83 for GSE13507) and low-risk UBC (n=100 for TCGA; n=82 for 
GSE13507) cases. (B, E) Time-dependent ROC curve analysis showing the 3-year and 5-year survival of the10 IRGs signature. (C, F) Heatmaps 
showing expression of the selected genes in the immune-based risk model. 

 

 
 

Figure 5. Association between the 10-gene risk model and clinicopathological factors. (A–D) Correlation of the risk score and 

clinicopathological factors including (A) grade, (B) clinical stage, (C) T stage, (D) N stage in the TCGA-BLCA patient cohort. (E–H) Association 
between the risk score and clinicopathological features including (E) histological grade, (F) invasive status, (G) T stage and (H) N stage in the 
GEO UBC patient cohort. 
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Considering different clinical characteristics of bladder 

cancer patients, we performed a stratified analysis and 

subgroup analysis was stratified by age, gender, N 

stage, pathological stage, T stage and metastatic status 

(Figure 6A–6L). As shown in the Kaplan-Meier curves, 

we found that the survival rates of the high-risk groups 

had significantly decreased than the low-risk groups in 

any group. Thus, the predict power of overall survival 

by the 10-gene risk model was unrestricted to specific 

subgroups. 

 

Prognosis analysis and predictive accuracy of the 10-

gene risk signature  

 

We then analyzed the relationship between OS, 

clinicopathological parameters, including gender, age, 

clinical stage, pathological features (T and N status), 

and risk score of the immune-related risk model in the 

TCGA cohort. Univariate Cox regression analysis 

revealed that the above clinical variables correlate with 

UBC survival, except gender and risk score (p<0.05; 

Figure 7A). Multivariable Cox regression analysis 

showed that this risk model acts as an independent 

prognostic indicator in the TCGA (Figure 7B). Next, 

ROC analysis was done to evaluate the risk signature 

specificity and sensitivity in predicting OS relative to 

clinicopathological parameters. Interestingly, risk score 

of the 10 genes exhibited better AUC relative the 

clinicopathological parameters (Figure 7C), indicating 

that the risk model independently predicts UBC 

survival. In the c-index analysis (Table 3), the risk 

model showed better predictive ability than that of the 

TNM stage in the training, validation, and entire 

cohorts. 

 

Nomogram analysis of predictive accuracy  

 

To predict UBC survival in the TCGA cohort, we 

constructed a nomogram by integrating risk scores of 

the immune-related signature and clinical information, 

 

 
 

Figure 6. Risk-stratified analysis of the 10-gene signature for overall survival of bladder cancer patients. Kaplan-Meier curves 

for overall survival of patients in Age (≤65-year-old) subgroup (A), Age (>65-year-old) group (B), Female subgroup (C), Male subgroup (D), N0 
subgroup (E), N1-N3 subgroup (F), clinical stage I-II subgroup (G), clinical stage III-IV subgroup (H), T1-2 subgroup (I), T3-4 subgroup (J), M0 
subgroup (K), M1 subgroup (L). 
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including age, tumor stage, T stage and N stage. On the 

nomogram, the score on the point scale is easily 

obtained for each variable. Thus, survival can 

conveniently be estimated at 1, 3, 5 and 10 years by 

calculating the overall points (Figure 8A). The 

nomogram’s accuracy was evaluated using calibration 

curve analysis, which revealed consistency between the 

predictive curves at 1, 3, 5 and 10 years, and the ideal 

curve (Figure 8B–8E), indicating excellent performance 

by our nomogram. These data suggest that the 

nomogram is an effective tool for predicting UBC 

survival.  

 

Correlation of tumor-infiltrating immune cells 

(TIICs) with the 10-IRG risk model 

 

TIICs have been suggested as independent predictors of 

survival in various cancer and are regulated by immune-

related genes [27, 28]. We therefore evaluated the 

correlation between immune cells fractions in UBC 

tissues and risk models using CIBERSORT [29]. This 

analysis revealed that among the 22 immune cells, 

activated CD4+ memory T cell, macrophages and 

neutrophils positively correlated with the 10-IRG risk 

status, while CD8+ T cells, follicular helper T cells, 

regulatory T cells, and monocytes negatively correlate 

with the immune-related risk score (Figure 9A). To 

cross examine the data, further analysis showed that 

macrophages and neutrophils were positively correlated 

with the 10-IRG risk status, while CD8+ T cells were 

negatively correlate with the immune-related risk score 

with both methods for deconvolution (Figure 9A and 

Supplementary Figure 3). Moreover, a correlation 

heatmap demonstrated that different immune cells 

fractions have a weak/moderate correlation 

(Supplementary Figure 4). The proportion of CD8+ T 

cells, dendritic cells resting, and macrophages (Figure 

9B–9D) significantly correlate with survival. These data 

may reveal the poor clinical outcome in the high-risk 

cohort in part.   

 

Relationship of immune-related risk model with 

mutation profile, molecular subtype and 

immunotherapy markers 

 

To assess if the immune-related risk signature was 

associated with specific tumor mutations, the 

correlation between the signature and mutations was 

analyzed in TCGA BLCA dataset containing somatic 

mutation profiles. The overall landscape of mutation 

profile was illustrated in Supplementary Figure 5. 

Alterations in the mutation landscape in high or low risk 

group were as follows: 6 genes were mutated in >19% 

of tissues with high risk score: TP53 (56%), TTN 

(39%), KMT2D (30%), ARID1A (28%), RB1 (25%) and 

KDM6A (20%). While eight genes were mutated in

 

 
 

Figure 7. Prognostic significance and predictive accuracy of the immune-related risk model. (A, B) Univariate (A) and multivariate 

(B) Cox regression analyses of the risk scores of the clinical features for overall survival in TCGA-BLCA dataset. (C) ROC curve showing the 
specificity and sensitivity of the 10-gene signature risk score, age, gender clinical stage, T stage and lymph nodes status in predicting the OS of 
all UBC patients in the TCGA-BLCA dataset. 
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Table 3. Harrell's concordance indexes of the risk score and stage in different cohorts. 

Cohort Risk score TNM Stage 

TCGA-Training 0.75 (0.72-0.78) 0.67 (0.61-0.74) 

TCGA-Validation 0.67 (0.63-0.71) 0.62 (0.58-0.66) 

TCGA-Entire 0.73 (0.69-0.75) 0.65 (0.63-0.67) 

GSE13507-Validation 0.66 (0.62-0.70) 0.59 (0.55-0.63) 

 

>19% of tissues with low risk score: TTN (42%), TP53 

(38%), KDM6A (31%), MUC16 (30%), PIK3CA (22%), 

FGFR3 (22%), KMT2D (28%) and ARID1A (21%) 

(Figure 10A). Notably, higher rates of FGFR3 mutation 

occurred in bladder cancer tissues with low risk score 

compared with tumors with high risk score. However, 

high TP53 and RB1 mutation rates occurred in the high-

risk subgroup. Next, we evaluated the relationship 

between the risk signature and UBC molecular 

subtypes. Interestingly, for luminal papillary UBC, 

strikingly more patients had low risk scores relative to 

those with high risk scores. For basal-squamous and 

neuronal UBC most patients had high risk scores 

(Figure 10B). Moreover, patients with high risk 

exhibited higher PD1 and PD-L1 expression (p<0.05; 

Figure 10C, 10D). These results suggest that high-risk 

patients in the 10-IRG signature are promising 

candidates for immune checkpoint inhibitors or other 

treatment management. 

 

Identification of ten-gene risk score correlated 

biological pathways 

 

In order to investigate biological function of high- and 

low risk score in bladder cancer, GSEA was performed 

and unsurprisingly, the results revealed that high-risk 

score was closely correlated with cancer related 

pathways including ADHERENS JUNCTION, FOCOL 

ADHESION, CELL CYCLE, DNA REPLICATION 

(Figure 11A). Moreover, patients with recurrence/ 

 

 
 

Figure 8. Construction and validation of a nomogram. (A) Nomogram for predicting the 1, 3, 5, and 10-year survival of UBC patients in 
the TCGA-BLCA cohort. (B–E) Calibration plot evaluating the consistency of the predicted value of the model and the probability of survival at 
1, 3, 5, and 10 years obtained using the aforementioned nomogram. 
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progression tended to have a higher risk score than 

those with disease free (Figure 11B). Unexpectedly, 

genes involved in glycolysis were significantly enriched 

in patients with a high-risk score (Figure 11C). 

Significant positive correlation between core glycolytic 

genes, including SLC2A3(GLUT3), PFKFB3, PKM2, 

LDHA and SLC16A1/4(MCT1/4), and risk score was 

observed (Figure 11D, 11E). These results indicate that 

this ten-gene risk score is closely related to tumor 

progression and glycolytic status of UBC. Interestingly, 

we observed a trend for higher expression of Ki-67 in 

high-risk groups versus the low-risk group (Figure 11F). 

 

Regulatory network among differentially expressed 

TFs and IRGs 

 

To elucidate the mechanisms involved in the regulation 

of these immune-related genes, we examined 

differentially expressed transcription factors and 

correlation analysis of DEGs between the 2 gene lists 

(Figure 12A). Construction of the regulatory network 

revealed KLF5, SOX4, GRHL2 and GATA3 as the nodes 

with highest connectivity (Figure 12B). Interestingly, 

further investigation via Tumor Immune Estimation 

Resource (TIMER) showed these transcriptional factors, 

particularly GATA3, were closely related to the 

immune cell infiltration of tumors (Figure 12C). These 

results indicate that the 4 genes may involve in the 

upstream regulation of the ten IRGs and influences the 

immune status of the tumor microenvironment. 
 

DISCUSSION 
 

Mounting evidence has shown that not all patients 

benefit from chemotherapy [30]. However, despite 

growing interest in immunotherapy, only a small 

proportion UBC patients respond to immunotherapy 

[31]. Therefore, personalized therapies are proposed as 

means to optimize outcomes. The complexity of the 

response to immunotherapy makes it impossible that a 

single gene could be sufficient to predict prognosis and 

response to immunotherapy. Recent studies have 

reported multiple gene expression signatures, including 

immune-related signature, that can predict cancer

 

 
 

Figure 9. Alteration of immune cell infiltration in BLCA samples with different risk status. (A) Violin plot demonstrating the TILCs 
associated with the risk model. High- and low-risk groups are represented by red and green violin, respectively. (B–D) Kaplan-Meier curve 
analysis of overall survival for various immune cells infiltration. (B) CD8 T cells; (C) dendritic cells resting; (D) macrophages M0. 
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outcomes patients with UBC [21, 25]. However, very 

few of these are prognostic or capable of guiding 

treatment. Here, we have identified an immune-related 

risk model for UBC by analyzing TCGA and GTEx 

datasets. Using the 2 datasets minimizes bias from 

having too few normal samples in the TCGA dataset. 

 

The risk model comprises 10 differentially expressed 

IRGs (DEIRGs) that correlate with prognosis. We 

demonstrate that the risk model based on the immune-

related genes is an accurate predictor of UBC survival 

by validating it in 2 independent UBC datasets. 

Multivariate Cox regression analysis revealed that the 

risk score is an independent predictor for UBC 

prognosis. Our study also reveals correlation between 

the risk model and several clinicopathological factors 

including invasive status, clinical stage, and T and N 

stage. Nomogram analysis using risk score, clinical 

characteristics and patient information revealed a high 

predictive performance by the risk model. These results 

indicate that the signature can serve as an accurate 

prognostic tool. 

 

Among these risk genes, 5 DEIRGs (AHNAK, CALR, 

PDGFRA, RAC3, PLA2G2A) correlated with high risk 

and 5 (OAS1, CDH1, SEMA3F, IRF5, CARD11) were 

protective factors. AHNAK1 is a scaffold protein, 

highly expressed by CD4+ T cells, and is a critical 

component for calcium signaling. AHNAK1 deficiency 

resulted in a reduced calcium influx upon TCR 

crosslinking [32]. Calreticulin (CALR) is a Ca2+-

binding endoplasmic reticulum (ER) protein that 

contributes to the initiation of adaptive anticancer 

immunity in the context of immunogenic cell death 

(ICD), an immune response that eradicates cells 

experiencing damage beyond recovery in support of 

organismal fitness [33]. Phospholipase A2 group IIA 

(PLA2G2A) is an antimicrobial molecular which shows 

bactericidal activity against bacteria. Upregulation of 

PLA2G2A in cancer cell significantly suppressed 

 

 
 

Figure 10. Variations in the mutation landscape and molecular features of the high and low-risk UBCs in TCGA-BLCA cohort. 
(A) Mutation landscapes of UBC samples in the low- and high-risk groups. (B) Association between the 10-genes risk model and molecular 
subtypes of UBC patients in the TCGA-BLCA dataset. (C, D) Normalized PD1 and PD-L1 gene expression profile in the low- and high-risk 
groups. 
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Figure 11. Enrichment analysis of cancer and glycolysis related pathways associated with risk score in TCGA-BLCA database. 
(A) Gene set enrichment analysis (GSEA) on the association of risk score with adherens junction, focal adhesion, cell cycle and DNA 
replication. (B) Risk score of UBC patients with disease free and progression/recurrence in TCGA-BLCA dataset. (C) GSEA plots depicting 
enrichment of glycolysis pathways and risk score. (D) The correlation between the expression of glycolytic genes and the risk score. (E) The 
identified core candidate genes (red) involved in enzymatic glycolysis are shown. (F) The representative IHC images of ki-67 expression in UBC 
tissues with low- or high-risk. 
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L. monocytogenes infection. It has been suggested that 

the anti-bacterial activity of Pla2g2a is involved in 

tumor inhibition [34]. OAS1 is a member of OAS 

family which acts as antiviral enzymes induced by 

interferon. It was reported that neutrophils, which 

contribute to tumor metastasis through multiple 

pathways, were the top tumor immune infiltrating cell 

type associated with OAS in in breast cancer [35]. 

CDH1 deletions have been shown to cause cancers with 

immune cell infiltration, activation of targetable 

immune checkpoint pathways and gene expression 

related to T-regulatory (Treg) cell signaling [36]. 

Platelet-derived growth factor receptor alpha 

(PDGFRA) belongs to the type III receptor tyrosine 

kinase family. It has been reported that imatinib 

downregulates PD-L1 and IRF1 expression through the 

inhibition of KIT and PDGFRA, thus contributing to 

counteract the suppressed adaptive immune response 

against GIST [37]. SEMA3F is a member of 

Semaphorins and is found to regulate immune cell 

trafficking during the development of thymocytes, and 

it is also found to regulate NK-cell migration and NK–

DC interactions [38]. RAC3 was reported to show 

antitumor activity through maintaining the maturation 

and effector function of NK cells via modulation of 

several critical T-bet-dependent genes such as IRF5 

[39]. Transcription factor interferon regulatory factor 5 

(IRF5) has been shown to regulate the expression of 

 

 
 

Figure 12. Construction of the TF-IRG network in UBC group. (A) Diagram showing the construction of regulatory network of TFs and 
genes in the immune-related risk signature. (B) Regulatory network of the differentially expressed TFs and IRGs. (C) Correlation of GATA3, 
GRHL2, SOX4 and KLF5 expression with immune cell infiltration level by TIMER in UBCs. 
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genes involved in the stimulation of the immune 

system. The GM-CSF-IRF5 signaling axis has been 

reported to promote antitumor immunity through 

activation of CD8 T cell infiltrates [40]. CARD11-

BCL10-MALT1 (CBM) signaling mediates TCR-

induced NF-κB activation in Tregs and controls the 

conversion of resting Tregs to effector Tregs and 

disruption of the CBM complex is sufficient to prime 

the tumor environment for successful immune 

checkpoint therapy [41]. AHNAK was identified as a 

novel candidate biomarker [42] for UBC diagnosis by 

liquid-based cytology and its prognostic value was 

demonstrated in other studies [43]. Somatic CDH1 

mutations are frequent in UBC and promote UBC 

progression [44]. CDH1 deletions have been shown to 

cause cancers with immune cell infiltration, activation 

of targetable immune checkpoint pathways and gene 

expression related to T-regulatory (Treg) cell signaling, 

suggesting immune checkpoint potential therapeutic 

options [36]. Although the remaining 8 genes have not 

been associated with UBC, their roles and their 

prognostic value in UBC merit investigation.  

 

Given that multiple genes mentioned above modulate the 

tumor microenvironment in cancers and that TIICs may 

contribute to UBC progression [45, 46], we explored the 

proportions of TIICs in UBC and the correlation of risk 

status with various immune cell subtype. The proportion 

of CD8+ T cells, Tregs, and dendritic cells were lower in 

the high-risk group according to the 10-gene risk model. 

High CD8+ T cells and dendritic cells proportions 

correlated with better survival. In contrast, the proportion 

of macrophages and neutrophils were high in the high-risk 

set, in which the high proportion of macrophages 

indicated poorer OS. Moreover, high CD8+ T cells and 

macrophage infiltration correlated with longer and shorter 

UBC survival, respectively, which is consistent with 

previous studies [47, 48]. Although neutrophils do not 

correlate with OS, they have been reported to correlate 

with negative prognostic in some cancer types [49]. 

Nonetheless, the function of Tregs and monocytes in UBC 

prognosis remains controversial. Changes in tumor 

immune cells may partly explain the prognostic value of 

this model.  

 

To investigate the mechanisms underlying this risk model, 

we analyzed the UBC mutation profiles. Interestingly, we 

uncovered a subgroup with low-risk scores that featured 

higher FGFR3 mutation rates. Moreover, for the luminal 

papillary subtype most patients have low risk scores [5]. 

The luminal papillary subtype cohort was characterized 

by papillary morphology, lower stage, lower risk for 

progression and enrichment with FGFR3 mutations. 
These results suggest tyrosine kinase inhibitors against 

FGFR3 as a therapeutic option in patients with low risk 

scores. Patients with high risk score accounted for the 

bulk of basal-squamous and neuronal subtypes, which had 

high rates of TP53 and RB1 mutations, suggesting the 

worse survival, making it significant to recognize 

clinically. In addition, high levels of immune markers and 

mesenchymal expression signature in basal-squamous 

subtype suggested resistance to cisplatin-based chemo-

therapy, and sensitivity to immune checkpoint inhibition. 

However, despite high PD1/L1 expression in high-risk 

tumors, glycolytic pathways also simultaneously 

enriched. Cancer cells are known to reprogram their 

metabolism by upregulating glucose uptake. Enhanced 

glycolysis within the TME results in an accumulation of 

lactic acid [50] and glucose-deprived niche can directly 

inhibit glycolysis in immune cells, thus hindering 

antitumor immune responses. Taken together, these 

results suggest that the immune-related risk signature 

may help personalize therapies. Glycolysis inhibition 

coupled with immunotherapy design may be a rational 

approach to improve the efficacy of ICIs. 

 

TFs bind to promoter regions of specific genes to 

modulate their expression. To identify the modulators of 

these immune-related genes, we constructed a 

regulatory network of DEGs between the TF and IRG 

genes. This analysis revealed KLF5, SOX4, GRHL2 and 

GATA3 as nodes with highest connectivity, suggesting 

them as core genes regulators. KLF5 is a known 

oncogene in bladder cancer that promotes angiogenesis 

and invasion [43]. Low GATA3 levels have been 

reported to regulate self-renewal and tumorigenicity in 

bladder cancer stem cells by modulating STAT3 

expression [51].  

 

A limitation of this study is its reliance on public 

datasets, whose accompanying information is limited. 

Thus, these findings need to be validated in future 

clinical studies. Moreover, the proportion of Asian 

patients in our study was small. Future studies should 

incorporate more Asian UBC samples. 

 

In conclusion, we have developed and validated a 

reliable 10-IRG signature model for predicting UBC 

patient outcomes and potential therapeutic options. Our 

data suggest that changes in mutation landscape, TIME 

and glycolytic status might be probable causes for this 

signature’s prognostic capacity. These findings may 

unveil novel, potential immune biomarkers and 

therapeutic strategies. Additional studies are needed to 

confirm the prognostic value of this signature. 

 

MATERIALS AND METHODS  
 

Patient data and databases 

 

A comprehensive list of IRGs was obtained from 

Immunology Database and Analysis Portal (ImmPort) 
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database (https://immport.niaid.nih.gov) [51]. UCSC 

database (https://xena.ucsc.edu/) was utilized to obtain 

gene expression data of normal bladder samples from 

the GTEx database. Data on normal and UBC tissues 

was downloaded from the Cancer Genome Atlas 

(TCGA) data portal (https://portal.gdc.cancer.gov/). To 

get a unified form, the RNA-seq data in the 2 databases 

were converted into the log2(x+1) form and then 

normalized. Clinical data was downloaded and 

organized from TCGA. The gene expression data and 

corresponding clinical information of microarray 

dataset from GSE13507, which used the Illumina 

human-6 v2.0 expression beadchip, were downloaded 

from Gene Expression Omnibus (GEO) (https://www. 

ncbi.nlm.nih.gov/geo/).  

 

Differential gene analysis 

 

Analysis of differential gene expression between normal 

and UBC tissues was done using the Wilcoxon signed-

rank test, applying FDR <0.05 and |log2fold change 

(FC)|>1 as cutoff threshold. Intersection between the DEG 

list and IRG list or TF list was established to identify 

differentially expressed immune-related genes (DEIRGs). 

 

Functional enrichment analysis 

 

In order to explore the underlying molecular 

mechanisms of DEGs, GO term and KEGG pathway 

analysis were done using clusterProfiler R package and 

were visualized using “ggplot2” [52] on R. Protein-

protein interaction enrichment analysis was done on 

Metascape (http://www.home-for-researchers.com) [53] 

using OmniPath8, BioGrid6 and InWeb_IM7. Closely 

connected network components were identified using 

the Molecular Complex Detection (MCODE) [54]. 

 

Construction and validation of an immune-related 

prognostic model 

 

UBC cases in the TCGA dataset that had overall survivals 

>0 days were randomly classified into a training and a 

testing group. The training group was used to identify the 

prognostic DEIRGs using univariate Cox regression 

analysis (p≤0.05), to establish a prognostic immune-

related risk model using Least Absolute Shrinkage and 

Selection Operator (LASSO) regression analysis to 

minimize overfitting, and to seek out the optimal gene 

pattern using glmnet on R [55]. Risk scores for each 

patient in the training set and testing set were calculated 

using the formula: Risk score = exprgene1* coefficient 

gene 1+exprgene 2 * coefficient gene 2+ ⋯ + exprgene10 

* coefficient gene 10. UBC cases in the training group 
were grouped into high and low-risk categories based on 

the median risk score. The signature’s prognostic value 

was tested on the TCGA and GSE13507 cohorts. To 

validate the prognostic power of the IRG risk model, area 

under the curve (AUC) was calculated with the timeROC 

R package. The discrimination of the risk models was 

measured and compared by Harrell’s concordance index 

(c-index). Survival analysis was performed using the 

survminer R package and visualized using ggplot2 R 

package.   

 

TF-IRG network construction 

 

To explore potential relationships between TF and 

IRGs, correlation analysis of DEGs between the 2 gene 

lists was carried out. Significant results in correlation 

analysis were used to construct a regulatory network, 

which was visualized using Cytoscape. Correlation 

values between TF and IRGs >0.3 were considered 

significantly correlated. Based on the co-expression 

network, we analyzed the regulatory relationship of 

genes and identified core regulatory TF genes. 

 

Estimate of tumor-infiltrating immune cells 

 

RNA-seq gene expression data on bladder cancer 

dataset (TCGA-BLCA) from TCGA database were used 

to estimate the relative proportion of infiltrated immune 

cells utilizing the CIBERSORT R package and TIMER 

[29, 56]. 

 

Mutation analysis 

 

Mutation annotation format (MAF) containing somatic 

variants data was downloaded from the TCGA database. 

MAF files were then visualized and summarized from this 

study using the maftools Bioconductor package [57]. 

 

Statistical analysis 

 

Continuous variables were described as mean ±S.D., 

while categorical variables were presented by frequency 

(n) and proportion (%). Statistical analysis was 

performed using the R software or GraphPad Prism 

version 6.0. p<0.05 was considered statistically 

significant. Univariate and multivariate analyses were 

performed using the Cox proportional hazards 

regression model to evaluate the prognostic effect of our 

immune-related signature and other clinicopathological 

features. Time-dependent ROC analysis was utilized to 

assess the accuracy of the immune-related prognostic 

model. The log-rank test in Kaplan–Meier survival 

curves was performed to analyze differences in overall 

survival (OS). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 
 

Supplementary Figure 1. An overall workflow describing the process used to develop and validate the prognostic model to 
predict prognostic outcomes. 

 

 

 
 

Supplementary Figure 2. Lasso regression analysis of IRGs with prognostic potential in the training cohort of UBC patients. 
(A, B) Lasso regression analyses of DEIRGs using the OS model. The optimal values of the penalty parameter λ were determined by cross-
validation.  
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Supplementary Figure 3. Violin plot demonstrating the TILCs associated with the risk model by TIMER. High- and low-risk 
groups are represented by red and green violin, respectively. 
 

 

 
 

Supplementary Figure 4. Correlation heatmap showing the proportions of different TIICs clusters. 
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Supplementary Figure 5. Landscape of mutation profile in TCGA-BLCA dataset. 


