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A B S T R A C T   

Rationale and objectives: We evaluate the automatic identification of type 2 diabetes from neck-to- 
knee, two-point Dixon MRI scans with 3D convolutional neural networks on a large, population- 
based dataset. To this end, we assess the best combination of MRI contrasts and stations for 
diabetes prediction, and the benefit of integrating risk factors. 
Materials and methods: Subjects with type 2 diabetes mellitus have been identified in the pro
spective UK Biobank Imaging study, and a matched control sample has been created to avoid 
confounding bias. Five-fold cross-validation is used for the evaluation. All scans from the two- 
point Dixon neck-to-knee sequence have been standardized. A neural network that considers 
multi-channel MRI input was developed and integrates clinical information in tabular format. An 
ensemble strategy is used to combine multi-station MRI predictions. A subset with quantitative fat 
measurements is identified for comparison to prior approaches. 
Results: MRI scans from 3406 subjects (mean age, 66.2 years ± 7.1 [standard deviation]; 1128 
women) were analyzed with 1703 diabetics. A balanced accuracy of 78.7 %, AUC ROC of 0.872, 
and an average precision of 0.878 was obtained for the classification of diabetes. The ensemble 
over multiple Dixon MRI stations yields better performance than selecting the individually best 
station. Moreover, combining fat and water scans as multi-channel inputs to the networks im
proves upon just using single contrasts as input. Integrating clinical information about known risk 
factors of diabetes in the network boosts the performance across all stations and the ensemble. 
The neural network achieved superior results compared to the prediction based on quantitative 
MRI measurements. 
Conclusions: The developed deep learning model accurately predicted type 2 diabetes from neck- 
to-knee two-point Dixon MRI scans.   

1. Introduction 

Diabetes mellitus is a metabolic disorder with an estimated 463 million people suffering from diabetes in 2019 and a predicted 
increase to 700 million by 2045 [1]. Diabetes has a major impact on the lives and well-being of individuals and societies. In this study, 
we focus on type 2 diabetes mellitus (T2DM), which is the dominant form with roughly 90 % of cases and the driver of the worldwide 
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diabetes epidemic [2,3]. 
MRI provides new opportunities for developing diagnostic and prognostic tools for diabetes [4]. Pathological changes in body 

tissue can directly be displayed by MRI, and body composition can be assessed with the display of ectopic fat accumulation [5]. While 
the specific role of various local fat depots in the development of diabetes is not yet fully understood, previous studies have reported 
that abdominal visceral adipose tissue (VAT), as well as fat in the liver and pancreas, are linked to diabetes [6–9]. The potential to 
extract quantitative fat measurements enabled the classification of diabetes from MRI with VAT and hepatic fat measures [10] and 
with radiomics features from the liver [11]. Such diagnostic tools could be used to identify undiagnosed asymptomatic diabetics, 
monitor progression [10], and supplement existing tests, which have been reported to be sensitive to confounding factors [12,13]. If 
MRI is performed for screening purposes, the diabetes prediction could be run as an additional test, without additional costs, without 
fasting, and non-invasively. In such a scenario, whole-body MRI screening would not be performed solely for diagnosing diabetes, but 
it would be one test in a whole range of tests that can be run on such a comprehensive characterization of human morphology. 

A common basis for imaging studies of diabetes is chemical shift-encoded MRI, which enables the separation of fat and muscle 
compartments. Thanks to advances in MRI acquisition, two-point Dixon imaging has recently been integrated into population-imaging 
studies like the UK Biobank (UKB) Image Enhancement with a targeted 100,000 subjects [14] and the German national cohort [15]. 
Neck-to-knee imaging captures the major structures affected by diabetes: endocrine organs like kidneys, liver and pancreas, adipose 
tissue, and the cardiovascular system. Previous water-fat studies in UKB and other datasets have focused on extracting specific 
quantitative measures relevant to diabetes, e.g., VAT and liver fat [6,16]. However, the direct application of the entire neck-to-knee 
Dixon sequence for studying diabetes has not yet been investigated. 

In this work, we propose the prediction of diabetes from whole-body MRI scans with deep learning. Our end-to-end learning 
approach directly learns to extract features from the entire image sequence that help classify diabetes. To have enough data for training 
complex neural networks, we leverage a large number of images in UKB, providing a comprehensive training and evaluation resource. 
In a careful evaluation that avoids data leakage and bias, we demonstrate that the resulting network predicts diabetes with a balanced 
accuracy of 78.7 % and outperforms alternative approaches that rely on quantitative Dixon measures. Essential for the design of the 
network was the combination of multiple MRI contrasts from several stations and the integration of clinical information for a holistic 
patient characterization. 

2. Materials and Methods 

2.1. Data 

The UK Biobank imaging enhancement is a population-based, prospective study that performs MRI of 100,000 subjects [14], where 
our current sample contains 40.046 subjects (Fig. 1). The abdominal MRI protocol includes a six station Dixon sequence that covers the 
body from neck-to-knee. The acquisition yields four contrasts: water (W), fat (F), in-phase (IN), and opposed-phase (OPP). Subjects 
were scanned with a Siemens Aera 1.5T scanner (Siemens, Erlangen, Germany) with a dual-echo Dixon Vibe protocol in a supine 
position with the arms along the sides. The six stations of the Dixon protocol cover a total of 1.1 m with axial 3D spoiled gradient 
dual-echo images. The water-fat Dixon images were reconstructed with the integrated scanner software. Typical parameters for all 
scans were: TR = 6.69 ms, TE = 2.39/4.77 ms, and bandwidth 440 Hz. The images were resampled to an isotropic resolution of 4.5 
mm3. Fig. 2 shows all six stations of abdominal water and fat scans. The image processing is described in supplement S.1. 

We identified all subjects with T2DM following the procedure outlined in Ref. [6] using participant information from the imaging 
visit, yielding 1703 subjects (Fig. 1). To avoid confounding bias, we created a control group that matches age, age squared,1 sex, and 
site of the diabetic group. For this purpose, we applied the function match. it in the software package R [17], which uses nearest 
neighbor matching on the propensity score estimated using a logistic regression of the treatment on the covariates [18]. The outlined 
procedure will lead to conservative estimates of prediction accuracy, as our matching procedure limits the possibilities of shortcut 
learning. We further excluded subjects with type 1 diabetes and cancer. Table 1 reports demographics and clinical measurements of the 
entire sample and both subgroups. For the comparison to alternative approaches based on visceral adipose tissue (VAT), abdominal 

Abbreviations 

CNN convolutional neural network 
LR logistic regression 
PDFF proton density fat fraction 
UKB UK Biobank 
ROC AUC area under the receiver operating curve 
SAT subcutaneous adipose tissue 
T2DM type 2 diabetes mellitus 
VAT visceral adipose tissue  

1 Age-squared is used because the risk of T2D is not necessarily linearly associated with age. 
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subcutaneous adipose tissue (SAT), and liver proton density fat fraction (PDFF), we extracted a subset of participants that have those 
values available, see supplement S.2. This research has been conducted using the UKB resource, project ID 34479. The study was 
approved by the North West Multicenter Research Ethics Committee, UK (approval number: 11/NW/0382). Written informed consent 
was obtained from all subjects before study entry. 

2.2. Neural network 

We use a 3D convolutional neural network (CNN) to predict binary diabetes status. The multiple contrasts from the Dixon sequence 
form the multi-channel input. The network consists of convolution layers, followed by batch norm, ReLU, and downsampling. Fig. 3 
illustrates the network architecture with details about each layer’s parameters. 

As clinical information to the network, we consider typical risk factors: age, sex, blood pressure, cholesterol medication, alcohol 
intake, smoking, and BMI. We consider two strategies to integrate clinical information that comes in tabular format. First, the 
concatenation of tabular data with image features after global average pooling (CONCAT). Second, applying the recently introduced 
Dynamic Affine Feature Map Transform (DAFT, Fig. 3) [19]. It is a general-purpose module for CNNs that incites or represses high-level 
concepts learned from a 3D image by conditioning feature maps of a convolutional layer on both a patient’s image and tabular clinical 
information. The combination is achieved by using an auxiliary neural network that outputs a scaling factor and an offset to 
dynamically apply an affine transformation to the feature maps of a convolutional layer. The included risk factors can lead to 
anatomical changes visible in MRI scans. Hence, they can be confounders for the classification. By including them in the network, we 
are controlling for such confounding. The network has 1.384.861 parameters, and details about network training are reported in 
supplement S.3. 

For the combination of MRI stations, we consider two strategies. First, we stitch the information from stations to create an image 
with an increased field-of-view, which is then used as input to the network (see S.1). Second, we use an ensemble strategy, where 
individual networks are trained for each station separately, and the prediction results are then combined. In particular, we consider a 
probability-weighted voting strategy across stations, where the probabilities are the output from the softmax layer. 

Fig. 1. Flowchart diagram visualizes the organization of our dataset from the UKB. Subjects with invalid Dixon MRI scans and missing tabular 
variables of interest were excluded. Subjects with T2DM were selected and a matching control group was created to avoid confounding bias. The 
resulting dataset was split into training, validation, and test set using stratified sampling. The results from this cross-validation are the main results 
reported in the article. Only for the comparison with alternative approaches in Table 2, subjects with valid PDFF, VAT, and SAT values 
were selected. 
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Fig. 2. Visualization of the six stations for the Dixon MRI scans for water (left) and fat (right) contrasts. Note that adjacent stations are overlapping 
and therefore partially display the same anatomy. 

Table 1 
Subject demographics and clinical measures (BP: blood pressure, LDL: low-density lipoprotein, HDL: high-density lipoprotein).    

All Control Diabetes P-Value 

n  3406 1703 1703  
Age, mean (SD)  66.2 (7.1) 66.2 (7.1) 66.2 (7.1) 1.000 
Sex, n (%) Female 1128 (33.1) 564 (33.1) 564 (33.1) 1.000 

Male 2278 (66.9) 1139 (66.9) 1139 (66.9)  
BMI, mean (SD)  27.5 (4.9) 25.9 (4.0) 29.1 (5.2) <0.001 
Smoking, n (%) Never 1966 (57.7) 1038 (61.0) 928 (54.5) 0.001 

Previous 1320 (38.8) 607 (35.6) 713 (41.9)  
Current 120 (3.5) 58 (3.4) 62 (3.6)  

Alcohol, n (%) Never 305 (9.0) 113 (6.6) 192 (11.3) <0.001 
Special occasions only 420 (12.3) 149 (8.7) 271 (15.9)  
Once or twice a week 821 (24.1) 391 (23.0) 430 (25.2)  
One to three times a month 420 (12.3) 179 (10.5) 241 (14.2)  
Three or four times a week 902 (26.5) 560 (32.9) 342 (20.1)  
Daily or almost daily 538 (15.8) 311 (18.3) 227 (13.3)  

Diastolic BP, mean (SD)  78.4 (9.8) 78.7 (9.9) 78.2 (9.6) 0.162 
Systolic BP, mean (SD)  141.3 (17.8) 139.9 (18.1) 142.6 (17.3) <0.001 
LDL, mean (SD)  3.4 (0.9) 3.6 (0.8) 3.2 (0.9) <0.001 
HDL, mean (SD)  1.3 (0.3) 1.4 (0.4) 1.2 (0.3) <0.001 
Triglycerides, mean (SD)  2.0 (1.2) 1.7 (1.0) 2.3 (1.3) <0.001 
Cholesterol med, n (%) No 1711 (50.2) 1220 (71.6) 491 (28.8) <0.001 

Yes 1695 (49.8) 483 (28.4) 1212 (71.2)  
BP medication, n (%) No 1933 (56.8) 1245 (73.1) 688 (40.4) <0.001 

Yes 1473 (43.2) 458 (26.9) 1015 (59.6)   
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2.3. Statistical analysis 

We compute balanced accuracy, the area under the receiver operating characteristic curve (ROC AUC),2 average precision, F1- 
score, and recall to evaluate the classification performance. Data leakage and confounding effects due to age and sex must be 
considered carefully to avoid biased evaluation results. Hence, we use a modified five-fold cross-validation that considers confounders. 
To this end, we split the data into five non-overlapping folds such that diagnosis, age, sex, and site are balanced across folds. We assess 
the balance of a split by computing the propensity score, i.e., the probability of a sample belonging to the training data. Next, we 
compare the percentiles of the propensity score distribution in the training and test data and use the maximum deviation across all 
percentiles as a measure of the imbalance [18]. For each of the five splits, this process is repeated for 1000 randomly selected par
titions, and the partition with the minimum imbalance is ultimately the selected split.3 Once the five splits are created, we proceed with 
standard five-fold cross-validation, where 20 % of the data are used for testing in each round. The remaining 80 % of the data are again 
split 80/20 for training and validation, resulting in 64 % for training and 16 % for validation. The correlated t-test was used for 
performance comparison; a p-value of less than 0.05 was considered to indicate a significant difference. 

3. Results 

1703 MRI scans from 1703 diabetic subjects were included in this study (mean age 66.2 years ± 7.1 [standard deviation]; 564 
women), see Table 1. A matched sample of non-diabetic subjects with identical demographic characteristics was selected, yielding a 
total sample of 3406 MRI scans from 3406 subjects (66.2 years ± 7.1; 1128 women). Fig. 1 shows the flowchart for subject selection. 
The results in sections 3.1–3.3 are from five-fold cross-validation. In section 3.4, the subset with PDFF, VAT, and SAT measurements 
was used as the test set. 

Fig. 3. Convolutional neural network (CNN) for the image-based prediction. Shown is the integration of clinical information as tabular data with 
the Dynamic Affine Feature Map Transform (DAFT). Feature maps are transformed subject to tabular data xi from subject i. Multiple image contrasts 
are input as multi-channel, illustrated are fat and water scans. The clinical variables considered are age, sex, blood pressure, cholesterol medication, 
alcohol intake, smoking, and BMI. 

2 The receiver operating characteristic (ROC) curve illustrates the diagnostic ability of a binary classifier when its discrimination threshold is 
varied. AUC measures the area underneath the entire ROC curve.  

3 As the test set is balanced with respect to diagnosis, balanced accuracy is identical to accuracy. 
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3.1. Prediction of diabetes status 

Fig. 4A shows the diabetes prediction results for logistic regression (LR) with clinical information only, image-based classification 
with CNNs, and the integration of clinical information in CNNs with CONCAT and DAFT, respectively. DAFT and CONCAT have an 
average balanced accuracy of 78.3 % and 78.7 %, respectively. The balanced accuracy for CNN is 76.6 % and 72.8 % for LR. The 
improvement of the CNN with respect to LR is significant for AUC (LR: 0.801, CNN: 0.844, p=0.035) and precision (LR: 0.796, CNN: 
0.849, p=0.010). These results demonstrate that for the used classifiers, whole-body images contain more diabetes-related information 
than the selected clinical variables. Further, the combination of image and clinical data yields a further improvement, which is sig
nificant for DAFT for AUC (CNN:0.844, DAFT: 0.871, p=0.042), precision (CNN: 0.849, DAFT: 0.875, p=0.046), recall (CNN: 0.753, 
DAFT: 0.794, p=0.027), and F1-score (CNN: 0.762, DAFT: 0.785, p=0.011). This indicates that the clinical information is comple
mentary to the diabetes-related image information. The improvement of DAFT to LR is significant for all five metrics. 

In Fig. 4B, we compare the prediction results for the individual MRI stations and the ensemble strategy results. We observe that 
DAFT and CONCAT yield a clear improvement over CNN across all stations. The largest improvement in accuracy is for station 5, where 
image information alone has the weakest performance. The results for CONCAT and DAFT are comparable, where DAFT has a slight 
advantage on 5 out of 6 stations. The largest improvement of DAFT in comparison to CONCAT is for station 3. For the ensemble across 
all 6 stations, the apparent improvement over the purely image-based network persists, where the results for CONCAT and DAFT are 
comparable. 

Fig. 4. A: Comparison of performance for diabetes prediction. Logistic regression (LR) uses only clinical information for prediction. CNN uses only 
fat and water images for the prediction. CNN-CONCAT and CNN-DAFT use the combination of image and clinical data with concatenation and 
DAFT, respectively. All image-based methods use an ensemble across all six stations. B: Diabetes prediction performance from fat and water images 
(multi-channel). Results are shown for six individual stations and the ensemble across all stations. Reported metrics are balanced accuracy, the area 
under the receiver operating curve (ROC AUC), average precision (AVG PREC), recall and f1 score. Bars show the mean, lines show the standard 
deviation. Bars show the mean, lines show the standard deviation. * indicates a significant improvement (p < 0.05) in A for pairwise comparisons 
between LR – CNN, CNN–CNN-CONCAT, and CNN – CNN-DAFT. 

Fig. 5. Performance of the neural network for diabetes prediction by stations (1–6) and image contrasts. Reported metrics are balanced accuracy 
(top panel), the area under the receiver operating curve (ROC AUC; middle panel), and average precision (AVG PREC; bottom panel). Bars show the 
mean, and lines show the standard deviation. 
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In supplementary Figure SF1, we evaluate the impact of data augmentation during training. Augmentation yields a clear 
improvement in prediction performance across all metrics. 

The inference time for one scan is 2 ms. Multiple contrasts are handled as multiple input channels, yielding no notable increase in 
runtime. For the multi-stage approach, the inference is performed for each stage, so the total runtime is about 12 ms. 

3.2. Evaluation of imaging contrasts 

Fig. 5 shows the diabetes prediction results for different image contrasts and MRI stations. Next to each of the four contrasts, we 
evaluate multi-channel input by combining in- and opposed-phase scans or fat and water scans. Further, we evaluate the performance 
using a normalized image representing relative fat-water content, as used in Ref. [11]. 

The performance for stations 1 to 5 is similar, with a balanced accuracy between 70 % and 73 % for most contrasts. The accuracy for 
station 6, which covers parts around the knee, is distinctively lower than for the other stations (around 65 %). The ROC AUC and 
average precision values show a similar tendency to balanced accuracy. 

In comparing the individual image contrasts, the highest accuracy, AUC, and precision are obtained by water images from station 2. 
The generally good performance from water scans is followed by opposed-phase scans. Combining in- and opposed-phase scans as 

Fig. 6. Performance for diabetes prediction from fat and water images (multi-channel). Results for prediction from individual stations (1–6), for the 
stitching of stations 2 and 3 (2–3), for ensembling stations 2 and 3, for ensembling stations 1 to 5, and for ensembling all stations. Reported metrics 
are balanced accuracy (top panel), the area under the receiver operating curve (ROC AUC; middle panel), and average precision (AVG PREC; bottom 
panel). Bars show the mean, and lines show the standard deviation. 
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multi-channel inputs does not surpass the performance of solely using opposed-phase scans. Also, scans with relative fat-water content 
do not yield a performance improvement. In contrast, combining fat and water scans as multi-channel input improves the individual 
performances of fat and water scans. The combination of fat and water on station 2 achieves the best overall performance. 

3.3. Evaluation of combining multiple stations 

Fig. 6 shows the results of combining multiple stations of fat and water scans. We consider two strategies for combining stations. 
First, we stitch scans from stations 2 and 3 into an extended image. These stations achieve the highest prediction accuracy on fat and 
water in Fig. 5 and cover many abdominal organs (liver, kidneys, pancreas) as well as VAT and SAT depots. As a second strategy, we 
train independent networks for each station and then combine the results with an ensemble voting strategy. We evaluate the voting on 
stations 2 and 3 as a direct comparison to the stitching strategy. We further evaluate voting of stations 1 to 5, and voting across all 6 
stations. Stitching across all 6 stations is not evaluated as it would result in very large images that would complicate network training. 
The results in Fig. 6 demonstrate that stitching stations 2 and 3 does not yield an increase in accuracy over station 2, and AUC, as well 
as precision, are decreasing. In contrast, the ensemble over stations leads to a clear improvement across all three metrics. The 
improvement is even more pronounced when computing the ensemble over more stations, as demonstrated by the results for voting 
across stations 1 to 5 and all 6 stations. Dropping station 6, the station with the lowest individual performance yields a slight per
formance increase over using all 6 stations. 

3.4. Comparison of prediction with quantitative measurements 

Table 2 reports diabetes classification results with logistic regression for several combinations of independent variables. As image- 
derived, quantitative measurements, we use PDFF, VAT, and SAT, which previously have been used for diabetes classification [10,11, 
20]. As these measurements were only available for some of the participants, we worked on a subset of data in this section, also shown 
in Fig. 1. Next to these variables, we also consider BMI as an anthropometric marker used in Ref. [11]. Furthermore, we evaluate the 
addition of demographic information, medication (cholesterol, blood pressure), smoking, and alcohol consumption. Finally, we report 
the performance of CNN-DAFT on the same test set but use a larger training set to have enough data for training. 

Among the logistic regression models, the highest accuracy and AUC are achieved for model 7, which combines all variables. 
Surprisingly, PDFF alone (model 1) performs better than PDFF combined with VAT, SAT, BMI, and demographics (models 2–5). 
Further, PDFF performs similarly to model 6, which combines non-image related measures. Model 4 has the highest average precision. 
Model 6 is identical to the logistic regression model reported in previous results. Consistent with our previous results about the 
combination of image and clinical data, we note that the inclusion of image-based measures in model 7 (PDFF, VAT, SAT) yields an 
increase in accuracy and AUC compared to model 6. 

The performance of CNN-DAFT leads to the overall best results with a large margin to the other methods across all metrics. The 
clinical variables in CNN-DAFT are identical to those in model 6. 

We have further evaluated alternative classifiers than logistic regression. In Supplementary Table 1, we also report the results for a 
Random Forest classifier and an XGBoost classifier. Logistic regression achieved superior performance for the wide majority of models 
and metrics, justifying its use in Table 2. 

4. Discussion 

Our findings demonstrated that neural networks can accurately predict the diabetes status from Dixon whole-body MRI scans. The 
automatic feature extraction on the whole sequence with an end-to-end learning approach led to better results than operating on 
quantitative image measurements, as shown in Fig. 4. To train the CNN, we have used a large amount of MRI data available in UKB. In 
addition, the dataset provided a detailed characterization of the participants and a precise description of body fat distributions. For the 

Table 2 
Prediction results with logistic regression for different combinations of independent variables and CNN-DAFT. The experiments are performed on a 
dataset subset containing PDFF, VAT, and SAT values. PDFF values are log transformed to account for skewness of the variable. For medication, we 
consider medication for cholesterol and blood pressure. CNN-DAFT uses a larger dataset for training. Mean and standard deviation for balanced 
accuracy, ROC AUC, and average precision are reported. Best results are highlighted in bold face. PDFF: Proton Density Fat Fraction; VAT: Visceral 
Adipose Tissue; SAT: Subcutaneous Adipose Tissue; CNN: Convolutional Neural Network.   

Independent variables Balanced Accuracy ROC AUC Average Precision  

Mean Std Mean Std Mean Std 

1 PDFF 0.672 0.051 0.696 0.063 0.727 0.049 
2 VAT, SAT 0.624 0.059 0.680 0.070 0.677 0.032 
3 BMI 0.620 0.025 0.667 0.061 0.641 0.057 
4 PDFF, VAT, SAT, BMI 0.661 0.070 0.716 0.068 0.742 0.048 
5 PDFF, VAT, SAT, BMI, Age, Sex 0.665 0.077 0.713 0.069 0.736 0.047 
6 BMI, Age, Sex, Medication, Smoking, Alcohol 0.673 0.062 0.733 0.066 0.691 0.051 
7 PDFF, VAT, SAT, BMI, Age, Sex, Medication, Smoking, Alcohol 0.695 0.054 0.763 0.067 0.739 0.054  

CNN - DAFT 0.762 0.065 0.847 0.030 0.857 0.049  
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neural network, the type of MRI contrasts and stations impact the performance, as illustrated in Figs. 5 and 6. Including clinical in
formation significantly improved the performance, where CONCAT and DAFT yielded comparable results, as seen in Fig. 4. 

4.1. MRI contrasts 

The results for the different Dixon contrasts in Fig. 5 showed the best performance for water and opposed-phase scans. Considering 
the combination of images as multi-channel inputs and the relative fat-water content (RFWC), we observe mixed results. The com
bination of IN and OPP images, as well as the RFWC scans, did not yield an improvement over the individual scans. For the multi- 
channel input of fat and water images, we see, however, an increase in performance for most stations, with the overall highest 
balanced accuracy, ROC AUC, and average precision on station 2. Notably, next to an increase in mean performance, also the variance 
decreased. These results suggest that the network can benefit from complementary information in these scans for diabetes prediction. 
The improvement of the combination of fat and water over the combination of IN and OPP images may be surprising, as the former 
ones are linear combinations of the latter ones, yet underlines the importance of the input to neural networks. 

4.2. MRI stations 

We noted a good predictive accuracy from stations 1 to 5 (see Figs. 5 and 6), with a distinctive drop for station 6, which is the last 
station reaching up to the knees. Remarkably, stations focusing on the upper lungs (1) or upper legs (5) result in such a high predictive 
performance. To improve the overall accuracy, we evaluated the combination of the stations. Surprisingly, stitching stations 2 and 3 
did not result in an improvement over using station 2 alone. In contrast, the ensemble strategy of stations 2 and 3 yielded a clear 
improvement. The UKB imaging protocol uses the jugular notch to locate the first MRI station so that the anatomical region in the first 
station is more consistent across the sample than for the last stations due to variations in height. This also needs to be considered in the 
interpretation of the results. Finally, the best performances were achieved by ensembling over stations 1 to 5 and all 6 stations. 

4.3. Alternative approaches 

In the past, the analysis of fat content in the liver and visceral adipose tissue has been of high interest in T2DM, because of the 
accumulation of adipose tissue in the insulin-secreting organs with effects on endocrine function and the disruption of multiple 
pathways in gluconeogenesis due to excessive VAT [7,21]. Hence, previous studies for diabetes classification have extracted quan
titative measures from MRI whole-body scans to measure hepatic fat content and VAT [10,20]. In comparing a subset of our sample, we 
noted a higher accuracy for predicting diabetes with deep learning on the entire MRI sequence, see Table 2. These results demonstrate 
the potential of end-to-end learning to extract features that capture the multi-factorial changes of diabetes in the body. Importantly, 
our approach does not rely on image segmentations of fat depots [10,20] or manual segmentations of the liver [11]. In parallel work 
[30], used a deep neural network for predicting diabetes from a whole-body MRI sequence, and [29] predicted various measures 
including body composition and subject characteristics such as T2D on UK biobank. In contrast to these approaches, our study focused 
on evaluating different MRI contrasts and stages, and integrating tabular data with DAFT. 

4.4. Evaluation and translation 

We have used balanced sets to obtain conservative estimates of classification accuracy for our research questions. Also, in creating 
the splits, we have used age, sex, and site, next to the diagnosis. Accounting for these potential confounders leads to conservative 
estimates of the classification accuracy as the negative impact of shortcut learning is mitigated. For the translation of the proposed 
approach to the general population, with lower rates of T2D, a different training strategy will likely yield better results. In transfer 
learning, methods have been proposed that can tailor the model to the target distribution. If the distribution of T2D in the target 
application is available, taking this information into account during training would be beneficial. Going in the opposite direction, the 
problem could be further narrowed down by adding BMI as an additional variable to create the control group. This would investigate 
the question of differentiating diabetics from non-diabetics in a population with higher BMI. 

4.5. Limitations 

Our study has some limitations. First, the MRI data were acquired on the same scanner models, where future work will need to 
validate our predictive performance on data from multiple centers to take the effect of different population characteristics and scanners 
into account. Second [22], reported evidence of a healthy volunteer selection bias in UKB. Nevertheless, the large sample size and 
heterogeneity in UKB generally support the generalization to the broader population. Third, we have not used the genetic data in the 
UKB, whose inclusion could be one step closer to a comprehensive approach to diabetic precision medicine. Fourth, the reported results 
depend on the hyper-parameters, for which we have used grid search on the validation set. A more exhaustive tuning could lead to 
improved absolute performances, but we do not expect that the relative performances of the different configurations would be affected 
by this. Fifth, since the data release used in this manuscript, more UK biobank data has become available, particularly PDFF, VAT, and 
SAT measurements. 
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5. Conclusions 

Overall, our results demonstrate that it is beneficial to not only focus on the abdominal area of whole-body scans for diabetes 
prediction but also to take the entire neck-to-knee sequence into account and include multiple contrasts from the Dixon sequence. 
Including clinical information increases predictive performance, which may further be expanded by including relevant genetic 
markers [23]. When whole-body imaging is performed for screening purposes, diabetes prediction can be used to detect cases that have 
not yet been identified without additional costs. Unlike fasting glucose tests, no fasting is required; it is entirely non-invasive and 
potentially less sensitive to short-term lifestyle changes. Coming data releases from UKB will provide data about more subjects and 
follow-up examinations, which will support model training and enable the prediction of prognostic information, e.g., the risk of 
developing diabetes in the future or the occurrence of diabetes-related complications. Our study demonstrated that deep learning 
captured relevant information in Dixon sequences to predict diabetes, and we evaluated the best input configuration. The non-invasive 
and radiation-free acquisition of MRI scans facilitates the application of whole-body imaging in epidemiological studies and clinical 
practice, supporting the use of neural networks as diagnostic tools. 
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