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Predicting biochemical recurrence of prostate cancer is imperative for initiating early treatment, which can
improve the outcome of cancer treatment. However, because of inter- and intrareader variability in interpreta-
tion of F-18 fluciclovine positron emission tomography/computed tomography (PET/CT), it is difficult to reli-
ably discern between necrotic tissue owing to radiation therapy and tumor tissue. Our goal is to develop a
computational methodology using Haralick texture analysis that can be used as an adjunct tool to improve
and standardize the interpretation of F-18 fluciclovine PET/CT to identify biochemical recurrence of prostate
cancer. Four main textural features were chosen by variable selection procedure using least absolute shrink-
age and selection operator logistic regression and bootstrapping, and then included as predictors in subse-
quent logistic ridge regression model for prediction (n =28). Age at prostatectomy, prostate-specific antigen
(PSA) level before the PET/CT imaging, and number of days between the prostate-specific antigen measure-
ment and PET/CT imaging were also included in the prediction model. The overfitting-corrected area under
the curve and Brier score of the proposed model were 0.94 (95% CI: 0.81, 1.00) and 0.12 (95% CI: 0.03,
0.23), respectively. Compared with a model with textural features (TI model) and that with only clinical infor-
mation (CI model), the proposed model achieved 2% and 32% increase in AUC and 8% and 48% reduction
in Brier score, respectively. Combining Haralick textural features based on the PET/CT imaging data with
clinical information shows a high potential of enhanced prediction of the biochemical recurrence of prostate
cancer.

INTRODUCTION
Prostate cancer (PCa) is the second leading cause of death by
cancer among the male population in the United States. Primary
PCa is often treated by prostatectomy. However, biochemical re-
currence (BCR) of PCa occurs in 27%–53% of patients and is typ-
ically detected by the rise in prostate-specific antigen (PSA)
serum levels. However, PSA serum levels cannot provide infor-
mation about the location and extent of the disease (1). One-third
of the population experiencing recurrence develops metastasis
within 8 years and multiple anatomical scans may be required to
evaluate potential metastasis. Anatomical scans may be unable
to detect tumors when their size is <1 cm, when PSA serum lev-
els are <10ng/mL, or when patients are treated with localized
therapy (1, 2). Recently, F-18 fluciclovine (anti1-amino-3-F-18

fluorocyclobutane-1-carboxylic acid), also known as Axumin
(Blue Earth Diagnostics, Oxford, UK), an FDA-approved positron
emission tomography (PET) radiotracer, has been added to the
National Comprehensive Cancer Network Clinical Practice
Guidelines in Oncology for Prostate Cancer. F-18 fluciclovine
has received considerable attention because it can be used for
early detection and localization of recurrent PCa after prostatec-
tomy (3).

Miller et al. have reported that a specific training program
for the interpretation of F-18 fluciclovine PET/computed tomog-
raphy (CT) images helped readers achieve acceptable diagnostic
accuracy and reproducibility for stating recurrent PCa (4).
However, the interpretation of F-18 fluciclovine PET/CT images
is inherently subjective, leading to inter- and intrareader
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variability (4, 5). Furthermore, overall F-18 fluciclovine perform-
ance was influenced by PSA levels. For example, true positivity
and sensitivity were 19% and 75%, respectively, when PSA levels
were �1.05ng/mL and 80% and 100%, respectively, when PSA
levels were >3.98 but �8.90ng/mL (5). Moreover, it is not trivial
for an inexperienced nuclear physician or radiologist to discern
between necrotic tissue owing to radiation therapy and tumor
tissue, resulting in low predictive power to progression and re-
currence of PCa.

The Haralick texture analysis (6) was developed in 1970s for
extracting spatial information from images. Over time, texture
analysis was adopted for diagnostic and prognostic applications
in medical imaging to characterize tissue properties (eg, hetero-
geneity) (5–10), which is believed to influence the outcome of
cancer treatment. This study is particularly focused on evaluating
the utility of several Haralick texture features including contrast,
variance, and correlation for predicting PCa recurrence. Haralick
texture features are calculated from a gray-level co-occurrence
matrix (GLCM) of an image. GLCM is defined as the distribution
of co-occurring voxel values at different offsets.

We hypothesize that the quantitative extraction of high-
dimensional mineable data (or image biomarkers) of F-18 fluci-
clovine images may be sensitive to changes in pattern or spatial
distribution of F-18 fluciclovine and thus may enhance the pre-
diction of recurrence, thereby making for better clinical decision.
The goal of this study is to develop a computational methodology
using Haralick texture analysis that can be used as an adjunct
tool to improve and standardize the interpretation of F-18 fluci-
clovine PET/CT to identify BCR of PCa, particularly for inexper-
ienced nuclear physicians and radiologists.

MATERIALS AND METHODS
Study Population and Data Set
The data for the present study were collected in a retrospective
way. F-18 fluciclovine PET/CT images were obtained from 28
prostatectomy patients seen at the KSK Cancer Center of Irvine
from February 2017 to October 2017. These 28 patients received
an F-18 fluciclovine injection for detection of suspected BCR. To
protect patients’ confidentiality and privacy, only minimally
required clinical information was collected for the study. These
include age at prostatectomy, initial Gleason score, PSA levels
prior to radiation (if occurred), prior cancer treatments, PSA lev-
els prior to F-18 fluciclovine scan, and number of days between
PSA measurement and F-18 fluciclovine scan. The P-values
for the difference in those demographic variables between F-18
fluciclovine–positive and –negative groups were computed by
Wilcoxon rank sum tests for continuous variables and chi-square
tests for categorical variables. The Institutional Review Board at
Vanderbilt University approved the retrospective study (IRB
#171811), and the requirement to obtain informed consent was
exempted.

F-18 Fluciclovine PET/CT
Imaging Protocol. Each patient received 370 MBq (10mCi) of

F-18 fluciclovine as a bolus intravenous injection according to
the manufacturer’s instruction. The PET/CT images were acquired
using a PET/CT scanner (GE Discovery, GE Healthcare, Chicago,

IL). The patients were requested to have nothing by mouth for at
least 4 hours prior to F-18 fluciclovine administration;10 mCi of
F-18 fluciclovine in <5mL saline was administrated to patients
who were in supine position. The administrated dose was calcu-
lated using a dose calibrator. Once F-18 fluciclovine was admin-
istrated, the patients were instructed to raise their arms above
their head, and CT scans were started for attenuation correction
and anatomical correlation purposes. PET images were acquired
within 3–5minutes post administration of F-18 fluciclovine from
the mid-thigh area to the base of the skull. PET/CT images were
reconstructed following the standard methods set forth by the
imaging facility.

Image Interpretation. F-18 fluciclovine PET/CT images were
evaluated by a highly experienced (>40years) nuclear medicine
physician certified by the American Board of Nuclear Medicine
and an interpretation program by Blue Earth (Oxford, UK).
Specific anatomical locations (lesions) of focal increased activity
with greater intensity than adjacent background, bone marrow,
or cardiac blood pool activity were classified as positive (mild,
moderate, and marked) or negative for BCR based on visual
assessment. Anatomical regions of interest included both pros-
tate bed (residual prostate, prostate bed, and seminal vesicles)
and extraprostatic sites such as pelvic lymph node and extrapel-
vic metastasis.

Preprocessing of Imaging Data. We used the DCM2NII func-
tion implemented in MRIcron software (7) to convert patients’
DICOM-format PET images into NIfTI-format images. Without
further preprocessing, those NIfTI-format images were imported
into the R Statistical Software (version 3.4.3, R Foundation for
Statistical Computing, Vienna, Austria) for subsequent statistical
analyses.

Statistical Analysis
Haralick Features. Haralick textural features associated with

patterns or spatial distribution of pixel intensities in each 2-
dimensional image were calculated using GLCM (6). For each
patient, GLCMs of 21 selected axial slices of PET images covering
the prostate bed and extraprostatic sites were computed using
the function GLCM in the glcm package in R Statistical Software
using shifts of 0°, 45°, 90°, and 135° with a 3 � 3 window size
defining the neighbors of a reference pixel for texture calcula-
tion. The function calculated each texture statistic using the
specified 4 directions (ie, shift angles) and then returned the
mean value of the neighbors’ texture values for each pixel. Then
each Haralick feature was calculated for each slice by taking the
average of all pixel-level feature values. We calculated 8
Haralick features for each slice of PET image: mean, variance,
homogeneity, contrast, dissimilarity, entropy, second moment,
and correlation. Details are described in Haralick et al.’s study (6).

In total, 168 features (8 features/slice � 21 slices) were
entered into the variable selection procedure using least absolute
shrinkage and selection operator (LASSO) logistic regression and
bootstrapping, where the recurrence status (binary variable) was
the dependent variable. The glmnet package (8) in R was used to
fit the LASSO logistic regression model. In this procedure,
patients were resampled 500 times with replacement, and a
LASSO logistic regression model was fit for each resampled data
set. A LASSO logistic regression performs variable selection to
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determine which texture variables are important in explaining
the dependent variable, shrinking less-important variables to
zero (9). Then the texture features were ranked by how often they
were included in the chosen LASSO logistic regression models.
The top 4 texture features were then included as predictors in the
final logistic ridge regression models. Because of the number of
subjects being fewer (n= 28) than the number of explanatory
variables, we used logistic ridge regression models to avoid over-
fitting (10, 11).

DefineModels
Patients were identified as having “recurrence” (probability of re-
currence of prostate cancer = 1) if there was presence of viable tu-
mor cells in the primary tumor bed or the lymph nodes identified
in the F-18 fluciclovine PET image, and as nonrecurrence (proba-
bility of recurrence of prostate cancer = 0) if otherwise. This binary
response was modeled with chosen texture variables and 3 clinical
information. The “Clinical and Texture Information” (CTI) model is
expressed as follows:

logit½PrðpRP ¼ 1Þ� ¼ b 0 þ b 1htexture 1 þ b 2htexture 2 þ . . .þ b mhtexture m

þb mþ1 AgeP þ b mþ2PSAþ b mþ3DaysPA;

(1)

where htexture_i is the ith texture variable; AgeP is the age at pros-
tatectomy; PSA denotes PSA level before fluciclovine PET imag-
ing; DaysPA denotes the number of days between the PSA
measurement and fluciclovine PET imaging; m=4 is the number
of texture features.

For comparisons, 2 other models were analyzed: a model
with only clinical information (CI model) including AgeP, PSA,
and DaysPA, and a model with only texture information (TI
model) as predictors. In each logistic ridge regression, the tuning
parameter was estimated as described in by Cule et al. (12). The
performance of the 3 models was compared in terms of overfit-
ting-corrected AUC (area under the receiver operating character-
istic [ROC] curve) and Brier scores (11, 13).

The statistical significance of the difference in overfitting-
corrected AUCs and Brier scores was investigated by generating
a bootstrap distribution of the difference with 500 replicates. The
difference for overfitting-corrected AUC is defined by subtract-
ing AUC of the CI (or TI) model from that of the CTI model.
Therefore, a positive value of the difference in AUC implies that
the CTI outperforms the other models in terms of AUC. The differ-
ence for overfitting-corrected Brier score is also defined in the
same fashion—by subtracting the Brier score of the CI (or TI)
model from that of the CTI model, meaning that a negative value
of the difference is indicative of the CTI model outperforming the
other models in terms of Brier score.

Overfitting-Corrected Statistics
With each logistic ridge regression model, the probability of re-
currence of prostate cancer was computed for all patients and
was used to construct an ROC curve for the model. The AUC was
then estimated using the trapezoidal rule. Also, the sum of the
squared difference between the predicted probability of recur-
rence and the observed recurrence was computed, and the aver-
age of this difference was defined as the Brier score for the

Table 1. Clinicopathological Characteristics of Study Subjects E

Characteristic

Subjects (n=28)

P-value
F-18 Fluciclovine–
Positive (n=17)

F-18 Fluciclovine–
Negative (n=11)

Age at prostatectomy, years (Mean 6 SD) 66 6 6 61 6 8 .11
Prior cancer therapies (N)

1.00Prostatectomy only 17 11
Prostatectomy þ Radiation therapy 4/17 (24%) 2/11 (18%)

Initial Gleason score (N)

.22b

No records or missing 2 (12%) 2 (18%)
6 1 (6%) 0 (0%)
7 9 (53%) 7 (64%)
8 4 (24%) 2 (18%)
9 1 (6%) 0 (0%)

PSAa, ng/mL

1.00b
PSA < 1ng/mL 14 (82%) 9 (82%)
PSA 1 � 2ng/mL 0 (0%) 1 (9%)
PSA � 2 ng/mL 3 (18%) 1 (9%)

Interval between PSA prior to F-18 fluciclovine
and F-18 fluciclovine scan, days, median (range) 29 (6, 309) 13 (0, 68) .07c

a PSA before F-18 fluciclovine scan.
b Cells with zero observation were combined with other categories to compute the P-value.
c P-value was computed after removing 2 outliers, that is, 149 and 309 days.
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model. We then used the bootstrap to correct for overfitting in
each case with 100 repetitions (13, 14); in particular, for each
resampled data set, each model was validated against the original
data to compute overfitting-corrected statistics (see online sup-
plemental Appendix A for more details). The overfitting-cor-
rected AUC (or Brier score) was used because this approach will
not yield inflated standard errors, which would have been the
case if we had instead used leave-one-out cross-validation (15).
We repeated this procedure 500 times to generate a bootstrap dis-
tribution of each overfitting-corrected statistic of interest and
95% confidence intervals.

RESULTS
Demographic Characteristics
Clinicopathological characteristics of the study subjects are pre-
sented in Table 1. The mean age was 66 years (SD: 6) and 61
years (SD: 8) for F-18 fluciclovine–positive and F-18 fluciclo-
vine–negative subjects, respectively. F-18 fluciclovine PET/CT
was positive in 17 subjects (61%) and negative in 11 (39%). All
28 study subjects had prior undergone prostatectomy; 4 out of
17 (24%) F-18 fluciclovine–positive subjects received radiation
therapy for the salvage of recurrent tumor or iliac lymph node
metastasis compared with 2 out of 11 (18%) F-18 fluciclovine–
negative subjects. Initial Gleason score of �7 was noted in 14

(82%) and 9 (82%) F-18 fluciclovine–positive and F-18 fluci-
clovine–negative subjects, respectively. In total, 82% of
study participants had PSA serum level <1 ng/mL than that
obtained before F-18 fluciclovine PET scans. Note that F-18
fluciclovine-positive patients tend to have a slightly longer
interval between PSA measurement before the PET/CT imag-
ing and F-18 fluciclovine scan owing to two outliers, that is,
149 and 309 days.

F-18 Fluciclovine–Positive Regions. F-18 fluciclovine–posi-
tive regions had been identified by the experienced nuclear med-
icine radiologist and are presented in Table 2. The main
recurrence sites with F-18 fluciclovine– positive scans are pros-
tate bed (47%) and prostate bed plus pelvic lymph nodes (24%);
in 5 patients with F-18 fluciclovine–positive scans (29%) the
recurrent and metastatic sites were extrapelvic.

Selected Haralick Text Feratures. The top 4 texture features
selected via 500 bootstrapped data included variance and con-
trast textures at the 7th slice and correlation textures at the 9th
and 14th slices. For illustration purpose only, the representative
axial image of PET/CT scans with 3 texture features at the 7th
and 9th slices for a patient with recurrent PCa is presented in
Figure 1. A similar image for a patient without recurrent PCa is
summarized in Figure 2. Although each texture feature has its
own meaning and interpretation, our goal is to not interpret
them in our model but to incorporate the feature information
into the model to enhance the ability to predict BCR. The esti-
mated logistic ridge regression coefficients of the 3 models, that
is, CTI, TI, and CI models, are given in the online supplemental
Appendix B.

Overfitting-Corrected AUC and Brier Score
In Table 3, the AUCs and Brier scores (corrected for overfitting)
from the 3 logistic ridge regression models are reported along
with the corresponding 95% confidence intervals. The overfit-
ting-corrected AUC of 0.94 from the CTI model outperformed the
AUC of 0.71 from the CI model, which is about a 32% (= 0.23/
0.71) increase in the AUC of the CTI model compared to that of

Table 2. F-18 Fluciclovine–Positive Region
Identified by an Experienced Nuclear
Medicine Physician

Region (n = 17) n (%)

Prostate bed only 8 (47%)

Prostate bed þ pelvic lymph nodes 4 (24%)

Extrapelvic sitesa 5 (29%)
a The extrapelvic sites include retroperitoneal lymph node or bone
lesion.

Figure 1. For a patient with recur-
rent prostate cancer (PCa), the F-18
fluciclovine positron emission to-
mography (PET) image near pros-
tate bed and Haralick texture maps
for 3 selected texture variables at 2
different slices (A), contrast texture
at slice 7 (B), variance texture at
slice 7 (C), and correlation texture
at slice 9 (D).
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the CI model. It is noteworthy that both CTI and TI models
achieved very similar AUC and 95% confidence intervals,
although the CTI model slightly outperformed the TI model. This
indicates that adding the Haralick texture information into the
model significantly improved the performance of the model.
Moreover, the CTI model achieved the smallest overfitting-cor-
rected Brier score of 0.12, indicating that the CTI model predicted
the recurrence of PCa more accurately than the TI (Brier score =
0.13) and CI (Brier score = 0.23) models. The additional con-
tribution of the texture information was assessed by compar-
ing the Brier score of the CTI model with that of the CI model,
achieving reduction of 48% (= 0.11/0.23) in the Brier score.
Note that the Brier score of the CTI model also slightly out-
performed that of the TI model (ie, 8% [= 0.01/0.13] improve-
ment) owing to its use of clinical information in addition to
the texture information. Therefore, it is evident that incorpo-
rating texture information has a much stronger effect on
both the AUC and Brier score with respect to the predictive
performance of the model.

In Figure 3, the bootstrap distribution of the differences in
overfitting-corrected AUCs between CTI and CI, and between CTI
and TI, is graphically summarized for illustration purposes. The
area of the shaded region in Figure 3 (ie, �0 and 0.40) indicates
how the overfitting-corrected AUCs resulting from the CTI model
are likely smaller than those resulting from the CI and TI models.
That is, the CTI model would be at least 99% more likely to out-
perform the CI model and�60% more likely to outperform the TI
model in terms of the overfitting-corrected AUC value. Table 4
summarizes how the first model (CTI) likely outperformed the
second model (CI) in terms of AUCs and Brier scores (corrected
for overfitting). Note that the model with additional texture in-
formation is about 98% more likely to outperform the CI model
in terms of the overfitting-corrected AUC and Brier score.
However, the CTI model slightly outperformed the TI model in
terms of overfitting-corrected AUC and Brier score, indicating
that texture information, compared with clinical information,
significantly contributes toward improving the performance of
the model.

The bootstrap distribution (not reported here) of the dif-
ferences in overfitting-corrected Brier scores between CTI
and CI and between CTI and TI is very similar to the graphs
shown in Figure 3. The comparisons between the models in
terms of overfitting-corrected Brier scores are summarized in
the last column of Table 4. Note that the CTI model is about
67% (98%) more likely to have smaller Brier scores than the
TI model (CI model).

DISCUSSION
Haralick texture features extracted from longitudinal 18F-florbe-
tapir PET scans have been used to successfully differentiate
between subject groups (eg, normal vs patients with mild cogni-
tive impairment) without normalizing PET intensity using a ref-
erence region (16); it has been shown that first- and higher-order
textual features with low-level variations are identified for repro-
ducible solid tumor segmentation using FDG-PET/CT scans (17).
In this study, we have, to the best of our knowledge, shown for
the first time that a statistical model (CTI model) combining
Haralick texture features computed from F-18 fluciclovine PET/
CT images with patients’ clinical information may improve the
chances of accurately detecting BCR. The overfitting-corrected

Figure 2. For a patient without
recurrent PCa, the F-18 fluciclovine
PET image near prostate bed and
Haralick texture maps for 3
selected texture variables at 2 dif-
ferent slices (A), contrast texture at
slice 7 (B), variance texture at slice
7 (C), and correlation texture at
slice 9 (D).

Table 3. The AUC and Brier Scores (with
Bootstrap 95% Confidence Intervals) Based on
Overfitting-Correction

Overfitting-Corrected

AUC Brier Score

CTI model 0.94 (0.81, 1.00) 0.12 (0.03, 0.23)
TI model 0.92 (0.79, 1.00) 0.13 (0.04, 0.24)
CI model 0.71 (0.44, 0.89) 0.23 (0.15, 0.31)

The scores are for the model with texture information and clinical
data (CTI model) (A), the same model without clinical data (TI model)
(B), and the model with only clinical data (CI model) (C).
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AUC of 0.94 and Brier score of 0.12 of the CTI model outper-
formed the AUC of 0.71 and Brier score of 0.23 of the CI model
(the model with only clinical information) and the AUC of 0.92
and Brier score of 0.13 of the TI model (the model with only tex-
ture information). Our proposed CTI model can subdue reader
variability and PSA-dependent F-18 fluciclovine performance in
detecting BCR of PCa.

Although our primary goal is to incorporate the textural fea-
ture information into the model to enhance the ability to predict
BCR and to not infer on the regression coefficients of the models,
we found that the top 4 texture features are negatively associated
with the probability of BCR. That is, a patient with higher var-
iance, contrast, and correlation at the chosen axial slices tends to
be free from BCR compared with a patient with lower values of
these values. Because age at prostatectomy, number of days

between the PSA measurement and fluciclovine-PET imaging,
and PSA serum level before fluciclovine PET/CT imaging were
included in the model owing to their clinical significance instead
of statistical significance, interpretation of the corresponding
regression coefficients is not of interest and thus not included.

Although our primary finding is encouraging, the major li-
mitation of this study includes the moderate sample size (n = 28).
To validate our models in an independent cohort of patients with
PCa with and without recurrence, we aim to collaborate with
multiple F-18 fluciclovine research and/or clinical groups to
have access to a similar data set with a large sample size. Because
of the inability to access such external data sets, we internally
validated our model using the bootstrap. The second limitation is
that the true recurrence status of each patient was assessed by
only 1 highly experienced (of>40years) nuclear medicine physi-
cian. Although we strongly believe that the assessed recurrence
status is very close to the underlying truth, it would be still better
to have multiple experienced physicians assess the recurrence
status. The third limitation is that we did not fully account for
patient-level variability in pelvic anatomy, indicating that each
axial slice out of the chosen 21 slices per patient may not be per-
fectly aligned with the corresponding slice of another patient.
Also, we did not mask the background region in each slice, which
may reduce the signal-to-noise ratio in each feature of interest.
However, we believe that our results are still promising as “initial
results.” In the future, with a larger-scale data set after masking
the background noise, we are planning to extend our approach
to accommodate voxel-level texture information extracted from
3D volume covering the pelvic region of each patient, which can
result in more reliable conclusion, free from patient-level vari-
ability in pelvic anatomy. The fourth limitation is that we
assumed the linear relationship between the logit of the probabil-
ity of recurrence and the explanatory variables as shown in

Figure 3. Differences in overfitting-corrected area under the curve (AUCs) between CTI model and CI model (A) and
between CTI model and TI model (B). The area, which is�0 and 0.4, in each plot indicates how likely the overfitting-cor-
rected AUCs based on the CTI model are smaller than those based on the CI and TI models. That is, the CTI model would
at least be 99% (or 60%) more likely to outperform the CI (or TI) model in terms of overfitting-corrected AUC. CTI, TI, and
CI models denote a model with texture information and clinical information, a model with only texture information, and a
model only with clinical information, respectively.

Table 4. Summary of CTI outperforming CI
or TI Model in terms of AUCs and Brier Scores

Overfitting-Corrected

Prob (AUC) Prob (Brier Score)

CTI vs CI 0.99 0.98
CTI vs TI 0.60 0.67

The table depicts the probability of how likely the first model would
outperform the second model for each comparison in terms of AUC
and Brier scores based on overfitting-correction. Prob (AUC) and
Prob (Brier score) denotes the probability that the first model (ie, CTI)
outperforms the second model (ie, CI or TI) in terms of overfitting-
corrected AUC and Brier score, respectively. CTI, TI, and CI models
denote a model with texture information and clinical information, a
model only with texture information, and a model only with clinical
information, respectively.
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model 1. There may exist nonlinear relationships between the
logit of the probability of recurrence and the explanatory varia-
bles, which may not be fully captured by our proposed model
with moderate sample size. Our current study uses traditional sta-
tistical linear model although machine learning (ML) techniques,
including random forest and deep learning, may outperform our
model because ML techniques are designed to capture hidden
and nonlinear association between outcome and explanatory
variables. However, given the modest sample size, ML techniques
are not preferred over traditional statistical linear model because
of the potential for overfitting. Moreover, a recent systematic
review reveals that the benefit of ML over traditional logistic
regression for clinical prediction would be minimal even with a

large-scale data set (18), although that review did not focus on
clinical prediction using biomedical imaging data. We are plan-
ning to compare our statistical model with ML techniques
including the deep learning approach in terms of AUC and
Brier score when we have access to much larger data sets in
the future.

Supplemental Materials
Supplemental Appendix A: https://doi.org/10.18383/j.tom.2020.
00029.sup.01
Supplemental Appendix B: https://doi.org/10.18383/j.tom.2020.
00029.sup.02
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