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ABSTRACT
Background: Over the last decades sub-Saharan Africa has experienced severe land

degradation and food security challenges linked to loss of soil fertility and soil

organic matter (SOM), recurrent drought and increasing population. Although

primary production in drylands is strictly limited by water availability, nutrient

deficiencies, particularly of nitrogen (N) and phosphorus (P), are also considered

limiting factors for plant growth. It is known that SOM (often measured as soil

organic carbon (SOC)) is a key indicator of soil fertility, therefore, management

practices that increase SOM contents, such as increasing tree cover, can be expected

to improve soil fertility. The objectives of this study were to investigate the effect of

Acacia senegal (Senegalia senegal) trees on soil nitrogen, phosphorus and potassium

(K) in relation to SOC, the potential of A. senegal for N2 fixation, and to identify

possible N and P ecosystem limitations.

Methods: Soil nutrient (total N, P, K and available P and exchangeable K)

concentrations and stocks were determined for the 0–10, 10–20,20–30 and 30–50 cm

layers of A. senegal plantations of varying age (ranging from 7 to 24-years-old) and

adjacent grasslands (reference) at two sites in semi-arid areas of Sudan. At both sites,

three plots were established in each grassland and plantation. The potential of A.

senegal for N2 fixation in relation to plantations age was assessed using d15N isotopic

abundances and nutrient limitations assessed using C:N:P stoichiometry.

Results: Soil concentrations of all studied nutrients were relatively low but were

significantly and directly correlated to SOC concentrations. SOC and nutrient

concentrations were the highest in the topsoil (0–10 cm) and increased with

plantations age. Acacia foliage d15N values were >6‰ and varied little with

plantations age. Soil C:N and C:P ratios did not differ between grassland

and plantations and only 0–10 cm layer N:P ratios showed significant differences

between grassland and plantations.

Discussion: The results indicated that soil fertility in the Sahel region is strongly

related to SOM contents and therefore highlighting the importance of trees in the
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landscape. The higher mineral nutrient concentrations in the topsoil of the

plantations may be an indication of ‘nutrient uplift’ by the deeper roots. The high

foliar d15N values indicated that N2 fixation was not an important contributor to soil

N contents in the plantations. The accretion of soil N cannot be explained by

deposition but may be related to inputs of excreted N brought into the area annually

by grazing and browsing animals. The soil C:N:P stoichiometry indicated that the

plantations may be limited by P and the grasslands limited by N.

Subjects Ecosystem Science, Soil Science, Natural Resource Management, Biogeochemistry,

Forestry

Keywords Drylands, Soil nutrients,Woodland savanna, Nitrogen isotopes, Sahel, Senegalia senegal

INTRODUCTION
Over the last decades sub-Saharan Africa has experienced severe land degradation and

food security challenges linked to loss of soil fertility and soil organic matter (SOM),

recurrent drought and increasing population (Nkonya et al., 2015). While soil water

availability is the main limitation on primary productivity in drylands, nutrient

deficiencies, particularly nitrogen (N), phosphorus (P) and potassium (K), are other

important causes (FAO, 2004; Lal, 2004a). SOM plays an important role in maintaining

adequate nutrients and moisture levels (Tiessen, Cuevas & Chacon, 1994; Lal, 2004b) and

soil fertility management practices that increase SOM contents have been adopted in

many drylands in order to enhance crop productivity (FAO, 2004; Koohafkan & Stewart,

2008). The use of a fallow period is a well-known practice in these areas, allowing the soil

to restore its SOM content and so recover from years of cultivation (Sanchez, 1999).

However, the area of land put under fallow and the duration of the fallow period have

been reduced as a result of increasing population pressure (Kaya, Hildebrand & Nair,

2000; FAO, 2004). Other practices aimed at reversing land degradation have focused on

the role of trees, particularly N2-fixing species, in maintaining soil fertility and protecting

the soil from wind and water erosion (FAO, 2001, 2004). The deeper roots of trees

play an important role in mineral nutrient recycling, enabling mineral nutrients to be

taken up from deeper soil layers and making them available to ground vegetation via

litterfall—so-called ‘nutrient uplift’ (Scholes, 1990; Ludwig et al., 2004).

Sub-Saharan drylands are characterized by woodland savanna with trees and shrubs

forming an open canopy with varying proportions of grasses (Bourlière & Hadley, 1983;

Torello-Raventosa et al., 2013). The importance of the facilitative mechanisms (relative to

competition) of trees in tree-grass systems has been reported to be greater in drier savanna

(Dohn et al., 2013; Moustakas et al., 2013). The positive effects of trees and shrubs on

ground vegetation have been attributed to the effect of shade, improvement in soil

moisture conditions, and increased nutrients contents under tree canopies (Belsky et al.,

1993; Hagos & Smit, 2005; Blaser et al., 2013). Fire in savanna is typical, although varying

in frequency and intensity, and generally results in a loss of C and N from the

ecosystem (Pellegrini et al., 2015). However, fire may have little effect on soil total N

and soil organic carbon (SOC) because of the superficial nature of the fires
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(Coetsee, Bond & February, 2010; Coetsee, Jacobs & Govender, 2012). Savanna ecosystems

are also subject to grazing and browsing, the effects of which on ecosystem

biogeochemistry and nutrient fluxes are complex and variable, but maybe significant

(Holdo et al., 2007). In open ecosystems, such as savannas, herbivores may bring in

significant quantities of nutrients, particularly N and P, in the form of dung and urine

(Holdo et al., 2007).

N2 fixation can increase soil N contents (Ludwig et al., 2004; Blaser et al., 2013).

However, N2 fixation has a high P requirement (Vitousek et al., 2002; Binkley, Senock &

Cromack, 2003), which is low in dryland soils due to P adsorption either by iron oxide

(Dregne, 1976) or calcium (Lajtha & Schlesinger, 1988). The abundance of stable N

isotopes (d15N) in leaves and, to a lesser extent, soils can be used to assess N2 fixation and

indicate patterns of ecosystem N cycling (Boddey et al., 2000; Aranibar et al., 2004;

Peri et al., 2012). Low foliar and soil d15N values indicate biological N2 fixation

(Schulze et al., 1999; Robinson, 2001), while the enrichment of soil 15N can be attributed to

SOM reprocessing by microorganisms (Aranibar et al., 2004; Swap et al., 2004).

The biogeochemical cycles of C, N and P are often closely related (Finzi et al., 2011) and

C:N:P stoichiometry is commonly used to provide an insight into the nature of nutrient

limitations in ecosystems (Jobbágy & Jackson, 2001; Bui & Henderson, 2013). Soil C:N

and C:P ratios are useful indicators of the state of SOM decomposition and N and P

availability (Batjes, 1996; Tian et al., 2010), and foliar N:P ratios have been used to assess

plant nutrient limitations (Ludwig et al., 2004; Sitters, Edwards & Olde Venterink, 2013;

Blaser et al., 2014).

Acacia senegal (L.) Willd. (the new scientific name is Senegalia senegal (L.) Britton.) is a

highly drought-resistant tree native to Sudan and Sahel zone of Africa (Obeid & Seif El

Din, 1970). Although the new name has been used in a number of recent publications,

we have retained the use of the old name, A. senegal, for reasons of consistency with our

previous two related articles and with literature in general, and because of the local

importance of the old name. A. senegal provides a wide variety of benefits, such as

fodder for animals, fuelwood, charcoal and gum arabic (Barbier, 1992). Gum arabic is

an exudate collected from A. senegal trees and widely used as an emulsifier in

confectionary and beverages, photography, pharmaceutical and other manufacturing

industries (Barbier, 2000). This tree is also known to be capable of N2 fixation under

different soil types and climatic conditions (Raddad et al., 2005; Gray et al., 2013).

The influence of A. senegal on soil physiochemical properties in arid and semi-arid

areas of Africa has been documented in a number of studies (Deans et al., 1999; Githae,

Gachene & Njoka, 2011). In Sudan, particular attention has been given to SOC and

N contents under A. senegal in the north Kordofan region (Jakubaschk, 2002; Olsson &

Ardö, 2002; Ardö & Olsson, 2004; Abaker et al., 2016) and on the influence of inter-

cropping systems with A. senegal on soil properties of sandy and clay soils

(Raddad et al., 2006; El Tahir et al., 2009).

The aims of our study were to determine the effects of A. senegal plantation age on: (1)

soil N (total), P (total and available) and K (total and exchangeable) concentrations,

stocks and accretion rates; (2) potential N2 fixation using foliar d
15N values; and (3) acacia
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leaf, ground vegetation N:P ratios and soil C:N:P stoichiometry in order to indicate

nutrient limitations, imbalances and cycling in these ecosystems. We hypothesized that

soil N, P and K concentrations and stocks would be positively correlated with SOC and

increase with planation age, further indicating the benefits of maintaining tree cover in

these semi-arid environments. This paper complements two previous papers dealing with

effects of A. senegal plantation age on SOC stocks (Abaker et al., 2016) and on soil

moisture and water balance (Abaker, Berninger & Starr, 2018). These two studies were

carried out at the same sites as in this study.

MATERIALS AND METHODS
Study sites
We conducted our research at two sites in western Sudan: El Demokeya forest reserve

(13�16′ N, 30�29′ E, 560 m a.s.l.), an experimental site managed for gum arabic

research, and El Hemaira forest (13�19′ N 30�10′ E, 570 m a.s.l.) owned and managed

by farmers for gum arabic production (Fig. 1). At both sites there was an area of open

grassland which was taken to serve as a control against which the plantations of differing

age were compared. Photographs showing the plantations and grasslands at the two sites

during the rainy season are given in Supplementary Material S1.

The long-term mean annual rainfall and temperature for both sites is 318 mm and

27.3 �C. The soils at both sites are classified as Cambic Arenosols (FAO) (�90% sand).

The topography is very gently sloping eastwards at El Demokeya and flat at El Hemaira

and the hydrology similar at the two sites. Water balance modelled runoff from the

grasslands was 32 and 95 mm for 2011 and 2012 respectively, zero for the plantations in

2011 and 63 mm in 2012 at both sites (Abaker, Berninger & Starr, 2018). Drainage was

higher in 2011 than in 2012, and somewhat less at El Hemaira (ranging from 0 to123 mm)

than at El Demokeya (ranging from 25 to 128 mm). The vegetation at both sites falls

within the low rainfall woodland savanna type (Ayoub, 1998; FAO, 2006). Main

components of the ground vegetation at both sites were grasses such as Cenchrus biflorus,

Aristidia pallida and Eragrostis tremula, and some herbs, including Geigeria alata, Justicia

kotschyi, Trianthema pentandra and Acanthus spp. A complete list of ground vegetation

species found at the two sites in given in Supplementary Material S2. Although site-

specific information about grazing and frequency of fire at the two sites is unavailable, it is

known that there is over-grazing by sheep and browsing by camels, even within the forest

reserve at El Demokeya. Additional information about the study sites and sampling

have been described in Abaker et al. (2016).

Experimental design, sample plots and sampling
The plantations were 15 and 24-years-old (in 2011) at El Demokeya and seven, 15 and

20-years-old at El Hemaira. The same experimental design was used at both sites.

Three circular plots (17.8 m radius; 0.1 ha) were established in each plantation of differing

age at both sites. Three square plots (50 � 50 m at El Demokeya and 30 � 30 m at El

Hemaira) were located in the adjacent grassland, the difference in size being due to the

difference in the area of grassland available at the two sites. Square rather than circular
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plots were used for the grasslands as it was easier to delineate in the field and to

carry out the sampling. Although constituting a pseudoreplicated experimental

design (Hurlbert, 1984), which limits the generality of our results concerning patterns

about plantation age effects sensu stricto, the design was determined by the spatial layout

of the plantations at the study sites.

Acacia leaf samples were taken from three trees (randomly selected) per plot when the

foliage was fully developed. Seven randomly selected terminal branches were collected from

each of the three trees, air dried, and the leaves excised and composited by tree (n = 45).

Ground vegetation samples were collected from one (randomly selected) of the three

replicate plots per plantation age and the ground vegetation (a mixture of grasses and

herbs) from 14 quadrats (1 � 1 m2) harvested. For the grasslands, ground vegetation

samples were collected from three quadrats located in one of the grassland plots at each

study site. Sampling was carried when the ground vegetation was fully developed. All the

plants within each quadrat were manually uprooted, separated into above and

belowground parts in the field and placed into separate bags. There were a total of

76 quadrats.

Soil samples were taken from the 0–10, 10–20, 20–30 and 30–50 cm layers of all

plantation and grassland plots. For each of the plantation plots, samples were taken from

Figure 1 Satellite images of the two study sites El Demokeya (A) and El Hemaira (B) showing

location of the plots. Number preceding the underscore refers to plantation age in years (0 = grass-

land) and number following the underscore refers to plot number. Inset maps showing Sudan’s location in

Africa (C) and location of study sites in Sudan (D). Image:© 2017 Google, DigitalGlobe and CNES/Airbus.

Full-size DOI: 10.7717/peerj.5232/fig-1
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under the canopy of one (randomly) selected tree at three distances (0.5, 1 and 2.5 m)

from the stem. For the grassland plots, samples were taken from the four corners and

centre of each plot and composited by layer. For determination of bulk density for the

grasslands, a separate sample was collected from the centre of only one of the grassland

plots at each site.

Sample pre-treatment and laboratory analysis
The tree-wise composited acacia leaf samples were further composited by plot for

chemical and N isotope analyses (n = 15). The above and belowground vegetation

biomass samples were dried at 60 �C for 48 h and weighed. However, in order to reduce

analytical costs, the samples from only five of the 14 quadrats per plantation plot and two

of the three quadrats from each of the grassland plots were selected (randomly) for

analyses and only the aboveground samples analysed (n = 29). The soil samples were

air-dried and passed through a two mm sieve and the <2 mm fraction saved for analysis.

In the case of the soil samples from the plantations, the samples from the three distances

from the stem were combined for total elemental analysis, otherwise the other analyses

were carried out on the individual samples.

Contents of C and N in the acacia leaves, vegetation and soil samples were determined

directly using an elemental CN analyser (Vario MAX CN; Elementar Analysensysteme

GmbH, Germany). Contents of P and K were determined by digesting the samples

(300 mg plant material, one g soil) in concentrated HNO3 acid (10 + 1 ml H2O2) and

microwaving, and measuring elemental concentrations using an ICP-OES spectrometer

(Thermo Scientific iCAP 6000 Series, USA). Particle size analysis of the sieved soil samples

was performed using a laser diffraction device (Coulter LS230; Coulter Corporation,

Miami, FL, USA) and the percentage of clay, silt and sand fractions calculated. The total

elemental and particle size analyses were carried out on oven-dried samples (105 �C).
Soil available phosphorous (Pav) was extracted using 0.5 M sodium bicarbonate solution

(pH 8.5) and concentrations determined using the Molybdenum blue spectrophotometer

method and exchangeable K (Kex) was extracted with one M ammonium acetate

(pH 7.0) and concentrations determined by flame-photometer, both following FAO

guidelines (Dewis & Freitas, 1970) and were determined from the air-dried samples.

Apparent (also known as ‘tapped’) bulk density was determined using approximately 20 ml

of soil placed into a measuring cylinder, tapped 10 times, and the volume and weight of

the soil used to calculate the bulk density (Tan, 2005). This method is recommended

because of the difficulty in taking intact volumetric samples from loose sandy soils with

no structure (Tan, 2005), as was the case with our sites. The determination of Pav, Kex

and bulk density was made in the laboratory of the Agricultural Research Corporation,

Ministry of Agriculture, Sudan while the total elemental and particle size analyses were

carried out in the laboratory of the Department of Forest Sciences, University of Helsinki.

The abundance of stable nitrogen isotope, 15N, was determined from the acacia leaf,

ground vegetation aboveground biomass and soil (only for one grassland plot per site)

samples. d15N values were determined using continuous-flow isotope ratio mass
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spectrometry at the Centre for Stable isotopes at IMK-IFU/KIT Garmisch-Partenkirchen

(Germany). The precision (standard deviation) of internal standard for stable N isotopic

composition was better than 0.2‰. The stable isotopic composition of nitrogen is

expressed relative to atmospheric N2 (international standard for N).

Calculation of soil stocks and accretion rates
Soil organic carbon and nutrient stocks (g m-2) were calculated using both the

traditional fixed depth method and the minimum equivalent soil mass (ESM) method

(Lee et al., 2009). The fixed depth stocks were calculated according to the following

equation:

Stocks ¼ soil concentration� BD� T� 100

where concentration is in %, BD is soil bulk density (g cm-3) and T the thickness of

the soil layer (cm). The ESM stocks for each layer were calculated according the equations

given by Lee et al. (2009). This was done in order to eliminate the effect of any alteration

in bulk density associated with plantation age. The stocks for the four sampling layers

were summed to give the stocks for the 0–50 cm layer. Accretion rates of nutrients in

the soil were calculated as the difference between the grassland and the oldest

plantation fixed depth stocks divided by the age of the plantation.

Statistical analysis
The effect of plantation age (grassland was taken to be 0-years-old) on SOC, N, P, Pav,

K and Kex concentrations by layer and stocks (0–50 cm) and on C:N:P ratios by layer were

tested for each site separately using one-way analysis of variance followed by Tukey post

hoc tests. Differences in acacia leaf N, P and K concentrations, N:P ratios and soil and

acacia leaf d15N abundances between the 7, 15 and 20-year-old plantations at El Hemaria

were similarly tested, but for El Demokeya a t-test was performed as there were only

plantations of two ages.

The dependence of the total soil N, P, Pav, K and Kex on SOC was evaluated by fitting

linear regressions and the coefficient of determination (R2). Correlations (Pearson)

between SOC contents and total N, P, Pav, K and Kex were computed for each soil layer and

site separately. All the statistical analyses were performed using SPSS software (IBM SPSS

Statistics for Windows, Version 22.0; IBM Corp., Armonk, NY, USA).

RESULTS
All nutrient concentrations were generally higher in the plantations than in the grasslands,

increased with plantations age and decreased with depth (Fig. 2). Concentrations of

SOC, N, total P and Kex in the top (0–10 cm) layer were significantly (p � 0.05) higher

in the oldest plantations at both sites compared to the grassland plots. Soil concentrations

of total N, P, Pav and Kex also significantly depended on SOC concentrations (Fig. 3).

The strongest dependence was for N (R2 = 0.90) and the weakest was for total K

(R2 = 0.11). The correlations between SOC and N concentrations were significant for

all layers at both of the sites (Table 1). The correlations between SOC and total P
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Figure 2 Soil SOC, N, total P, available P, total K and exchangeable K mean (n = 3) concentrations

plotted against depth for grassland and plantations by age for El Demokeya (A–F) and El Hemaira

(G–L) sites. SOC data from Abaker et al. (2016). Full-size DOI: 10.7717/peerj.5232/fig-2
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concentrations were significant for all layers at El Hemaira but in the case of El Demokeya

the correlation was significant only for the top layer. The correlations between SOC and

total K concentrations were stronger at El Hemaira than at El Demokeya. In the case

of Pav and Kex, significant correlations with SOC were associated with the upper layers.

Nutrient stocks in the soil of the plantations were generally greater than those in the

grassland and increased with plantation age (Table 2). As the fixed depth SOC stock
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Figure 3 Dependence of soil N (A), total P (B), available P (C), total K (D) and exchangeable K (E) on

SOC concentrations for grassland and plantations by age across all soil layers and for the two study

sites. Full-size DOI: 10.7717/peerj.5232/fig-3
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values showed better relationships with SOC concentrations and with plantation age than

did ESM SOC stock values, only the fixed depth stock SOC and nutrient values are

presented in Table 2 and handled further. However, the ESM SOC and nutrient stock

values are presented in Supplementary Material S3. At El Demokeya SOC, N, total P

and Kex stocks were significantly higher in the oldest plantation than those in the

grassland, but not Pav and total K stocks. At El Hemaira SOC, N and Kex stocks were also

significantly higher in the oldest plantation than in the grassland. Kex stocks in the

15-year-old plantation were also significantly higher than in the grassland. Assuming that

the significant difference between grassland and the oldest plantation SOC, N and total

P stocks represents the addition of these elements brought about by the effect of the

plantation, the average under canopy accretion rates of SOC and N at El Demokeya would

be respectively 12.9 and 2.0 g m-2 yr-1. At El Hemaira, the corresponding SOC and

N accretion rates would be 27.8 and 3.0 g m-2 yr-1. The total P accretion rate at El Demokeya

Table 1 Pearson correlations between SOC and N, total P, available P, total K, exchangeable K

concentrations by soil layer across all plots separately for El Demokeya (n = 9) and El Hemaira

(n = 12) sites.

Site Layer, cm N P Pav K Kex

El Demokeya 0–10 0.942 0.915 0.634 0.006 0.749

10–20 0.675 0.600 0.817 -0.323 0.637

20–30 0.652 0.442 0.144 -0.064 0.366

30–50 0.729 0.182 -0.302 -0.307 0.757

El Hemaira 0–10 0.950 0.869 0.848 0.566 0.762

10–20 0.827 0.699 0.657 0.558 0.862

20–30 0.906 0.732 0.434 0.732 0.529

30–50 0.936 0.663 0.170 0.576 0.365

Note:
Significant (a = 0.05) correlations are given in bold.

Table 2 Soil stocks (g m-2; 0–50 cm layer) of SOC, N, total P, available P, total K and exchangeable K

for grassland and plantations (under canopy) by age for the two study sites.

Site Age SOC* N P Pav K Kex

El Demokeya 0** 950(51)a 105 (11)a 28 (3.1)a 2.1 (0.1)a 315 (33)a 38.0 (8.0)a

15 1024(143)ab 93 (10)a 35 (1.5)ab 2.2 (0.2)a 291 (5)a 43.0 (4.5)a

24 1260(122)b 153 (15)b 41 (7.6)b 2.2 (0.1)a 273 (28)a 51.5 (2.1)b

El Hemaira 0** 867(59)a 92 (1)a 27 (2.0)a 2.1 (0.6)a 339 (43)a 33.0 (0.6)a

7 982(190)ab 89 (13)a 32 (1.2)a 2.0 (0.3)a 230 (40)a 40.6 (3.1)ab

15 1216(138)ab 136 (27)ab 33 (6.4)a 2.0 (0.2)a 323 (60)a 50.1 (2.0)b

20 1422(240)b 151 (32)b 34 (6.4)a 2.3 (0.3)a 349 (119)a 48.1 (9.6)b

Notes:
Values are mean values (n = 3) followed by standard deviation (in parentheses). Within each site, mean values sharing
the same superscript letters (a, ab, b) are not significantly different from each other (Tukey’s HSD, a < 0.05).
* SOC values from Abaker et al. (2016).
** Grassland.
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would be 0.5 g m-2 yr-1 (as the difference in total P stocks between the grassland and oldest

plantation at El Hemaira was not significant, the accretion rate is considered zero).

Grassland ground vegetation and soil d15N values were generally lower than

corresponding plantation d15N values. Acacia foliar d15N values were higher than ground

vegetation values, but neither showed a difference related to plantation age (Table 3).

The number of ground vegetation samples was too small to allow for significance testing.

Soil d15N values increased with plantation age and decreased with depth at both study

sites, but these trends were not significant (p > 0.05). Plantation soil d15N values were

significantly correlated to soil C:N ratios, but the relationship for grasslands was clearly

different (Fig. 4).

Table 3 Soil C, N and P stoichiometric ratios for the grassland and plantations by age and layer (cm). Values are plot age mean values (n = 3).

Site Age (years) C:N N:P C:P

0–10 10–20 20–30 30–50 0–10 10–20 20–30 30–50 0–10 10–20 20–30 30–50

El Demokeya 0* 9.1 8.8 9.2 9.2 4.3a 4.2 3.7 3.2 38.9 36.7 34.0 29.7

15 11.1 10.9 11.2 11.2 3.7a 2.7 2.4 2.1 41.0 29.2 26.1 23.1

24 8.1 8.9 8.2 8.2 5.7b 3.4 2.9 3.0 46.4 30.4 23.9 24.8

El Hemaira 0* 9.6 9.2 9.5 9.3 3.8a 3.9 3.7 3.1 36.2 35.6 35.1 28.2

7 10.5 11.9 10.7 11.1 3.5a 2.9 2.5 2.5 37.4 34.1 26.8 28.0

15 8.7 8.7 9.5 10.3 5.0ab 4.6 3.7 3.6 43.4 40.4 35.4 36.8

20 8.8 10.0 9.0 10.3 5.5b 4.2 4.1 3.9 48.1 41.5 36.3 39.6

Notes:
Values within each site and soil layer sharing the same superscript letter (a, ab, b) or having no letter are not significantly different from each other (Tukey’s HSD, a < 0.05).
* Grassland.
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Figure 4 Relationship between soil d15N (‰) and soil C:N ratios for grasslands and plantations by

age for the two study sites across all plots and layers. Dashed line is the linear regression fitted to the

plantation data only (Y = -0.452�X + 11.31, R2 = 0.1926, p = 0.0005).

Full-size DOI: 10.7717/peerj.5232/fig-4

Abaker et al. (2018), PeerJ, DOI 10.7717/peerj.5232 11/22

http://dx.doi.org/10.7717/peerj.5232/fig-4
http://dx.doi.org/10.7717/peerj.5232
https://peerj.com/


Soil C:N:P ratios did not significantly differ with depth and the N:P ratios only showed

significant differences between plantation age for the 0–10 cm layer (Table 4). The 0–10 cm

soil layer C:N and C:P ratios did not show significant differences with age at either of

the sites. At El Demokeya, the 0–10 m soil layer N:P ratio in the 24-year-old plantation

was significantly (p < 0.05) higher than those in the grassland and 15-year-old plantation.

At El Hemaira, the 0–10 cm soil layer N:P ratio in 20-year-old plantation

was significantly greater (p < 0.05) than those in the grassland and 7-year-old plantation.

Acacia leaf nutrient concentrations and N:P ratios did not show significant differences

related to plantations age at either of the sites (Table 5). There were too few ground

vegetation samples for statistical testing of nutrient concentrations and ratios.

Table 4 N, P and K concentrations (mg g-1) and N:P ratios in acacia leaves (n = 3), aboveground

vegetation in the grassland (n = 2) and plantations (n = 5) at each of the two study sites.

Site Age (years) Sample N P K N:P

El Demokeya 0* Grd. veg. 12.1 2.7 23.5 4.6

15 Acacia leaves 40.0 (1.8) 0.7 (0.05) 4.6 (0.1) 59.3

Grd. veg. 11.6 (1.6) 2.3 (0.6) 19.9 (3.5) 5.3

24 Acacia leaves 39.4 (1.7) 0.7 (0.04) 4.2 (0.6) 59.2

Grd. veg. 13.0 (1.6) 1.8 (0.3) 16.6 (5.8) 7.6

El Hemaira 0* Grd. veg. 11.8 0.9 17.1 13.5

7 Acacia leaves 38.4 (2.9) 0.5 (0.0) 5.2 (1.3) 70.3

Grd. veg. 16.1 (4.5) 1.5 (0.3) 16.6 (8.0) 11.1

15 Acacia leaves 41.4 (2.1) 0.6 (0.0) 3.5 (0.5) 73.7

Grd. veg. 11.6 (3.7) 1.8 (0.6) 20.3 (4.6) 6.9

20 Acacia leaves 40.0 (5.3) 0.9 (0.4) 4.4 (0.8) 52.6

Grd. veg. 19.2 (5.3) 3.9 (0.7) 30.7 (8.3) 4.9

Note:
Values are means followed by standard deviation (in parentheses).
* Grassland.

Table 5 d15N values (‰) for acacia leaves (n = 3), aboveground vegetation (n = 2 for grassland, and

n = 5 for plantations) and soil (n = 3) by plantation age at the two study sites.

Site Age (years) Acacia leaves Ground veg. Soil layer (cm)

0–10 10–20 20–30 30–50

El Demokeya 0* – 2.9 3.8 2.7 2.3 2.0

15 6.5 (1.5) 3.2 (1.1) 7.9 (1.1) 6.9 (0.2) 6.8 (0.6) 5.9 (0.7)

24 7.0 (1.5) 3.8 (1.5) 10.2 (0.9) 7.7 (0.8) 6.4 (0.8) 6.0 (0.4)

El Hemaira 0* – 5.8 1.8 1.0 1.0 0.9

7 8.8 (1.2) 7.9 (2.0) 7.4 (0.8) 5.4 (1.3) 4.5 (1.1) 4.3 (0.5)

15 8.9 (0.5) 5.5 (1.7) 8.7 (0.4) 7.1 (1.3) 6.5 (1.2) 5.5 (1.7)

20 8.0 (1.4) 6.7 (1.2) 9.1 (0.9) 7.4 (1.0) 6.9 (1.1) 6.2 (1.3)

Notes:
Values are mean values followed by standard deviation (in parentheses). Soil grassland value is for a single composite
sample from one plot.
* Grassland.

Abaker et al. (2018), PeerJ, DOI 10.7717/peerj.5232 12/22

http://dx.doi.org/10.7717/peerj.5232
https://peerj.com/


DISCUSSION
In this study we aimed to determine whether the previously reported increase in SOC

contents with plantation age at the two sites (Abaker et al., 2016) would also result in

higher nutrient (N, P and K) concentrations and stocks, which would further support the

importance of maintaining or increasing tree cover in the region. In an earlier paper,

we showed that the increases in SOC with plantation age at the two sites resulted in

increased available water capacities which then had an effect on the water balance of

the plantations (Abaker, Berninger & Starr, 2018). Because of the pseudoreplicated

design of our study, general patterns about plantation age effects may not be strictly

inferred. However, given the inevitable within site variation in site conditions, the climate,

soil type and topography were uniform across each site and the replicate three plots

for each treatment (grassland and plantation age) were located so as otherwise to be as

similar and comparable as possible. Unfortunately, documented information about land-

use prior to the establishment of the plantations at the two sites was not available. However,

from discussions with local staff, the A. senegal plantations were established on areas of

homogenous abandoned grassland.

Recognising the potential limitations imposed by the pseudoreplicated design, the

significant dependence of nutrient concentrations on SOC and the significantly higher

N and Kex stocks in the oldest plantations compared to the grasslands support our initial

hypothesis that soil N, P and K are linked to SOC and are in agreement with results

reported from other studies. For example, in A. tortilis savanna woodlands in northern

Tanzania Ludwig et al. (2004) found increases in SOM, N, P and Pav concentrations with

tree growth stage (grassland, under small and large trees), and Deans et al. (1999) working

with A. senegal in Senegal found that N and Kex, but not P concentrations, increased with

plantation age. In both these studies, the soil refers to the surface layer (0–10 cm). This

layer had the highest SOC contents and would therefore be expected to be the most

affected by the plantations. Furthermore, in the study by Deans et al. (1999), soil

concentrations of N, P and Kex were all significantly correlated to loss-on-ignition

contents, i.e. SOC contents. El Tahir et al. (2009) working at El Demokeya site, reported a

SOC stock value of 738 g m-2 for 0–30 cm layer and for total N, Pav and Kex values of 118,

2.5 and 29 g m-2, respectively. We were unable to take into account the effect of fire and

grazing on soil SOC and N stocks at our study sites. However, fire has generally been

found not to result in a loss of soil total N and SOC because of the superficial nature of the

fires (Coetsee, Bond & February, 2010; Coetsee, Jacobs & Govender, 2012). The effect of

grazing at our study sites is discussed below in relation to soil N stocks.

Compared to the grasslands, the higher N, Pav and Kex concentrations observed in

the upper soil layer of the plantations indicates a significant effect of acacia trees on

ecosystem nutrient cycling, at least at our study sites. The higher concentrations in the

surface layer was particularly obvious in the older plantations and can be explained by

‘nutrient uplift’ by the deeper roots of the acacia trees (Scholes, 1990; Ludwig et al., 2004).

Mubarak, Abdalla & Nortcliff (2012) also concluded that tree litter input is a significant

source of P and K in southern Kordofan soils and the presence of trees has been
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shown to contribute to the general maintenance of soil fertility in the Sahel (Wezel, Rajot

& Herbrig, 2000; Schlecht et al., 2006).

The higher N concentrations in the surface soils of the plantations may be thought to be

due to N2 fixation as acacia species are considered to be N2 fixing (Ludwig et al., 2004;

Raddad et al., 2005; Boutton & Liao, 2010). Although, A. senegal has been reported to be a

N2 fixer (Raddad et al., 2005; Isaac et al., 2011; Githae et al., 2013; Gray et al., 2013)

the high d15N values we observed for acacia leaves (>6‰) would indicate that A. senegal

did not fix N2 or is very limited in our sites. If there had been significant N2 fixation in

the plantations then one would expect foliar d15N values to be closer to 0‰

(Robinson, 2001; Aranibar et al., 2004; Nardoto et al., 2014). Nevertheless, our acacia

foliage d15N values are in agreement with the findings of other studies conducted in

arid environments. For example, Aranibar et al. (2004) observed that Acacia leaves had

d15N values similar to non-legume species and even higher than known N2-fixing species

in a study carried in the Kalahari Desert. Pate et al. (1998) reported a mean d15N value

of 9.10‰ for Acacia species in arid Australia, which was identical to those of non-

fixing woody species, suggesting little or absence of N fixation. In a study carried out

in A. tortilis savanna woodlands in Kenya, Belsky et al. (1993) concluded that that N2

fixation was not an important contributor of N to the soil. N2 fixation by legume trees

in drylands has been show to vary considerably, even within the same species

(Nygren et al., 2012). For example, N2 fixation by A. senegal growing on clay soil in

Sudan was shown to vary from 29 to 48 kg N ha-1 (Raddad et al., 2005).

Our soil N accretion rates in the plantations appear high but are comparable to those

reported by Blaser et al. (2014) of 1.3–2.0 g N m-2 yr-1 (for 0–10 cm layer) in Zambian

savanna. However, the vegetation at their site was dominated by the N2-fixing shrub

Dichrostachys cinerea. As deposition loads of N in the Sahel are about 0.3–0.7 g N m-2 yr-1

(Delon et al., 2010), our high N accretion rates cannot be explained by deposition. The

paradox between the accumulation of soil N in the absence of N2 fixation and sufficient N

deposition in humid tropical forests has been identified in several studies (seeHedin et al.,

2009) and has been explained by heterotrophic N2 fixation by free-living bacteria

decomposing litter and SOM (Vitousek & Hobbie, 2000) or by canopy epiphytic N2

fixation (Hedin et al., 2009). However, the rates of such N2 fixation are low and could not

explain our high soil N accretion rates. A possible source of our observed high soil N

accretion rates could be from grazing animal excretion. The two study sites are not fenced

and seasonal pastoral and nomadic grazing (mainly sheep) and browsing (camels),

although varying, takes place throughout the study area (Poussart, Ardö & Olsson, 2004).

Bigger trees (older plantations) may be expected to provide increased shading and

ground vegetation for grazing and browsing. Animals entering the plantations may

therefore have added N to the soil in the form of animal excretion derived from

grazing outside and in excess of grazing removals from inside the study sites. Studies on

elk and bison in north-temperate grassland indicate that herbivore excretion can

add significant amounts of N to the soil (Frank et al., 1994). However, data on land-use

history and animal herbivory at the two sites is not available and therefore this animal

excretion N explanation is only speculative.
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It has been shown that N-fixing trees accumulate large amount of N-rich litterfall

during the first years of establishment, however once N availability has built up in the soil,

N fixation may be ceased or inhibited (Khanna, 1998; Boddey et al., 2000; Hedin et al.,

2009) and the older trees/plantations become more dependent on litterfall and N recycling

(Deans et al., 2003). The relatively high and increasing trend in soil d15N with plantation

age at our sites may be an indication of greater microbiological processing of SOM and a

more open N cycle (ammonia volatilization and denitrification during the wet season)

resulting in an enrichment of 15N (Aranibar et al., 2004; Swap et al., 2004; Hobbie &

Ouimette, 2009). The negative relationship observed between soil d15N and soil C:N

ratios in the plantations is consistent with the notion that low soil C:N ratios in arid

environments promote greater N gaseous losses (Austin & Vitousek, 1998; Aranibar

et al., 2004; Saiz et al., 2016). The vegetation present at a given site exerts a large influence

on SOM dynamics not only because of the quantity and quality of organic matter

returning to the soil (Saiz et al., 2015), but also because of its impact on soil hydrological

conditions (Abaker, Berninger & Starr, 2018). In this regard, trees growing on coarse-

textured soils in semi-arid regions may promote the maintenance of soil water conditions

suitable for the activities of SOM decomposers through the interception and funnelling

of rainfall by their canopies and the reduction in soil water evaporation by shading

(Bargués Tobella et al., 2014; Ilstedt et al., 2016). Two recent works have shown potentially

faster SOM decomposition rates at locations dominated by trees compared to those

dominated by grass vegetation in mixed C3/C4 systems occurring on coarse-textured

soils (Saiz et al., 2015; 2016). These vegetation-related factors may be responsible for the

higher SOC and nutrient contents observed in our acacia plantations. The higher soil

d15N values observed with plantation age is further evidence of SOM decomposition

processes being comparatively more dynamic under the direct influence of trees.

Cyanobacteria associated with the formation of cryptogamic soil crusts have been

shown to be a significant pathway to fix atmospheric N2 in arid environments, but

their development diminishes with vegetation cover (Aranibar et al., 2004; Wang

et al., 2013). Therefore, N fixation by cyanobacterial soil crusts (which may be expected to

be more strongly developed in the grasslands) may explain the low soil d15N values

observed in grassland sites. However, we have no information on the presence and

development of such cyanobacterial soil crusts at our sites, but in any case annual N

fixation rates associated with cyanobacterial soil crusts are very low (Aranibar et al., 2003).

The decreasing rather than increasing trend in soil d15N with depth observed in

both the grasslands and plantations is somewhat unusual (Hobbie & Ouimette, 2009),

but it has also been observed in an arid, sandy site in the Kalahari (Wang et al., 2013). The

variation in soil d15N values with depth are the result of multiple interacting factors,

which include N inputs by plant and cryptogamic crusts, vertical transport processes

(i.e. leaching, fungal immobilization and bioturbation), soil moisture conditions, and

isotopically fractionating processes (e.g. ammonia volatilization and denitrification)

(Hobbie & Ouimette, 2009;Wang et al., 2013; Saiz et al., 2016). However, as the N contents

in our soils are very low resulting in a low analytical signal for 15N, our soil d15N results

should be interpreted with caution.
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Soil C:N ratios often decrease with soil depth as a result of the SOM being older and more

decomposed and therefore relatively enriched in N compared to SOC (Batjes, 1996; Tian et al.,

2010). However, there was no consistent trend in C:N ratios with depth in either the

grasslands or the plantations at our sites, which may be explained by gaseous losses of N as

indicated by the soil d15N values and discussed above. The significantly lower soil (0–10 cm)

N:P ratios in the grasslands than in the oldest plantations at our sites would indicate N

limitation in the grasslands. The N:P ratios of the ground vegetation were on the lower side of

values presented for savanna grasses by Ludwig et al. (2004) and Sitters, Edwards & Olde

Venterink (2013). Ludwig et al. (2004) considered low grass N:P ratios from open grasslands to

indicate N limitation and higher values for grasses sampled from under the canopy of trees to

indicate P-limiting conditions for the grasses. Sitters, Edwards & Olde Venterink (2013)

similarly concluded that their observed increase in grass N:P ratios with tree density indicated

a shift towards P-limiting conditions for the ground vegetation.

CONCLUSION
The concentrations of all studied nutrients were relatively low but directly and significantly

correlated to SOC, were highest in the topsoil and increased with plantation age at our

sites. Although these results are specific to our study sites, we consider these results support

our hypothesis that soil N, P and K contents in the Sahel region are strongly controlled

by SOM (SOC) contents. Although A. senegal is known to be capable of N2 fixation and

may have occurred when the trees were young, current foliar d15N values did not indicate

ongoing N2 fixation in the plantations. The soil N accretion rates observed in the

plantations were unlikely to be due to N deposition but may be related to inputs of excreted

N brought into the area annually by grazing and browsing animals. The relatively high

surface soil N contents in the plantations at our sites were considered to be the result of

litterfall and recycling. The higher total and plant available contents of P and K in the

soil surface of the plantations may be an indication of ‘nutrient uplift’ by the deeper roots of

the acacia trees. Soil N:P ratios indicated N limitation in the grasslands and a trend towards

P-limitation in the plantations. Our results support the notion that an increase in SOM

(SOC) contents related to the retention and preferably planting of trees in the Sahel region

would not only increase carbon sequestration, but also significantly improve soil fertility.
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Poussart JN, Ardö J, Olsson L. 2004. Effects of data uncertainties on estimated soil organic carbon

in the Sudan. Environmental Management 33(S1):S405–S415 DOI 10.1007/s00267-003-9148-8.

Raddad EY, Luukkanen O, Salih AA, Kaarakka V, Elfadl MA. 2006. Productivity and nutrient

cycling in young A. senegal farming systems on Vertisol in the Blue Nile region, Sudan.

Agroforestry Systems 68(3):193–207 DOI 10.1007/s10457-006-9009-6.

Raddad EAY, Salih AA, El Fadl MA, Kaarakka V, Luukkanen O. 2005. Symbiotic nitrogen

fixation in eight Acacia senegal provenances in dryland clays of the Blue Nile Sudan

estimated by the 15N natural abundance method. Plant and Soil 275(1–2):261–269

DOI 10.1007/s11104-005-2152-4.

Robinson D. 2001. d15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution

16(3):153–162 DOI 10.1016/s0169-5347(00)02098-x.

Saiz G, Bird MI, Wurster CM, Quesada CA, Ascough PL, Domingues TF, Schrodt F, Schwarz M,

Feldpausch TR, Veenendaal EM, Djagbletey G, Jacobsen G, Hien F, Compaore H, Diallo A,

Lloyd J. 2015. The influence of C3 and C4 vegetation on soil organic matter dynamics in

contrasting semi-natural tropical ecosystems. Biogeosciences 12(16):5041–5059

DOI 10.5194/bg-12-5041-2015.

Saiz G, Wandera FM, Pelster DE, Ngetich W, Okalebo JR, Rufino MC, Butterbach-Bahl K. 2016.

Long-term assessment of soil and water conservation measures (Fanya-juu terraces) on soil

organic matter in South Eastern Kenya. Geoderma 274:1–9

DOI 10.1016/j.geoderma.2016.03.022.

Sanchez PA. 1999. Improved fallow comes of age in the tropics. Agroforestry Systems 47:3–12.

Abaker et al. (2018), PeerJ, DOI 10.7717/peerj.5232 21/22

http://dx.doi.org/10.1080/17550874.2013.807524
http://dx.doi.org/10.1007/s10705-012-9542-9
http://dx.doi.org/10.2307/2401975
http://dx.doi.org/10.1639/0044-7447(2002)031[0471:scsids]2.0.co;2
http://dx.doi.org/10.1046/j.1365-3040.1998.00359.x
http://dx.doi.org/10.1890/14-1158.1
http://dx.doi.org/10.1111/j.1365-2486.2011.02494.x
http://dx.doi.org/10.1007/s00267-003-9148-8
http://dx.doi.org/10.1007/s10457-006-9009-6
http://dx.doi.org/10.1007/s11104-005-2152-4
http://dx.doi.org/10.1016/s0169-5347(00)02098-x
http://dx.doi.org/10.5194/bg-12-5041-2015
http://dx.doi.org/10.1016/j.geoderma.2016.03.022
http://dx.doi.org/10.7717/peerj.5232
https://peerj.com/


Schlecht E, Buerkert A, Tielkes E, Bationo A. 2006. A critical analysis of challenges and

opportunities for soil fertility restoration in Sudano-Sahelian West Africa. Nutrient Cycling in

Agroecosystems 76(2–3):109–136 DOI 10.1007/s10705-005-1670-z.

Scholes RJ. 1990. The influence of soil fertility on the ecology of Southern African dry savannas.

Journal of Biogeography 17(4/5):415–419 DOI 10.2307/2845371.

Schulze ED, Farquhar GD, Miller JM, Schulze W, Walker B, Williams RJ. 1999. Interpretation of

increased foliar d15N in woody species along a rainfall gradient in northern Australia.

Australian Journal of Plant Physiology 26:296–298.

Sitters J, Edwards PJ, Olde Venterink H. 2013. Increases of soil C, N, and P pools along an Acacia

tree density gradient and their effects on trees and grasses. Ecosystems 16(2):347–357

DOI 10.1007/s10021-012-9621-4.

Swap RJ, Aranibar JN, Dowty PR, Gilhooly WP, Macko SA. 2004. Natural abundance of 13C and
15N in C3 and C4 vegetation of southern Africa: patterns and implications. Global Change

Biology 10(3):350–358 DOI 10.1111/j.1365-2486.2003.00702.x.

Tan KH. 2005. Soil Sampling, Preparation, and Analysis. Second edition. Boca Raton: Taylor and

Francis, 680.

Tian H, Chen G, Zhang C, Melillo JM, Hall CAS. 2010. Pattern and variation of C:N:P ratios in

China’s soils: a synthesis of observational data. Biogeochemistry 98(1–3):139–151

DOI 10.1007/s10533-009-9382-0.

Tiessen H, Cuevas E, Chacon P. 1994. The role of soil organic matter in sustaining soil fertility.

Nature 371(6500):783–785 DOI 10.1038/371783a0.

Torello-Raventosa M, Feldpausch TR, Veenendaal E, Schrodt F, Saiz G, Domingues TF,

Djagbletey G, Ford A, Kemp J, Marimon BS, Marimon Junior BH, Lenza E, Ratter JA,

Maracahipes L, Sasaki D, Sonk B, Zapfack L, Taedoumg H, Villarroel D, Schwarz M,

Quesada CA, Ishida FY, Nardoto GB, Affum-Baffoe K, Arroyo L, Bowman DMJS,

Compaore H, Davies K, Diallo A, Fyllas NM, Gilpin M, Hien F, Johnson M, Killeen TJ,

Metcalfe D, Miranda HS, Steininger M, Thomson J, Sykora K, Mougin E, Hiernaux P,

Bird MI, Grace J, Lewis SL, Phillips OL, Lloyd J. 2013. On the delineation of tropical

vegetation types with an emphasis on forest/savanna transitions. Plant Ecology & Diversity

6(1):101–137 DOI 10.1080/17550874.2012.762812.

Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, GrimmNB, Howarth RW,Marino R,

Martinelli L, Rastetter EB, Sprent JI. 2002. Towards an ecological understanding of biological

nitrogen fixation. Biogeography 57/58:1–45.

Vitousek PM, Hobbie S. 2000. Heterotrophic nitrogen fixation in decomposing litter: patterns

and regulation. Ecology 81(9):2366–2376 DOI 10.2307/177460.

Wang L, Okin GS, D’Odorico P, Caylor KK, Macko SA. 2013. Ecosystem-scale spatial

heterogeneity of stable isotopes of soil nitrogen in African savannas. Landscape Ecology

28(4):685–698.

Wezel A, Rajot JL, Herbrig C. 2000. Influence of shrubs on soil characteristics and their function

in Sahelian agro-ecosystems in semi-arid Niger. Journal of Arid Environments 44(4):383–398

DOI 10.1006/jare.1999.0609.

Abaker et al. (2018), PeerJ, DOI 10.7717/peerj.5232 22/22

http://dx.doi.org/10.1007/s10705-005-1670-z
http://dx.doi.org/10.2307/2845371
http://dx.doi.org/10.1007/s10021-012-9621-4
http://dx.doi.org/10.1111/j.1365-2486.2003.00702.x
http://dx.doi.org/10.1007/s10533-009-9382-0
http://dx.doi.org/10.1038/371783a0
http://dx.doi.org/10.1080/17550874.2012.762812
http://dx.doi.org/10.2307/177460
http://dx.doi.org/10.1006/jare.1999.0609
http://dx.doi.org/10.7717/peerj.5232
https://peerj.com/

	Linkages between soil carbon, soil fertility and nitrogen fixation in Acacia senegal plantations of varying age in Sudan
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusion
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


