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eIF4A inhibition prevents the onset 
of cytokine-induced muscle wasting 
by blocking the STAT3 and iNOS 
pathways
Zvi Cramer1, Jason Sadek1, Gabriela Galicia Vazquez1, Sergio Di Marco1, Arnim Pause1, Jerry 
Pelletier1 & Imed-Eddine Gallouzi1,2

Cachexia is a deadly muscle wasting syndrome that arises under conditions linked to chronic 
inflammation, such as cancer. Cytokines, including interferon γ (IFNγ), tumor necrosis factor α (TNFα) 
and interleukin-6 (IL-6), and their downstream effectors such as Signal Transducer and Activator of 
Transcription 3 (STAT3), have been shown to play a prominent role in muscle wasting. Previously, 
we demonstrated that Pateamine A (PatA), a compound that targets eukaryotic initiation factor 4A 
(eIF4A), could prevent muscle wasting by modulating the translation of the inducible Nitric Oxide 
Synthase (iNOS) mRNA. Here we show that hippuristanol, a compound that impedes eIF4A in a manner 
distinct from PatA, similarly inhibits the iNOS/NO pathway and cytokine-induced muscle wasting. 
Furthermore, we show that hippuristanol perturbs the activation of the STAT3 pathway and expression 
of STAT3-gene targets such as IL-6. The decreased activation of STAT3, which resulted from a decrease 
in STAT3 protein expression, was due to the inhibition of STAT3 translation as there were no changes 
in STAT3 mRNA levels. These effects are likely dependent on the inhibition of eIF4A activity since we 
observed similar results using PatA. Our results identify the inhibition of eIF4A-responsive transcripts, 
such as STAT3, as a viable approach to alleviate cachexia.

Cachexia, a multi-factorial disease characterized by acute muscle wasting and weight loss, accompanies vari-
ous inflammatory diseases such as cancer, sepsis and AIDS1,2. The abnormal catabolic state found in cachectic 
patients arises from a combination of complex metabolic changes and dysregulation of certain humoral factors3–5. 
Cachexia is the primary cause of ~22% of cancer-related deaths6 and has been known for decades as being a 
major influence on mortality rate in cancer patients. In spite of the relevance of this syndrome as a contributor to 
cancer-related deaths, there are no widely employed therapeutics that effectively alleviate this disease7.

Despite the convoluted etiology of cachexia, some important mediators of its underlying pathophysiology 
have been identified. Accumulating evidence depicts certain pro-inflammatory cytokines and their downstream 
effectors as playing pivotal roles in the onset of cancer cachexia7,8. For example, the concurrent signaling of inter-
feron γ (IFNγ) and tumor necrosis factor α (TNFα) (IT) can synergistically elicit muscle wasting by stimulating 
the activity of transcription factors including STAT3 and the heterodimeric NF-κB9–12. NF-κB signaling in skeletal 
muscle upregulates the muscle-specific E3 ligase MURF-1 and induces a loss of proteins integral for muscle fiber 
formation and maintenance, such as MyoD and Myogenin7,9,11,13. Moreover, we have shown that NF-κB can also 
mediate muscle wasting by collaborating with STAT3 to markedly increase the transcription of inducible nitric 
oxide synthase (iNOS), an enzyme that catalyzes the conversion of L-arginine to citrulline resulting in the release 
of nitric oxide (NO)7,9,10,12. Systemic interleukin-6 (IL-6) signaling is also crucial in inducing muscle wasting and 
has been shown to be involved in the pathophysiology of at least some models of cancer cachexia6,14–17. Chronic 
IL-6 exposure has been directly linked to the aberrant activation of autophagic and ubiquitin-proteasomal deg-
radation systems in the muscle17. Furthermore, many studies have shown the importance of STAT3 in the muscle 
wasting process in a variety of IL-6-dependent models of cancer cachexia. These observations demonstrate that 
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STAT3 is essential in cachexia driven by a multitude of cytokines including IFNγ, TNFα and IL-618–22. Attempts 
at interfering with cytokine signaling to impede cachexia progression have included the use of antibodies target-
ing TNFα or IL-6, however the success of these therapeutic approaches was very limited23,24. The disappointing 
outcomes in these trials could be due to the involvement of multiple distinct pathways, the cooperation of which 
is required for cachexia onset or due to redundancy in the downstream effectors of TNFα and IL-6, such as 
STAT312. In light of these results, therapies that can disrupt multiple pathways or target redundant factors down-
stream of these humoral factors may be a more fruitful approach to combatting cachexia.

Disrupting the initiation of eukaryotic mRNA translation, including the rate-limiting recruitment of the 40S 
ribosome via the eIF4F complex, has been shown to have anti-immunogenic, anti-oncogenic and anti-cachectic 
effects25–27. Compounds such as silvestrol, pateamine A (PatA) and hippuristanol (Hipp) mediate these effects by 
inhibiting the function of eIF4A, a RNA helicase component of eIF4F that unwinds complex secondary structures 
in mRNAs28. These compounds are believed to act in this manner by perturbing the translation of specific set of 
mRNAs containing complex secondary structures in their 5′ untranslated region (UTR) that hinder ribosomal 
recruitment27–31. Hipp is an allosteric inhibitor that prevents eIF4A binding to RNA32 whereas PatA and silvestrol 
deplete eIF4A from the eIF4F complex by causing eIF4A to clamp onto RNA33,34 thus disrupting the interplay 
between eIF4A and dependent transcripts35. In the past decade, these and other compounds that target the eIF4F 
complex have received considerable attention, with several in preclinical development25.

Figure 1. Hippuristanol (Hipp), an eIF4A inhibitor, prevents IT-induced muscle wasting. (A) Phase-contrast 
image of myotubes treated with or without IFNγ (100U mL-1) and TNFα (20 ng/mL) (IT) for 72 hours in 
the presence or absence Hipp (200 nM). (B) Myotubes were treated as described in (A). Myotubes integrity 
was visualized by immunofluorescence using an anti-myoglobin antibody. (C) Fiber widths from the 
immunofluorescence experiment in (B) were measured and plotted as the percentage relative to untreated 
myotubes ± s.e.m ***P < 0.001 (n = 3).
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The anti-inflammatory effects of compounds that alter eIF4A function prompted us to investigate their impact 
in cancer cachexia. Previously, we reported that low doses of PatA prevents cytokine-induced muscle wasting 
both in vitro and in vivo in a C26-adenocarcinoma tumour induced mouse model of muscle wasting27. Without 
affecting general translation, we found that this low dose of PatA selectively disrupts the translation of iNOS 
mRNA by increasing its affinity to eIF4A, suggesting that targeting iNOS via eIF4A may be an efficacious clinical 
strategy for alleviating cachexia. Although hindering iNOS translation likely contributes to the efficacy of PatA, 
the observation that impairing eIF4A is more efficacious than the iNOS inhibitor aminoguanidine (AMG) in pre-
venting cachexia in vivo27, indicates that the expression of other eIF4A-dependent transcripts may also be altered 
by PatA. The fact that PatA action is irreversible and could be toxic33,34 put into question whether PatA could 
be a viable treatment option for cancer cachexia in humans. Herein, we tested whether other eIF4A-inhibiting 
compounds can, similarly to PatA, prevent cytokine induced-muscle wasting as well as whether this strategy 
impacts other pro-cachectic factors besides iNOS. We report that Hipp, which differs with PatA in its mode 
of inhibiting eIF4A function, prevented the onset of cytokine-induced muscle wasting due, in part, to curtail-
ing the induction of the iNOS/NO pathway. Furthermore, we show for the first time, that compounds targeting 
eIF4A function modulate the activation of the STAT3 pathway. These drugs decreased STAT3 protein levels in 
IFNγ/TNFα -treated myotubes without a concurrent effect on the STAT3 mRNA suggesting that eIF4A regu-
lates the translation of STAT3 mRNA under these conditions. Our study therefore indicates that targeting eIF4A 
function is a robust means of alleviating muscle wasting due to its ability to regulate the translation of specific 
pro-inflammatory mRNAs, such as iNOS and STAT3, which are involved in the activation of multiple down-
stream pro-cachectic pathways.

Results
The eIF4A allosteric inhibitor Hippuristanol recapitulates the actions of Pateamine A on 
cytokine-induced muscle wasting and the iNOS/NO pathway. The unfavorable toxicity of high 
doses of PatA led us to investigate the effect of Hipp, a non-toxic eIF4A-targeting compound36,37, on our in vitro 
models of cachexia-induced muscle wasting. A popular in vitro model of cachexia involves the treatment of 
C2C12 myotubes with IFNγ and TNFα (IT) for 72 h, recapitulating many facets of the cachectic muscle9,11,38. 

Figure 2. Hippuristanol (Hipp) prevents IT-mediated activation of the pro-cachectic iNOS/NO pathway. (A) 
Western blot analysis of iNOS protein levels in myotubes treated with or without IT in the presence or absence 
of Hipp (100 and 200 nM) was performed using an anti-iNOS antibody. Tubulin was included as a loading 
control. (B) The aforementioned Western blot for iNOS was quantified and standardized to Tubulin levels. Data 
are shown relative to IT-induced iNOS protein levels and plotted ± s.e.m **P < 0.01, ***P < 0.001 Student’s 
T-test (n = 3). (C) NO production in myotubes treated as described in (A) was determined using the Griess 
assay and plotted ± s.e.m ***P < 0.001 Student’s T-test (n = 4).
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In order to assess the impact of Hipp on cytokine-induced muscle wasting, we measured the fiber widths of 
myotubes treated with or without IT and/or Hipp for 72 hours27. We found that, like PatA, the presence of Hipp 
significantly prevented myotube wasting driven by IT (Fig. 1A–C). Next, we tested the effect of different doses 
of Hipp (100 and 200 nM) on iNOS expression, one of the principal effectors of IT signaling that is decreased 
by PatA. Indeed, both doses of Hipp significantly reduced iNOS protein levels (Fig. 2A,B) and NO secretion 
(Fig. 2C) as measured by Western blot and Griess reagent, respectively. Together, our findings indicate that Hipp 
can mirror the actions of PatA in cytokine-induced muscle wasting and iNOS expression in wasting muscle fibers. 
Thus, our results support the hypothesis that perturbing eIF4A function underlies PatA-mediated inhibition of 
iNOS protein expression and muscle wasting.

Hippuristanol reduces cytokine-induced activation of the STAT3 pathway. Although the reduc-
tion of iNOS protein in the presence of Hipp and PatA likely contributes to the effectiveness of these compounds 
against cytokine-induced muscle wasting, preventing eIF4A-dependent translation likely interferes with the 
expression of other pro-cachectic genes. Indeed, we found that targeting eIF4A is more effective than the iNOS 
inhibitor AMG in preventing cachexia in our in vivo C26-adenocarcinoma tumour-induced model of mus-
cle wasting27. As mentioned above, IL-6 is an important mediator in the onset of muscle wasting in numerous 
cachexia murine models. Moreover, IL-6 secretion is significantly elevated in myotubes after 24 h of IT exposure12. 
Therefore, we investigated the impact of Hipp on IL-6 mRNA expression and protein secretion. We found that 
Hipp significantly decreased IL-6 secretion in IT-treated myotubes (Fig. 3A). Additionally, the induction of IL-6 
mRNA by IT was markedly impaired in the presence of Hipp (Fig. 3B). While these findings indicate that Hipp 

Figure 3. Hippuristanol (Hipp) decreases IL-6 mRNA expression and secretion in IT-treated myotubes. (A) 
ELISA was performed to detect IL-6 levels in the supernatants from myotubes treated with or without IT in the 
presence or absence of Hipp (100 nM and 200 nM) and plotted ± s.e.m *p < 0.05 Student’s T-test (n = 3). (B) RT-
PCR was performed using RNA extracted from myotubes treated as described in (A) and the resulting cDNA 
was quantified using qPCR with primers against IL-6. Values are standardized to the RPL32 housekeeping gene, 
normalized relative to IT-treated levels and plotted ± s.e.m **p < 0.01, ***p < 0.001 Student’s T-test (n = 3).
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decreases IL-6 expression and secretion, the effect on IL-6 mRNA raises the possibility that this inhibitory action 
likely occurs through an indirect mechanism.

To account for the change in IL-6 mRNA and protein levels driven by Hipp, we next looked at the activation 
of pro-cachectic transcription factors that are known to induce IL-6 expression. Indeed, a recent global riboso-
mal footprinting study has revealed that super enhancer-associated transcription factors are sensitive to eIF4A 
perturbation30. IL-6 is a well-known transcriptional target of STAT3, a super enhancer-associated transcription 
factor that is essential to the onset of muscle wasting accompanying chronic exposure to both IT and IL-612,19,39–41. 
Therefore, we analyzed the impact of Hipp on STAT3 activation and protein levels in IT-treated myotubes. We 
observed that the expression of STAT3 protein and consequently, the induction of its transcriptionally active 
phosphotyrosine705 isoform, were both significantly decreased in the presence of Hipp (Fig. 4A–C). Furthermore, 
RT-qPCR experiments revealed that STAT3 mRNA levels in IT-treated myotubes were not significantly altered 
by the addition of Hipp (Fig. 4D). Thus, these results suggest that Hipp prevents activation of the STAT3 pathway 
by depleting STAT3 protein, likely by directly regulating its translation. Taken together, our data indicates that 
Hipp may indirectly block IL-6 secretion by inhibiting the translation of STAT3, a transcription factor essential 
in its expression.

Pateamine A decreases STAT3 protein levels and IL-6 secretion in cytokine-treated myotubes.  
PatA and Hipp similarly impair cytokine-induced muscle wasting and iNOS protein levels, presumably due to 
the perturbance of eIF4A function. We therefore investigated whether PatA could mirror the impact of Hipp on 
IL-6 as well as STAT3 to ensure this process is also driven by an eIF4A-dependent mechanism. We observed that, 
like Hipp, the presence of PatA in myotubes prevented the elevation of IL-6 secretion induced by IT (Fig. 5A). 
Moreover, we found that PatA significantly decreased IL-6 mRNA levels (Fig. 5B). In addition, similarly to Hipp, 
PatA significantly decreased STAT3 and phosphotyrosine705 STAT3 protein levels (Fig. 5C–E). Nevertheless, 
STAT3 mRNA abundance was not affected by PatA (Fig. 5F), suggesting that PatA also inhibits STAT3 transla-
tion. Thus, PatA recapitulates the changes in IL-6 and STAT3 evoked by Hipp.

Figure 4. Hippuristanol (Hipp) inhibits STAT3 protein, but not STAT3 mRNA levels, in IT-treated myotubes. 
(A) Western Blot analysis of myotubes treated with or without IT in the presence or absence of Hipp using 
antibodies against phosphotyrosine705 STAT3, STAT3 and Tubulin (loading control). (B) phosphotyrosine705 
STAT3 and (C) STAT3 levels shown in the Western blots in (A) were quantified, standardized to Tubulin and 
normalized relative to IT-treated myotubes. Values were plotted ± s.e.m *p < 0.05, **p < 0.01 Student’s T-test 
(n = 3). (D) RT-qPCR analysis on RNA derived from myotubes treated as described in (A) using primers 
against STAT3, standardized to the housekeeping gene RPL32 and normalized relative to IT-treated myotubes. 
Values were plotted ± the s.e.m. N.S. Student’s T-Test (n = 3).
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In order to further confirm that the effect of PatA and Hipp on STAT3 mRNA translation is dependent on 
eIF4A, we next investigated the impact of Silvestrol, a compound belonging to a separate class of eIF4A inhib-
itors termed rocaglamides, on iNOS and STAT3 expression29,42. We found that, as with Hipp and PatA, previ-
ously established dosages37 of Silvestrol significantly decreased NO secretion as well as iNOS protein levels in 
myotubes treated with IT (Supp. Figure 1A–C). Moreover, Silvestrol significantly depleted STAT3 protein levels 
without affecting STAT3 mRNA steady state levels (Supp. Figure 1B,D,E). Our results therefore indicate that tar-
geting eIF4A reduces the abundance of multiple proteins, including iNOS, STAT3 and IL-6, which are essential 

Figure 5. Pateamine A recapitulates the impact of Hippuristanol on IL-6 secretion and STAT3 protein levels. 
(A) IL-6 levels in the supernatant of myotubes treated with or without IT in the presence or absence of PatA 
(0.025 µM) were determined by ELISA. Values were plotted ± the s.e.m. **p < 0.01 Student’s T-Test (n = 3). 
(B) RT-PCR was performed on RNA extracted from myotubes treated with or without IT in the presence or 
absence of PatA. cDNA was quantified using qPCR with primers against IL-6. Values were standardized to the 
RPL32 housekeeping gene, normalized relative to IT-treated levels and plotted ± s.e.m *p < 0.05 Student’s T-test 
(n = 3). (C) Western blot analysis of phosphotyrosine705 STAT3 and STAT3 protein levels in myotubes treated 
as described in (A). Tubulin is provided as loading control. (D) Phosphotyrosine705 STAT3 and (E) STAT3 
levels shown in the Western blots in (C) were quantified, standardized to tubulin and normalized relative to IT-
treated myotubes. Values were plotted ± s.e.m **p < 0.01 Student’s T-test (n = 3). (F) RT-qPCR analysis on RNA 
derived from myotubes treated with or without IT in the presence or absence of PatA using primers against 
STAT3. STAT3 mRNA levels were standardized to the housekeeping gene RPL32 and normalized relative to IT-
treated myotubes. Values were plotted ± the s.e.m. N.S. Student’s T-Test (n = 3).
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in the onset of cachexia. The obstruction of iNOS and STAT3 may ultimately underlie the effectiveness of these 
eIF4A-targeting drugs in preventing cachexia-induced muscle wasting.

Discussion
Although cachexia has been appreciated as a prevalent cause of mortality in the late stages of many chronic 
inflammatory diseases, there is no treatment regimen that reverses this syndrome. We previously showed that 
low doses of PatA, a compound that perturbs eIF4A-dependent translation, could prevent the onset of muscle 
wasting in multiple murine models of cachexia, in part by disrupting iNOS translation. Here, we aimed to deter-
mine whether other compounds that act on eIF4A could prevent cytokine-induced muscle wasting as well as 
identify other pro-cachectic transcripts that are also sensitive to changes in eIF4A function. We demonstrate that 
Hipp, a natural product that disrupts eIF4A activity differently than PatA, could recapitulate the effects of PatA 
by preventing the onset of cytokine-induced muscle wasting and by repressing iNOS protein levels. Furthermore, 
we show that both Hipp and PatA block IL-6 secretion evoked by IT as well as deplete IL-6 mRNA. To potentially 
account for the decline of IL-6 mRNA levels, we show that STAT3 and phosphotyrosine705 STAT protein levels are 
decreased in the presence of Hipp and PatA as well as another eIF4A inhibitor, Silvestrol, a rocaglamide deriva-
tive. Taken together, our results indicate that targeting the activity of eIF4A prevents cytokine-induced muscle 
wasting by inhibiting the translation of eIF4A-mRNA targets, consequently leading to reduced expression of 
pro-cachetic factors such as STAT3 and iNOS that are involved in pathways essential in engendering the wasting 
process.

IL-6 and STAT3 are essential in the pathophysiology of multiple murine models of cachexia17,19. In this study, 
we show that interfering with eIF4A using PatA or Hipp significantly decreased IL-6 secretion and mRNA levels. 
Furthermore, we found significantly less STAT3 protein in the presence of PatA, Hipp and Silvestrol without a 
concurrent effect on STAT3 mRNA. One putative model explaining these observations is that these drugs impair 
the translation of the eIF4A-dependent STAT3 transcript. Consequently, the decline in total STAT3 protein levels 
prevents its phosphorylation and the subsequent transcriptional activation of the IL-6 gene in the presence of IT, 
leading to decreased secretion of IL-6. Indeed, multiple groups have found that STAT3 activation and protein lev-
els correlates with serum IL-6 levels in cachexia murine models as well as patients19. Moreover, our previous find-
ing that STAT3 abundance and activation does not depend on extracellular IL-6 in IT-treated myotubes supports 
the hypothesis that the decrease in STAT3 due to inhibition of eIF4A is not caused by changes in IL-6 secretion12. 
Nevertheless, our findings do not rule out the possibility that IL-6 is dependent on eIF4A for translation and is 
induced independently of STAT3 in IT-treated myotubes. Indeed, a decline in IL-6 secretion in the presence of 
PatA and Hipp could prevent a feedback loop that maintains IL-6 mRNA levels. Therefore, more investigation 
into the mechanistic details of perturbing eIF4A-dependent translation in the IT-treated muscle is necessary.

The difficulty in alleviating cachexia by using monotherapies against pro-inflammatory humoral factors such 
as TNFα and IL-6 has been attributed to the redundancy of downstream effectors of these cytokines and the pres-
ence of multiple signaling pathways sufficient to induce atrophy. For example, STAT3 can be activated in skeletal 
muscle by either IL-6 or IT12,19. Moreover, a number of clinical trials have revealed that multimodal regimens are 
likely the best approach to alleviate cachexia43. In this study, we demonstrate that targeting eIF4A using com-
pounds such as Hipp and PatA can decrease the amount of STAT3, a redundant downstream effector of both the 
IT and IL-6 signaling pathways. We also show that perturbing eIF4A-dependent translation can target multiple 
pro-cachectic pathways by depleting iNOS and STAT3 protein levels, both of which can induce diverse signaling 
changes that are sufficient for cachexia progression7,19. Therefore, impairing eIF4A may be effective in preclinical 
cachexia models because it hinders many pro-cachectic pathways as well as a common downstream effector of 
multiple pro-inflammatory cytokines.

Targeting eIF4A has been proposed as a potential approach for mitigating Alzheimer’s disease, cancer and 
viral infection28,44,45. This approach is  attractive for a variety of diseases because it blocks multiple pathogenic 
signaling pathways and proteins that may be otherwise difficult to target directly. In many of these studies, these 
compounds even promote the expression of proteins important in maintaining homeostasis. We suggest that 
drugs that inhibit eIF4A function could be useful in treating cancer cachexia. Moreover, our data provide a proof 
of concept that disrupting eIF4A could be a useful approach in other chronic inflammatory diseases that are 
driven by STAT3 and/or iNOS, such as inflammatory bowel syndrome, autoimmune disorders and other types 
of cancers46,47. Thus, targeting eIF4A is a promising treatment modality that should be seriously considered for 
clinical trials.

Here, we have demonstrated that perturbing eIF4A-dependent translation using Hipp recapitulates the ben-
efits of PatA in cytokine-induced muscle wasting. Furthermore, we show that Hipp and PatA both decrease IL-6 
secretion and mRNA levels in IT-treated myotubes. Finally, we reveal that targeting eIF4A with either Hipp or 
PatA depletes myotube STAT3 protein without a concurrent impact on STAT3 mRNA. We speculate that STAT3 is 
an eIF4A-dependent transcript and its decline in the presence of PatA and Hipp hinders IL-6 mRNA expression. 
Our findings bolster the potential of eIF4A-inhibitors in the treatment of cachexia and other pro-inflammatory 
diseases driven by STAT3 or iNOS.

Materials and Methods
Cells. As described previously48, C2C12 myoblasts (American Type Culture Collection) were grown in 
Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen) with high glucose, L-glutamine, and sodium pyru-
vate, in addition to 20% fetal bovine serum (Sigma-Aldrich) and 1% penicillin/streptomycin antibiotics (Sigma-
Aldrich). Cells were grown on tissue culture plates (Corning) with 0.1% gelatin (Sigma-Aldrich). Differentiation 
of the myoblasts into myotubes was triggered by switching to 2% horse serum (Gibco) and 1% penicillin/
streptomycin in DMEM at 100% confluency49. Three days after the induction of differentiation, myotubes were 
incubated with or without IFNγ (100 U mL−1) and TNFα (20 ng mL−1) (IT) for 24 or 72 hours. Myotubes were 
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incubated for 30 minutes at the beginning of IT treatment with or without Hippuristanol (100 and 200 nM), PatA 
(0.025 µM) and Silvestrol (12.5, 25 and 50 nM). Following this treatment, cells were washed with PBS and re-sup-
plemented with media and IT.

Reagents and antibodies. IFNγ and TNFα were obtained from R&D system. Myoglobin (ab77232, 
Abcam) iNOS (BD Pharmingen), total STAT3 (Cell Signaling), phosphotyrosine705-STAT3 (Cell Signaling) and 
α-tubulin (Developmental Hybridoma, Iowa, USA) were used.

Immunoblotting. Western blots were performed using total protein extracts prepared in buffer containing 
50 mm HEPES (pH 7.0), 150 mm NaCl, 10% glycerol, 1% Triton X-100, 10 mm sodium pyrophosphate, 100 mm 
NaF, 1 mm EGTA, 1.5 mm MgCl2, 0.1 mM sodium orthovanadate, and complete EDTA-free protease inhibi-
tors (Roche Applied Science) as described previously50. Membranes were probed with antibodies against iNOS 
(1:5000), STAT3 (1:1000), phosphotyrosine705-STAT3 (1:1000) and Tubulin (1:1000). Western Blots were quan-
tified using ImageJ.

Immunofluorescence. Myotubes were fixed with 3% paraformaldehyde and permeabilized in 0.5% Triton 
X-100/PBS. Cells were then incubated with antibodies against the promyogenic marker Myoglobin (Abcam) as 
well as DAPI to stain the nuclei. After washing, the cells were incubated with the appropriate secondary antibody 
and were visualized using an inverted Zeiss Observer.Z1 (40 × oil objective) and an Axiocam MRm digital cam-
era. Myotube widths were measured using the Axiovision software. Myotube widths were obtained by taking 
measurements of two points along the fiber lengths. Three fields per condition in each experiment were measured.

Detection of NO and IL-6. Quantification of NO released was achieved using the GRIESS reagent27. IL-6 
in the supernatant of IT-treated myotubes was discerned using the Mouse IL-6 ELISA Ready-SET-Go!® Kit (eBi-
oscience, Inc.) as previously achieved51.

Reverse Transcription PCR (RT-PCR) and Quantitative PCR (qPCR). Total RNA was reverse tran-
scribed with the M-MuLV Reverse Transcriptase (New England Biolabs). Resulting cDNA was diluted 1/20 and 
quantified using Sso Fast EvaGreen Supermix (Biorad) as described previously48.

Primers used include:  STAT3 (For ward:  5 ′-GCTGCT TGGTGTATGGCTCT-3 ′ ,  Reverse:
5 ′ -TATCT TGGCCCT T TGGAATG-3 ′ )  IL-6 (For ward:5 ′ -AACGATGATGCACT TGCAGA-3 ′ 
Reverse:5′CTCTGAAGGACTCTGGCTTTG-3′), RPL32(Forward 5′‐TTC TTC CTC GGC GCT GCC TAC 
GA‐3′, Reverse 5′‐AAC CTT CTC CGC ACC CTG TTG TCA‐3′)
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