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Abstract

DNA methylation is one of the most extensively studied epigenetic modifications of genomic DNA. In recent years, sequenc-
ing of bisulfite-converted DNA, particularly via next-generation sequencing technologies, has become a widely popular
method to study DNA methylation. This method can be readily applied to a variety of species, dramatically expanding the
scope of DNA methylation studies beyond the traditionally studied human and mouse systems. In parallel to the increasing
wealth of genomic methylation profiles, many statistical tools have been developed to detect differentially methylated loci
(DMLs) or differentially methylated regions (DMRs) between biological conditions. We discuss and summarize several key
properties of currently available tools to detect DMLs and DMRs from sequencing of bisulfite-converted DNA. However, the
majority of the statistical tools developed for DML/DMR analyses have been validated using only mammalian data sets, and
less priority has been placed on the analyses of invertebrate or plant DNA methylation data. We demonstrate that genomic
methylation profiles of non-mammalian species are often highly distinct from those of mammalian species using examples
of honey bees and humans. We then discuss how such differences in data properties may affect statistical analyses. Based
on these differences, we provide three specific recommendations to improve the power and accuracy of DML and DMR ana-
lyses of invertebrate data when using currently available statistical tools. These considerations should facilitate systematic
and robust analyses of DNA methylation from diverse species, thus advancing our understanding of DNA methylation.
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Introduction

DNA methylation, which refers to the addition of the methyl
group to DNA, is the most extensively characterized epigenetic
modification with important functional consequences.
Typically, DNA methylation occurs at cytosine bases, although

methylation of adenine nucleotides has also been reported in
worms and microbes [1, 2]. In animal genomes, the majority of
DNA methylation occurs at cytosines followed by guanine, or
‘CpG’ dinucleotides. In plants, in addition to CpG methylation,
methylation of CHG and CHH nucleotides is also observed,
where H stands for any of the A, T and C nucleotides [3–5].
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The best understood DNA methylation systems are those of
mammals, especially of humans and mice. Numerous DNA
methylation studies in these systems, dating back several dec-
ades, have demonstrated that DNA methylation is critical in
many regulatory processes such as silencing of gene expression,
cellular differentiation, aging, genomic imprinting and X chromo-
some inactivation [6–11]. DNA methylation is also implicated in
many diseases, in particular in cancers and neuropsychiatric dis-
eases [10, 12, 13]. Consequently, much effort has been paid to
characterize variation of DNA methylation across different biolo-
gical samples, developmental stages and disease statuses.

In particular, advances in next-generation sequencing (NGS)
technologies have enabled researchers to characterize genomic
DNA methylation at unprecedented resolutions. Notably, the
bisulfite-sequencing (also referred to as ‘BS-seq’ in this study)
method has been rapidly adapted to the research community
since the late 2000s. Briefly, BS-seq is a re-sequencing method
after subjecting genomic DNA to sodium bisulfite conversion.
Owing to the chemical properties of sodium bisulfite that con-
verts unmethylated cytosines to uracils (which become thy-
mines following PCR), methylated and unmethylated cytosines
can be distinguished by sequencing as long as the sequence
data before the conversion are available. BS-seq is highly scal-
able, from targeted DNA methylation analysis using smaller-
scale PCR reactions [14] to moderate-scale analysis called
reduced representation bisulfite sequencing (RRBS), which com-
bines BS-seq with restriction digestion of the genomic se-
quences [15]. BS-seq can be used to re-sequence the whole
genome (whole-genome bisulfite sequencing, ‘WGBS’), which
provides the ultimate resolution by characterizing DNA methy-
lation of nearly every nucleotide in the genome [4, 16–19].

Given the functional significance of DNA methylation, one
of the foremost goals in DNA methylation studies is to detect
differentially methylated loci (DMLs) and/or differentially
methylated regions (DMRs) between different biological condi-
tions. Consequently, in parallel to the advances in experimental
methods, statistical tools to identify DMLs and DMRs from BS-
seq data have also been eagerly developed [20–27]. However,
many of these tools are tailored toward mammalian data sets,
which, as we will demonstrate below, are fundamentally differ-
ent from the increasingly popular invertebrate and plant sys-
tems used to study DNA methylation. As BS-seq data from non-
mammalian species are rapidly accumulating, it is important to
understand how the statistical tools developed and validated
for mammalian data sets can be applied to data from other, di-
verse phylogenetic groups. Here, we first provide a succinct
overview of currently available statistical tools for DML/DMR
analyses of BS-seq data. We then discuss distinct properties of
mammalian and non-mammalian data sets using humans and
honey bees as examples, as well as unique statistical challenges
stemming from the different data properties. Following this, we
discuss three notable statistical points that are particularly rele-
vant for the analyses of non-mammalian DNA methylation
data. We further demonstrate these points and provide guide-
lines by analyzing the aforementioned example data.

Methods and materials
Overview of current statistical tools to detect DMLs and
DMRs from BS-seq data

BS-seq analysis generates data in the form of cytosine and thy-
mine reads for a specific cytosine. Initial preprocessing of these
data involves a quality control step of the raw reads to ensure

successful bisulfite conversion of DNA, testing for contamin-
ation and assessment of base sequence quality. Other aspects
of the data, such as per base N content, read duplication levels,
overrepresented sequences, are also evaluated in the first step
of the analysis, typically by the tools provided by sequencer/re-
agent companies (e.g. the FASTQ Toolkit offered by the
Illumina). After quality control, reads are trimmed and filtered
to remove adapter sequences and low-quality reads [28]. The
reads passing preprocessing and quality control steps can be
aligned to a reference genome by a variety of short-read aligners
that take into account the conversion of unmethylated Cs to Ts
[29]. Following read alignment, BS-seq results can be summar-
ized in a read-count table, which lists the number of C and T
reads mapped to each cytosine. Most statistical tools described
in this article take such a read-count file as the input file.

Basic parameters of DNA methylation can be easily esti-
mated from the read-count file. For example, the ‘fractional
methylation’ level of each cytosine is computed as the ratio of
the number of cytosine reads to the numbers of total reads, and
is commonly used to quantify methylation level of specific cyto-
sines [4, 30]. In principle, given an extremely high sequencing
coverage, we can have estimates of methylation levels of nearly
every nucleotide in the genome. However, in reality, coverage
for each base pair from the NGS data varies greatly [31, 32].
Given such limitation, representing DNA methylation level as a
discrete variable solely based on the read coverage can cause
biases. Thus, statistical methods that take into account the dy-
namic nature of read count distribution into the analysis are
preferred. In addition, because of the very virtue of having infor-
mation on nearly every cytosine in the genome, if the analyses
were designed to test variation of DNA methylation on every
available nucleotide, the number of hypotheses that can be
tested becomes extremely high. For example, the total number
of cytosines in the human genome when counting each strand
separately is nearly 60 million. Statistically speaking, such a
large number of CpG sites demands for a strict cutoff for the
multiple hypothesis adjustment because both the Bonferroni
and false discovery rate (FDR) cutoff can be considered too rigor-
ous when there are only a small number of DMLs [33].
Consequently, it makes identification of DMLs/DMRs difficult
when faced with an abundance of CpG sites. For this reason,
identifying regions or specific loci that exhibit differential DNA
methylation has become more realistic and important in ana-
lyses of large-scale BS-seq data. In Table 1, we list some of the
currently available statistical tools for DML/DMR analyses of BS-
seq data. These tools were selected for their popularity, recency
and/or novelty. There are a number of excellent tools in this
area of research that we could not include in the current work.
We provide a simulation study to compare the performance of
each tool. Several papers have previously provided complemen-
tary comparisons [34–37].

The tools in Table 1 can be divided into several groups ac-
cording to the specific methods they use in some of the key
steps in their analyses. Briefly, statistical tools first model
methylation levels at individual sites according to an appropri-
ate distribution before making comparisons. Methylation meas-
urements at each site can be further adjusted via a smoothing
strategy, using methylation measures from neighboring sites.
The pertinent statistical test for each tool is then used to com-
pare sites/regions and determine DMLs/DMRs. DMRs are typic-
ally derived from combining consecutive, differentially
methylated CpGs within a predefined window. We summarize
these methods in Table 1 and group them by their compatibility
with different data sets, CpG modeling, presence of a smoothing
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step, ability to factor in covariates and/or multiple groups and stat-
istical procedure for identifying DMLs and DMRs (Table 1, Figure 1).

Data type and CpG modeling
This step determines the way methylation level is represented
and used as input in DML/DMR methods. Methylation levels can
be represented in one of three types, discrete, continuous or cat-
egorical. The way methylation levels are modeled somewhat
narrows down subsequent statistical tests. The discrete way of
representing the methylation level directly uses read count in-
formation (counts of C and T reads). Therefore, it can be con-
nected to the binomial or beta-binomial distribution, which
account for the highly dynamic nature of read coverage distri-
butions of NGS data [32, 38, 39]. Some tools then use Fisher’s
exact test or logistic regression to detect differential DNA
methylation [20, 26]. However, these two tests are based on the
hypergeometric and binomial distributions, respectively, which
are insufficient to account for the variation of fractional methy-
lation level between individual samples [37].

As a remedy, several methods use a beta-binomial regression
to detect DMLs/DMRs [21, 24, 25]. Some other methods, instead of
directly using read counts, use information from neighboring
sites to consider methylation level as a continuous variable (i.e.
the ‘smoothing’ approach, which is discussed in the following
section). In such cases, ordinary linear regression or beta-
regression can be applied to identify DMLs/DMRs. While these
methods use estimates of fractional methylation levels directly,
some other methods instead classify each CpG into two or more
categories, for example, methylated, unmethylated and/or par-
tially methylated. In these situations, contingency table tests
such as Fisher’s exact test are used to identify DMLs/DMRs [27].

Smoothing
The methods in Table 1 can be also grouped by whether they in-
corporate a smoothing approach. To obtain smoothed fractional
methylation levels, the general form of the likelihood is given as
L yjm;n;wð Þ ¼

Qk
i¼1 Lðmi;ni; yÞwi , with mi representing the number

of methylated reads, ni representing the number of total reads
and wi representing the weight at the ith site in a window of a
certain size with k number CpGs. The likelihood function L is
usually based on the binomial distribution. BSmooth [22] add-
itionally uses polynomial regression of the second degree [40].
Among the variables, wi is a function of distance from a target

site. Specific weight functions used in each tool can be found in
Table 1. To find the optimal estimate of smoothed methylation
levels, i.e. y, the likelihood function is maximized.

Because methylation levels among adjacent CpG sites tend
to be highly correlated [17, 31, 41, 42], using a smoothed methy-
lation level among adjacent sites can improve statistical preci-
sion. However, if methylation levels fluctuate within a narrow
region, smoothing within a large window size can be misleading
[43, 44]. We will expand on this concept in more detail as it re-
lates to the analyses of invertebrate methylation data in a later
section. Most of the smoothing methods [22–24] can be inter-
preted as a weighted mean of fractional methylation level. An
exception is the Hidden Markov model and Fisher’s exact test
(HMM-Fisher) method [27] that instead determines the methyla-
tion state of a CpG using adjacent CpG states by a Hidden
Markov model.

Statistics
Once the CpGs are modeled and a decision to use smoothed
methylation measures is made, specific statistical methods can
be used to identify DMRs and/or DMLs. These methods differ in
the underlying distributions they assume, as well as by the link
function they use to connect explanatory and the mean of re-
sponse variables. Although the logit link function is the most
commonly used type in many fields [45], other link functions
are introduced to improve estimation. For example, the probit
link in BiSeq [23] was introduced to fit the model in the presence
of extreme fractional methylation levels. Dispersion shrinkage
for sequencing (DSS)-general [25] uses the arcsine link to reduce
the dependence of variance on mean. Note that the Fisher’s
exact test is used differently in HMM-Fisher and differential
methylation analysis package (DMAP) [26, 27]. HMM-Fisher uses
it with categorically converted methylation status of each CpG,
while the DMAP uses it with raw read counts to test group mean
difference. Converting each CpG categorically removes the vari-
ance derived from using raw read counts. Therefore, HMM-
Fisher is not affected by the type 1 error inflation problem that
DMAP suffers from [34]. Moreover, MethylKit [20] uses logistic
regression for DML/DMR detection which can induce type 1
error inflation, although it also provides advanced methods for
multiple hypothesis adjustment.

Most methods provide both DML and DMR detection, with
the exception of DSS-general, which only calculates DMLs,
and DMAP which only calculates DMRs. Some methods first
identify DMLs, and combine adjacent DMLs to define DMRs.
To combine DMRs, some methods merge nearby DMLs as long
as their P-values or t-statistics are smaller than a set threshold
[22, 24, 27]. The authors’ suggested thresholds are typically 0.05
by default. Therefore, this approach can be considered more lib-
eral than the approach that merges DMLs whose FDR q-values
[21, 23, 24] or adjusted P-values from sliding linear model (SLIM)
are smaller than a set threshold [20].

The option to include covariates or multiple groups into the
model is another important aspect to consider. It is well known
that many covariates such as age and sex are related to frac-
tional methylation levels [7, 46, 47]. Therefore, meaningful cova-
riates should be included in the model to avoid confounding
effects with the variable of interest. In addition, the ability to
compare multiple groups will become more important as the
cost of sequencing goes down and new studies can include mul-
tiple groups in their experimental design.

As for the input data type, all methods accept either WGBS
and/or RRBS data. However, this is not a strict division because
the difference between WGBS and RRBS is only in whether they

Figure 1. Shared characteristics of commonly used statistical tools to identify

differential DNA methylation. A smoothing algorithm can be applied to incorp-

orate the spatial correlation of neighboring CpGs, which is especially helpful for

regions with a low number of mapped reads. Most of the methods are able to de-

tect both DMRs and DMLs. Some methods allow for inclusion of covariates,

granting researchers to account for confounding effects.
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sequence whole genomes, or targeted regions, respectively. For
example, BSmooth was originally developed to analyze WGBS
data, but can also be used for RRBS if the RRBS data are long
enough to sufficiently apply the smoothing procedure [22].
Thus, guidelines for compatible data sets are not set in stone.

Contrasting features of non-mammalian versus
mammalian DNA methylation

The methods we discussed so far have been mostly developed
and validated via BS-seq data from mammals, as shown in
Table 1. However, DNA methylation is phylogenetically wide-
spread [5, 48–51]. DNA methylation from invertebrate animals
has been known for several decades [49, 52], yet remained
somewhat enigmatic because typical ‘model invertebrate spe-
cies’ (such as flies and worms) largely lack DNA methylation. In
addition, no information on the molecular system of DNA
methylation from invertebrates was available until a decade
ago. In 2006, honey bee genome sequencing revealed a complete
and functional DNA methylation system in this species [53].
Many subsequent studies showed that functional DNA methy-
lation exists in a variety of invertebrate species. In particular,
hymenopteran insects (bees, wasps and ants) are emerging as
unique model systems to study DNA methylation [53–57]. For
example, recent studies reveal that DNA methylation may be
associated with caste differentiation [54], genome evolution
[58], regulation of alternative splicing [14, 59], differential allelic
expression [60] and response to pathogen infection [61]. DNA
methylation in plants has also been known for several decades
[62, 63]. Patterns of DNA methylation in plants are of great inter-
est with respect to their roles in many aspects of their ecology
and evolutionary processes [50, 64–66].

Interestingly, newly emerging genomic DNA methylation
data from non-mammalian species represent a different pat-
tern compared with those of humans and mice. For example, in
contrast to mammals, methylation in insects is typically found
in gene bodies of constitutively expressed genes and remains at
low levels throughout the rest of the genome [54, 55, 67]. DNA
methylation within insect gene bodies is biased toward the 50

region and distinctly elevated in exons compared with introns
in some hymenopteran insects [54, 55]. DNA methylation in

plants is also largely concentrated in gene bodies, as well as in
transposable elements. DNA methylation levels in plants are
also moderate compared with mammals. Thus, it is imperative
to consider how to apply DMR methods to non-mammalian
data. In this work, we will mainly focus on data from inverte-
brates, with particular focus on hymenopteran insects.
Nevertheless, the principles discussed here should be similarly
applicable to other non-mammalian groups.

One of the most notable differences is that invertebrate gen-
omes are typically lowly methylated overall. For example, previ-
ous studies have established that most CpGs in the human
genome are heavily methylated [17, 19, 68]. In contrast, inverte-
brate genomes are mostly unmethylated. We demonstrate this
contrast using WGBS data from honey bees and humans. The
honey bee Apis mellifera is one of the first models for invertebrate
methylome research. Here, we used published WGBS data from
six nurse and six forager bees [69] through mapping raw read in-
formation to assembly 2.0 via BSMAP [70]. For the human ex-
ample, we selected two previously published young and old
human brain samples from frontal cortex, mapped using the
bowtie program [16, 71]. We also analyzed these data after re-
mapping using BSMAP (Supplementary Materials). Details of
these data sets are shown in Table 2 and Figure 2. The primary
difference between our two data sets is the mean fractional
methylation levels (denoted as b), which is �80% in the human
data, and �1% in the honey bee data. Consequently, the propor-
tion of highly methylated CpGs (defined as b � 0:7Þ is around
0.5% in honey bee samples, while it is >75% in the human data.
Nearly 99% of CpGs are unmethylated (defined as b � 0:1Þ in
honey bees, but this proportion is only around 10% in humans. In
addition, as demonstrated in Figure 2, there is a substantial por-
tion of partially or intermediately methylated CpGs in honey
bees. In comparison, the human samples show a ‘bimodal’ pat-
tern of methylation where methylated and unmethylated CpGs
are relatively well separated. The proportion of partially methy-
lated CpGs (0:1 < b < 0:7) occupies 65% of all methylated honey
bee CpGs, while this proportion is 0.15 in the human data.

Earlier approaches to detect DMLs/DMRs from BS-seq data in
non-mammalian species have relied on traditional statistics
such as Fisher’s exact test [72, 73], or generalized linear model
[54, 59, 61, 74, 75]. However, these statistics may not be suitable

Table 2. Summary statistics WGBS data sets used in the current study

Species Subtype Sample ID Number
of CpGsa

Mean coverage
of CpGs (SD)

Mean of fractional
methylation

Proportion of highly
methylated CpGs (b � 0.7)

Proportion of non-
methylated CpGs (b £ 0.1)

Honey bee Forager SRR445767 16 219 569 3.5262.74 0.0079 0.0044 0.987
SRR445768 16 187 329 3.7063.06 0.0082 0.0044 0.987
SRR445769 16 067 650 3.5362.74 0.0078 0.0044 0.988
SRR445770 16 072 579 3.5762.96 0.0081 0.0044 0.988
SRR445771 16 651 919 4.0363.17 0.0081 0.0045 0.987
SRR445773 17 614 116 5.4663.75 0.0074 0.0040 0.987

Nurse SRR445774 15 392 236 2.9562.17 0.0074 0.0046 0.988
SRR445775 16 583 546 3.9863.16 0.0078 0.0043 0.987
SRR445776 15 898 853 3.3962.83 0.0077 0.0044 0.988
SRR445777 16 610 077 4.0363.25 0.0079 0.0043 0.987
SRR445778 13 162 266 2.3562.04 0.0083 0.0053 0.989
SRR445799 16 061 822 3.6362.93 0.0081 0.0044 0.987

Human (Brain) Young GSM1167005 50 681 659 9.7465.60 0.8125 0.7770 0.089
GSM1166274 50 584 845 9.4065.53 0.8147 0.7767 0.089

Old GSM1173775 36 753 282 2.1461.62 0.8019 0.7562 0.146
GSM1173772 49 244 279 6.1864.49 0.7859 0.7550 0.100

aCounted each strand separately.
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for the comprehensive recent data sets of DNA methylation.
For example, the Fisher’s exact test and logistic regression are
based on the hypergeometric and binomial distributions,
respectively, which may not be sufficient to account for disper-
sion in methylation levels among biological replicates of the
same group [22, 25, 35]. In addition, as experimental designs in-
corporate multiple biological replicates, these methods may
overestimate true differences between states and increase the
number of false positives [35]. Other tests such as t-test analysis
or analysis of variance (ANOVA) [74, 75] can also be problematic
because these tests only use fractional methylation levels and
do not account for the coverage information of each site.
Considering such potential issues associated with traditional
methods, using tools that are tailored for BS-seq data (as in
Table 1) is preferred. However, currently, the number of inverte-
brate studies that have used such methods pales in comparison
with the number of the mammalian studies (Table 1).

Results
Simulation study

We performed a simulation study to compare the performances
of the tools listed in Table 1. Since DMRs are usually identified
by clustering DMLs, we only focused on DML detection. Among
the tools listed in Table 1, the DMAP [26] method uses Fisher’s
exact test to identify DMLs and then DMRs. DMAP itself does
not provide the list of DMLs directly. Therefore, we used the
Fisher’s exact test directly to gauge the performance of DMAP.

We simulated WGBS data under various conditions.
Specifically, we considered several factors that could affect the
performance of tools, such as read coverage, fractional methyla-
tion level, sample size and the inter-individual variability of
DNA methylation. Because the number of exhaustive combin-
ations of all possible variation of factors is too large, we adopted
a simple strategy where we examined the effect of a single fac-
tor while other factors are fixed. For each combination, we gen-
erated 1000 CpG sites in which the gap distances between
adjacent CpGs are 100 bp. Following the structure of human
data, we generated the read coverage of each CpG site from the
negative binomial distribution with its variance three times

larger than the mean coverage (Table 2). The number of methy-
lated reads was determined from the binomial distribution with
the fractional methylation level as a success probability. We
compared two groups with equal sample sizes. For a given num-
ber of sample size for each group, we generated the methylated
reads from the binomial distributions with the success probabil-
ities p0 ¼ the fractional methylation level for the first group and
p1 ¼ the fractional methylation level for the second group.

As evaluation measures, we considered the type 1 error rate,
power and the area under the curve (AUC). For type I error com-
parison, we set the significance level to 5%. Figure 3 shows the
simulation results. The first row summarizes the result of type I
errors. With the exception of Fisher’s exact test and logistic re-
gression, all methods tend to have low type I error rate despite
variations in mean read coverage, mean fractional methylation
level, the number of samples and the standard deviation of indi-
vidual fractional methylation levels. Fisher’s exact test and lo-
gistic regression showed a large type I error except for cases
when the mean coverage was small or the standard deviation of
individual fractional methylation levels was small. As the mean
read coverage and inter-individual variability of the level of
fractional methylation increases, their type I errors increased
rapidly to as much as 20%.

For the power and AUC analysis, we defined the group effect
D as the difference in fractional methylation levels between two
groups and assumed D ¼ 5%, 10%, 20%. For a given sample size,
we generated the methylated reads from the binomial distribu-
tions with the success probabilities p0 ¼ the fractional methyla-
tion level for the first group and p1 ¼ p0þD for the second group.
The second row in Figure 3 shows the results of our power ana-
lysis. The first three plots are the results for D ¼ 10%. As the
coverage and sample size increase, the power increased as well.
On the other hand, as the fractional methylation level increases,
the power tends to decrease. While Fisher’s exact test and logistic
regression resulted in the highest power, it is mainly owing to
false positives. Among the listed tools, RADMeth, DSS-general
and MethylSig performed similarly with higher power than the
remaining tools. Note that these three tools commonly use the
beta-binomial distribution for methylation information. BSmooth
and HMM-Fisher provided the lowest power. The last plot in this
row shows the results of the power analysis over different values

Figure 2. Histogram of fractional methylation levels in (A) honey bee and (B) human. X-axis indicates fractional methylation, which is divided into 20 bins of 0.05 width.

Y-axis is the proportion of CpGs in each bin. For the honey bee histogram, the Y-axis is log-transformed to clearly demonstrate distribution of DNA methylation. We

used all CpGs in each species for the histogram. The number of total CpGs used are listed in Table 2.
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of D. As D increases, the power increases. Also note that BSmooth
showed the slowest rate of increase in power.

In the AUC analysis, we used the same settings as our power
analysis. The last row of Figure 3 depicts the results of the AUC
analysis. The first three plots are for D ¼ 10%. With the excep-
tion of BSmooth and HMM-Fisher, all methods provided similar
patterns. In general, as the coverage and sample size increase,
the AUCs also tend to increase. On the other hand, as the frac-
tional methylation level increases, the AUCs tend to decrease.
BSmooth and HMM-Fisher showed different patterns from the
rest and provided the lowest AUCs. The last plot in this row
shows the results of the AUC analysis over different values of D.
As D increases, the AUCs increased as well. Note that BSmooth
also showed the slowest rate of increase rate in AUC.

In summary, the simulation study comparing eight different
tools showed that Fisher’s exact test and logistic regression were
inefficient to control for type I errors, yielding high false positives.
The observation that tools using beta-binomial distribution to
model CpGs reduce type I error is consistent with previous ana-
lyses [34, 76]. Among the six tools that control type I errors well,
RADMeth, DSS-general and MethylSig performed similarly with
higher powers and AUCs compared with other tools.

Three recommendations that can improve DML/DMR
analyses of invertebrate BS-seq data

In the previous sections, we summarized key properties of DML/
DMR methods and major differences in methylation patterns
between mammals and invertebrates. Even though many of the

newly devised BS-seq analyses methods should in principle be
applicable to invertebrate data, there are some potential limita-
tions that need to be additionally considered when working
with invertebrate data sets. In the following sections, we pro-
vide suggestions that could improve the accuracy and power of
DMR/DML analyses of DNA methylation data from inverte-
brates. We demonstrate each point by presenting analysis of
the aforementioned WGBS data from honey bees and humans.

1. The effect of window sizes on the smoothing of invertebrate data
In this section, we discuss potential problems of a smoothing
approach when applied to invertebrate data. As discussed
above, a smoothing approach uses adjacent methylation infor-
mation to improve the inference of fractional methylation of
low coverage sites. This is based on the observation that methy-
lation levels of adjacent CpGs are correlated in diverse species
[31, 41, 42]. However, if there is a large fluctuation of true frac-
tional methylation levels in a short region, a smoothing ap-
proach with large window size can result in unintended bias of
estimation. Several studies have reported that some inverte-
brate species have sharp and fluctuating patterns in methylated
regions because of methylated CpGs being clustered in short re-
gions [54, 55, 67]. In addition, invertebrate species show distinct
methylation patterns in coding and non-coding regions [55].
Consequently, smoothing over larger window sizes can distort
the true methylation levels when regional correlation of methy-
lation decreases rapidly, such as in invertebrates or plants [31].
In other words, too large a window size is likely to be

Figure 3. Simulation results for performance comparisons of DMLs detection among listed tools. We used eight tools to compare performance in aspects of type 1 error

(A–D), power (E–H) and AUC (I–L). The fixed parameters are: (A), (E), (I): Fractional methylation level is 0.5, sample size in a group is 10 and inter-individual variability is

0.1; (B), (F), (J): Mean coverage is 10x, sample size in a group is 10 and inter-individual variability is 0.1; (C), (G), (K): Mean coverage is 10x, fractional methylation level is

0.5 and inter-individual variability is 0.1; (D): Mean coverage is 10x, fractional methylation level is 0.5 and sample size in a group is 10; (H), (L): Mean coverage is 10x,

fractional methylation level is 0.5, sample size in a group is 10 and inter-individual variability is 0.1.
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disadvantageous for accurate estimation of CpG methylation in
sparsely methylated genomes. In addition, a previous study of
human tumors also reported that the efficiency of identifying
correlated epi-alleles changed with window size [77].

We demonstrate the effect of smoothing on invertebrate
data from a comparative analysis of the honey bee and human
data sets. We first used BSmooth [22] for smoothing, with win-
dow sizes of 4000, 2000, 1000 and 500 bp. The scaffold 1.1 and
chromosome 22 for honey bee and human samples were used
for this analysis, respectively. We show the R2 values between
the original and smoothed fractional methylation levels for
each sample and window size (Figure 4). The coefficient of
determination, or R2 values, of honey bee data in the 4000 bp
window are much lower. The mean R2 value of 0.449 in honey
bee data implies that the smoothing approach could not explain
more than half of the total variation while it explained three

quarters of the total variation in human data at the same win-
dow size. Indeed, smoothed fractional methylation levels in
larger windows (>1 kb) are substantially different from the ac-
tual methylation levels for the honey bee data (Figure 4). Also,
in the 4000 bp windows, methylation levels at the boundary are
somewhat distorted even in the human data (Figure 4).

Using smoothed fractional methylation values and the
modified t-test from BSmooth, we then obtained the t-like stat-
istic at each CpG dinucleotide to identify significantly DMLs be-
tween forager and nurse bees, and between young and old
human frontal cortices. Our findings for each window size are
summarized as a boxplot (Figure 5). When we set the cutoff to
2.5% and 97.5% quantile of the actual t-distribution, the number
of DMLs increases as the window size decreases in the honey
bee data (Figure 5A). In contrast, no such trend is observed in
the human data (Figure 5B). In addition, we also performed the

Figure 4. Smoothing using large window sizes leads to poor estimation of local DNA methylation. Smoothed methylation levels in selected 2000 CpGs from the

(A) honey bee and (B) human data.

Figure 5. The number of CpGs detected as significantly DMLs using BSmooth for several different window sizes. The Y-axis is a t-like statistic for differential DNA

methylation provided by BSmooth. Red line is drawn at the cutoff of P¼0.05, when compared with a real t-distribution.
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AUC analysis [78]. AUC increased steadily with decreasing win-
dow size in the honey bee data (Supplementary Table S1). AUC
also increases in the human data, but more slowly than in the
honey bee data (Supplementary Table S1). Based on these re-
sults, when applying a smoothing technique to methylation
data from invertebrate species, we recommend using smaller
window sizes (e.g. under 1000 bp for BSmooth) than recom-
mended for human data, and applying a looser cutoff threshold
for DMLs/DMRs. This particular problem is not as evident for
other tools that use smoothing because the default window
sizes are small (80 bp for BiSeq [23], 2�300 bp for MethylSig [24],
one adjacent CpG for HMM-fisher [27]).

2. Handling of CpG sites that are unmethylated in all samples
As we have stated above, one of the most distinguishing fea-
tures between mammalian and invertebrate methylation data
is that only a small fraction of CpGs in the latter is methylated.
When a CpG is unmethylated across all samples in a group, it
does not need to be tested for methylation differences between
groups, as these sites not only lack biologically meaningful in-
formation, but may hinder subsequent statistical tests. Having
a large number of globally unmethylated CpG sites (defined as
sites unmethylated in all biological samples) in a data set will
be disadvantageous for multiple hypothesis testing procedures
such as FDR [33], as the efficiency of such tests is affected by the
proportion of true positives.

We thus suggest removing globally unmethylated CpGs be-
fore proceeding with statistical analyses. We applied this

concept to the honey bee data set. In all 12 samples, 18 234 421
CpG sites have read information in at least one sample in each
group (referred to as ‘unfiltered’ data set). We then used Bis-
class [31] to identify and discard sites that were globally unme-
thylated in all 12 samples. We also removed CpG sites that did
not have any mapped cytosine reads in any samples. Following
these steps, we obtained a ‘filtered’ data set of 549 682 CpGs (ap-
proximately 3% of the unfiltered data set).

We first used regression analysis of differential methylation
(RADMeth) for differential DNA methylation analyses of these
data. RADMeth first generates P-values for individual CpGs,
then derives the ‘combined P-values’ using a Z test, to combine
the original P-values of the target site and its neighboring sites
to increase the power to detect differential methylation [21].
The results are shown in Table 3. The numbers of significant
DMLs (individual CpGs) and DMRs (clusters of adjacent differen-
tially methylated CpGs) were much greater in the filtered data
set compared with the results in the unfiltered data set. At the
threshold of q � 0.20, only 14 CpGs were detected as differen-
tially methylated between the nurse and forager bees from the
unfiltered data set. In comparison, using the same threshold,
578 CpGs were detected as differentially methylated from the
filtered data set. Sites detected as differentially methylated be-
tween the nurse and forager bees from the filtered data set ex-
hibited substantial differences in fractional methylation (Figure
6). As there are only 14 DMLs in the unfiltered set, all of which
are also found in the filtered set, we only visualized the data
from the filtered analysis in Figure 6.

Table 3. Differentially methylated CpGs (DMLs) between forager and nurse bees in the unfiltered and filtered data sets using RADMeth

Rank Unfiltered data set Filtered data set

Location (scaffold:bp) Log-ORa Original-P Combined-P FDR q Location (scaffold:bp) Log-OR Original-P Combined-P FDR q

1 Un.95:45 285 �1.56 0.025 4.22E-08 0.17 4.1:249 887 17.24 0.0015 1.12 � 10�9 0.00012
2 Un.95:45 286 �0.73 0.26 4.22E-08 0.17 4.1:249 888 16.20 0.0040 1.12 � 10�9 0.00012
3 Un.95:45 325 �1.66 0.047 9.52E-08 0.17 4.1:249 889 18.21 0.00068 1.12 � 10�9 0.00012
4 Un.95:45 326 �2.53 0.0093 9.52E-08 0.17 4.1:249 890 2.25 0.033 1.12 � 10�9 0.00012
5 Un.77:65 020 1.85 0.085 1.11E-07 0.17 4.1:249 905 �42.85 0.28 1.12 � 10�9 0.00012
6 Un.77:65 021 1.90 0.026 1.11E-07 0.17 4.1:249 940 0.84 0.48 4.47 � 10�9 0.00027
7 Un.77:65 063 1.04 0.13 1.11E-07 0.17 4.1:249 941 11.66 0.0023 4.47 � 10�9 0.00027
8 Un.77:65 064 2.63 0.0043 1.11E-07 0.17 4.1:249 956 0.91 0.45 4.47 � 10�9 0.00027
9 Un.77:65 081 10.95 0.011 1.11E-07 0.17 4.1:249 957 11.53 0.0014 4.47 � 10�9 0.00027
10 Un.77:65 082 12.90 0.0066 1.11E-07 0.17 Un.95:45 285 �1.56 0.026 4.22E-08 0.0021
11 Un.77:65 105 11.56 0.17 1.11E-07 0.17 Un.95:45 286 �0.73 0.26 4.22E-08 0.0021
12 Un.77:65 106 57.16 0.029 1.11E-07 0.17 Un.95:45 325 �1.66 0.047 9.52E-08 0.0029
13 12.16:628 752 �16.87 0.0080 1.44E-07 0.19 Un.95:45 326 �2.53 0.0093 9.52E-08 0.0029
14 12.16:628 753 �13.69 0.039 1.44E-07 0.19 Un.77:65 020 1.85 0.085 1.11E-07 0.0029
15 1.9:129 112 �0.84 0.12 3.08E-07 0.37 Un.77:65 021 1.90 0.026 1.11E-07 0.0029
16 12.16:628 812 �1.54 0.12 7.28E-07 0.76 Un.77:65 063 1.04 0.13 1.11E-07 0.0029
17 12.16:628 813 �0.85 0.49 7.28E-07 0.76 Un.77:65 064 2.63 0.0043 1.11E-07 0.0029
18 1.16:334 926 �0.66 0.30 7.89E-07 0.76 Un.77:65 081 10.95 0.011 1.11E-07 0.0029
19 1.16:334 927 0.62 0.39 7.89E-07 0.76 Un.77:65 082 12.90 0.0066 1.11E-07 0.0029
20 12.16:628 767 �14.58 0.0048 9.60E-07 0.76 Un.77:65 105 11.56 0.17 1.11E-07 0.0029
q � 0.05 0 (0)b 145 (22)
q � 0.10 0 (0) 299 (58)
q � 0.20 14 (3) 578 (113)

Note. Top 20 CpGs according to the q-values adjusted from combined P-values are shown. Note that the combined P-values are derived from the original P-values of the

target site and its neighboring sites to increase the power to detect differential methylation [21]. The numbers of CpGs that are significantly differentially methylated

for q-value thresholds of 0.05, 0.10 and 0.20 are shown. For only CpGs that failed in calculation of original-P, we used Fisher’s exact test result. In combining P-value

step, we used a parameter of 1:100:100 for estimating correlations between adjacent CpGs.
aOdds ratio of cytosine reads between forager and nurse groups.
bNumbers in parenthesis indicate the number of significant DMRs.
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The difference in the results between the two data sets can
be directly attributed to removing globally unmethylated sites.
For example, the CpG at location 45 285 of scaffold Un.95 has
the same P-value in both data sets, but different q-values
(first row in Table 3). This is because of the fact that q-value is
affected by the rank of combined P-values and the total
number of hypotheses as well as the original P-values of adja-
cent CpGs. The total number of the CpGs, or the number of
hypotheses to be tested, in ‘unfiltered’ data set is 33 times
higher than that in the ‘filtered’ data set. Thus, even though
the CpG at 129 112 of scaffold 1.9 (and other CpGs) have small

combined P-values, their q-values are high. In addition, we
detected new DMRs, for example between 249 887 and 249 957
of scaffold 4.1. In the ‘unfiltered’ data set, the combined P-val-
ues of this region were affected by globally unmethylated
nearby CpGs with large P-values, thus leading to large q-val-
ues. In the filtered data set, the q-value of this region was
0.00012. These results demonstrate that removing globally
unmethylated sites can significantly improve the efficiency of
DML and DMR analyses.

We also performed a similar analysis using the human data
set. In the human data set, the percent of globally unmethylated
CpGs was only 7.4% (3 713 349 of 50 026 515). As expected, the
numbers of DMLs and DMRs were also higher in the filtered
data set compared with the unfiltered data set (Supplementary
Table S2). However, the degree of improvement, as measured by
the increase of DMLs, is small compared with that in the honey
bee analysis, which experienced a 41-fold improvement in de-
tected DMLs compared with just a 1.7-fold improvement in the
human analysis.

Moreover, we also applied BiSeq to the filtered and unfiltered
data sets to see if the removal process works well with prede-
fined regions such as genes. We first identified honey bee CpGs
located within mRNA coding regions only. This led to 90 364
CpGs in the filtered data set, and 3 096 291 CpGs in the unfiltered
data set. After clustering adjacent CpGs, BiSeq calculates
cluster-wise P-values, from which FDR-q-values are calculated
(Table 4). As seen in Table 4, we found 13 CpG clusters in the fil-
tered data set whose FDR q-values were <0.20. In contrast, no
CpG clusters were detected in the unfiltered data set. The num-
ber of CpG clusters in the unfiltered data set was nine times
greater than that in the filtered data set, which explained the
difference in the power (Table 4). We also performed similar
BiSeq analysis using the human data. We did not observe a

Table 4. Differentially methylated CpG clusters (DMRs) between forager and nurse bees in the unfiltered and filtered data sets using BiSeq

Rank Unfiltered data set (Na 541 854) Filtered data set (N¼4606)

Location
(scaffold:start-end)

Methylation
difference

Cluster-P FDR q Location
(scaffold:start-end)

Methylation
difference

Cluster-P FDR q

1 11.8:11 370–11 393 0.121 2.45�10�6 0.41 11.8:11 370–11 393 0.142 3.22�10�5 0.079b

2 3.17:303 366–303 399 0.099 8.95�10�6 0.41 2.20:15 018–15 092 0.153 3.56�10�5 0.079b

3 2.20:14 953–15 092 0.035 1.06�10�5 0.41 6.11:242 720–242 765 0.077 7.70�10�5 0.12b

4 2.23:20 350–20 397 0.119 2.14�10�5 0.59 8.35:46 707–46 718 0.296 1.17�10�4 0.14b

5 6.37:24 719–24 792 0.066 2.44�10�5 0.59 5.23:24 001–24 062 0.181 1.40�10�4 0.14b

6 5.23:24 001–24 062 0.181 4.32�10�5 0.87 3.18:211 922–211 970 0.124 1.69�10�4 0.14b

7 1.38:14 704–14 832 0.006 8.98�10�5 1 Un.78:39 050–39 060 0.433 2.53�10�4 0.20b

8 3.18:211 922–211 970 0.062 9.61�10�5 1 8.1:286 401–286 446 0.114 3.27�10�4 0.20b

9 8.17:24 287–24 300 0.104 9.68�10�5 1 3.20:159 895–159 933 0.232 3.58�10�4 0.20b

10 Un.248:9781–9842 0.045 1.23�10�4 1 Un.167:44 251–44 275 0.253 4.09�10�4 0.20b

11 1.20:3859–3891 0.014 1.48�10�4 1 Un.248:9811–9842 0.138 4.22�10�4 0.20b

12 8.35:46 707–46 718 0.296 1.52�10�4 1 6.37:24 766–24 792 0.158 4.28�10�4 0.20b

13 8.16:405 220–405 229 0.100 2.15�10�4 1 10.40:104 750–104 800 0.275 4.45�10�4 0.20b

14 Un.78:39 050–39 060 0.433 2.29�10�4 1 3.20:160 474–160 525 0.148 6.10�10�4 0.23
15 8.16:402 067–402 101 0.065 3.06�10�4 1 11.5:35 894–35 925 0.082 6.12�10�4 0.23
16 7.27:36 394–36 461 0.098 3.36�10�4 1 8.17:24 287–24 300 0.104 6.45�10�4 0.23
17 Un.129:27 268–27 313 0.132 3.72�10�4 1 3.19:43 078–43 091 0.058 6.51�10�4 0.23
18 3.19:43 078–43 091 0.058 3.79�10�4 1 10.21:19 623–19 659 0.257 6.99�10�4 0.24
19 Un.167:44 251–44 275 0.253 5.06�10�4 1 8.16:405 220–405 229 0.100 7.23�10�4 0.24
20 4.13:106 236–106 257 0.027 5.22�10�4 1 7.27:36 394–35 461 0.098 8.10�10�4 0.25

Note. Top 20 CpGs clusters according to the q-values are shown. We used a minimum of 3 CpGs, a maximum gap of 50 bp for the clustering step and 80 bp window size

for the smoothing step.
aNumber of tested CpG clusters.
bSignificant at FDR q � 0.20.

Figure 6. Boxplots of fractional methylation differences between forager and

nurse honey bees. The first three are CpGs that were detected as differentially

methylated between the two groups in the filtered data set (where globally

unmethylated sites are removed). Compared with the rightmost one, which is

drawn using whole sites in the filtered data set, they show highly significant dif-

ferences (two-sample t-tests, P-values shown above each boxplot).
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difference in the number of significant DMRs between the fil-
tered and unfiltered data sets (Supplementary Table S3).

3. DML/DMR analyses using categorical classification of CpGs
Although most of the DML/DMR methods we consider here use
discrete or continuous type of fractional methylation level, categor-
ically converted methylation statuses have been also used in DML/
DMR analyses [54, 69]. In general, using continuous or discrete
type of fractional methylation level is more advantageous
than using categorically converted fractional methylation lev-
els because the former can represent methylation differences
in more detail. However, categorical classification may be also
appropriate in some cases, for example, when the overall
methylation level is low and researchers are interested in the
methylation status of a site rather than its methylation level.

Currently available tools in this regard typically classify each
site as ‘methylated’ or ‘not methylated’. This binary classifica-
tion of methylation status can best explain the original state of
methylation level when it follows a bimodal pattern (Figure 2B).
However, in some species, many sites are partially or intermedi-
ately methylated [53–55]. For example, many CpGs in the honey

bee data are partially methylated (Figure 2A). Therefore, when
we apply categorical approaches using a two-class classification
(unmethylated and methylated) to the honey bee data, it will re-
sult in a loss of information. We thus propose that partially
methylated CpGs need to be regarded as a separate group from
the fully methylated CpGs to use more information from the
data. Among the methods we discuss in Table 1, HMM-Fisher
[27] can be used to classify sites into unmethylated, partially
methylated or fully methylated categories. The idea of catego-
rizing CpGs based on more than two classes has been previously
proposed [79], although the criteria for classification was based
on raw fractional methylation without consideration for adja-
cent CpG methylation. HMM-Fisher’s smoothing method [27] is
able to incorporate neighboring CpG methylation information,
allowing it to use low coverage sites that are discarded in the
previous method.

Classifying to more than two methylation statuses reflects
more realistic methylation states, and also improves the signifi-
cance of DMR tests when applied to genomic regions whose
composition of partially and fully methylated information is un-
equal between biological groups (Figure 7). In the region shown
in Figure 7, the fractional methylation levels of many CpGs in
forager bees are higher than those in nurse bees. Therefore, a
two-class classification (unmethylated and methylated) classi-
fied all of them as methylated in forager samples and fails to
detect any difference between the two groups, even though
there was a true difference of means. The P-value from the two-
class classification was 0.16 compared with 0.0051 from the
three-class classification. Indeed, there was a greater relative
proportion of CpGs classified as ‘partially methylated’ from the
honey bee data than from the human data (Table 5).

Interestingly, the increase of DMLs detected between the
two- and three-class classifications was also evident in the
human data set (Table 5), suggesting that applying three-class
classification is also useful for the analysis of human data sets.
When we calculated AUCs between P-value of the HMM-Fisher
method and binary status of methylation differences, AUC val-
ues also increased in both data sets (Supplementary Table S4).
Furthermore, instead of a Fisher’s exact test, we can also apply
a Cochran-Armitage [80] or Cochran-mantel-Haenztel test [81]
by imposing ordinal weights such as 0, 1 and 2 to the
unmethylated, partially methylated and fully methylated CpGs.
Doing so may provide more significant results when the num-
bers of CpGs in each category linearly increases or decreases.

Aligner effect

As the honey bee data set was aligned with BSMAP and the
human data set with bowtie in the literature, different aligners
could have affected the observed methylation differences [82].
To determine whether our conclusions were robust when a

Table 5. Classification result of honey bee (group 1) and human (chr 22) data set by HMM-Fisher

Proportion of methylation state Classification results(number of DMLs)

Species Condition Un Partial Full Two class Three class

Honey bee Forager 0.9955 0.0018 0.0027 209 371
Nurse 0.9954 0.0018 0.0028

Human Young 0.1171 0.1287 0.7542 2082 7049
Old 0.1452 0.1131 0.7417

Note. The numbers of CpGs for each class of methylation state are shown. In addition, the numbers of DMLs from two- and three-class classification analyses are

shown. DMLs were detected using P�0.05.

Figure 7. Plot of fractional methylation levels and their classification results

within a DMR. Values from the forager and nurse bees are shown in green and

blue. When we used a two-class classification (dividing methylated and unme-

thylated sites), P-values for differential DNA methylation (by Fisher’s exact test)

was 0.16. In contrast, when a three-class classification (methylated, partially

methylated and unmethylated: shown as squares, circles and triangles) was

used, the P-value for the same region was 0.0051. Considering that the actual

mean fractional methylation level difference between the two groups is 0.28, a

three-class classification analysis appears more suitable.

Detecting differential DNA methylation from diverse methylomes | 43

Deleted Text: i
Deleted Text: employ 
Deleted Text: i
Deleted Text: ,
Deleted Text: very 
Deleted Text: in order 
Deleted Text: tiliz
Deleted Text: ,
Deleted Text: p
Deleted Text:  
Deleted Text: -
Deleted Text: to 
Deleted Text:  
Deleted Text: -
Deleted Text: p
Deleted Text: ,
Deleted Text: -
Deleted Text: ,
Deleted Text: Since 
Deleted Text: if 


different alignment program was used, we re-aligned our human
data with BSMAP. We then conducted an empirical study to com-
pare the newly aligned and the original human data to see the ef-
fects of using a different aligner. For the purpose of this
comparison, we only focused on chromosome 22 of the human
data, and repeated the same analyses. These results are summar-
ized in supplementary figures and tables (Supplementary Figure
S1–S3 and Supplementary Table S5–S7) according to each of our
recommendations. In summary, our empirical study showed that
the analysis of the newly aligned human data using BSMAP did
not change our original conclusions for the three recommenda-
tions, although slight differences were observed.

Conclusions

In this study, we summarized current statistical tools to detect
DMLs and DMRs from bisulfite sequencing data, and investi-
gated crucial points that need to be considered when they are
applied to data from invertebrates. Specifically, we focused on
several distinct properties that are unique to invertebrate data
when compared with mammalian data. These properties in-
clude narrow and fluctuating methylation patterns, extremely
low proportion of methylated CpGs throughout the genome and
the existence of many partially methylated CpGs. We developed
our arguments based on these properties, and drew correspond-
ing conclusions supported by data analysis. We recommend
using small window sizes for smoothing, removing globally
unmethylated CpG sites before DML/DMR analyses and applying
a more specific categorical classification method. These consider-
ations should be applicable to a variety of species that share simi-
lar methylation characteristics with invertebrate genomes.

Key Points

• Sequencing of bisulfite-converted genomic DNA is an im-
portant tool for the study of DNA methylation because it
enables estimation of DNA methylation at single-
nucleotide resolution. Hence, it is becoming popular.

• Sequencing of bisulfite-converted genomic DNA has
been particularly useful for DNA methylation analyses
of invertebrate animals, which are non-traditionally
studied organisms for epigenetics.

• Many statistical tools have been developed to effi-
ciently and accurately estimate DNA methylation from
sequencing of bisulfite-converted genomic DNA.

• Key steps of currently available statistical tools for the
analyses of sequencing of bisulfite-converted DNA are
discussed.

• Practical guidelines for using currently available tools
for DNA methylation analyses of invertebrates are pro-
vided with specific recommendations.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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